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A Robust Controller for Multi Rotor UAVs

Omar A. Jasim1, Sandor M. Veres2,∗

Department of Automatic Control and Systems Engineering, University of Sheffield, Amy
Johnson Building, Mappin Street, S1 3JD, UK

Abstract

Unmanned aerial vehicles (UAVs) are safety-critical systems that often need

to fly near buildings and over people under adverse wind conditions and

hence require high manoeuvrability, accuracy, fast response abilities to ensure

safety. Under extreme conditions, the dynamics of these systems are strongly

nonlinear and are exposed to disturbances, which need a robust controller

to keep the UAV and its environment safe. In this paper a novel robust

nonlinear multi-rotor controller is introduced based on essential modifications

of standard dynamic inversion control, which makes it insensitive to payload

changes and also to large wind gusts. First a robust attitude controller is

established, followed by lateral and vertical position control in a customary

outer loop. The controllers take into account thrust limitations of the aircraft

and theoretical proof is provided for robust performance. The control scheme

is illustrated in simulation with a realistic nonlinear dynamical model of an

aircraft that includes rotor dynamics and their speed limitations to show
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robustness. Lyapunov stability methods are used to prove the stability of

the robust control system.

Keywords: Robust control, Nonlinear dynamic inversion, Multi-rotor

unmanned aerial vehicles

1. Introduction

There is an increasing requirement for small multi-rotor unmanned drones,

under 20kg and under 400ft, to be safely operated over congested, urban areas

for police and security work, building inspections, fire fighting and emergency

needs, etc. Drones would often carry variable payloads (cameras, measure-

ment devices, pick-up arms, etc.) while they could be exposed to gusts of

winds or could collide with or be attacked by other craft or birds. Other

causes of instability may be a temporary deterioration of actuator or pro-

cessor functionality. Under such conditions, a drone’s dynamical state may

be easily pushed into unstable regions if controlled by off-the-shelf axis-by-

axis PD/PID controllers, see this in [1, 2]. It is therefore imperative that

when these drones operate semi-autonomously by an autopilot, they would

need software that monitors their operational conditions and takes action if

the limits of the controller performance are approached. Ultimately, semi-

autonomous drones would need to decide for themselves, or they should ad-

vise the remote pilot, in order to seek safety and to possibly modify or cancel

flight/mission objectives.

A wide variety of control methods have been proposed in the literature

to control and stabilize a multi-rotor UAV. In [3], a now classic approach, a

PID controller of the multi-rotor was proposed for regulating the position and
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orientation of the aircraft. A combination of PID and gain scheduling control

approach is presented in [4] to increase robustness. In [5], a cascaded linear

PID model-based controller on SO(3) was proposed for quadcopter attitude

control to realize complex acrobatic manoeuvres. However successful PID

controllers are commercially, they can’t guarantee control system stability for

various flight conditions with uncertainties and disturbances. In [6], a neural

network was used to learn the complete dynamics of the multi-rotor and

an output feedback control law is developed to control the translational and

rotational motion of the vehicle. The authors in [7] proposed a PIλDµ neural

network aided finite impulse response control scheme for multi-rotor UAVs.

In these and similar schemes, it is difficult to quantify whether the controller

is near the limits to its performance in order to decide on a modified flight

path or landing. Again, it is difficult to know how to use these controllers in

realtime and onboard decision making on flight safety.

A number of robust control schemes have been developed to overcome

the modelling uncertainty or disturbances of multi-rotor UAVs. In [8], a ro-

bust L1 optimal control for a multi-rotor was presented and experimentally

evaluated. The control objective was to follow the desired trajectory with

rejecting persistent disturbances by minimizing the L∞ gain of the plant for

these disturbances. Another control method, based on a robust compensa-

tion, was proposed in [9] to minimize the effect of aerodynamic disturbances

and variable mass distribution.

Several nonlinear control methodologies have been derived by algebraic

manipulation in Lyapunov stability derivations. A variety of these is available

in the literature. In [10], a nonlinear model-based cascaded controller was
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proposed by identifying the dynamical parameters of a generic quadcopter.

A disturbance based observer for hovering control was proposed in [11]. The

authors conducted an extensive analysis of multi-rotor dynamics to provide

guidelines for designing a robust control scheme. In [12], a hover mode control

based on multi-loop back-stepping design is introduced for a linearized multi-

rotor dynamics. An attitude stabilization controller, based on quaternion

feedback and integrator backstepping was proposed in [13]. The controller

ensures that all the system states are uniformly ultimately bounded with the

existence of external disturbances. Similarly, a nonlinear backstepping-based

control for multi-rotor aircraft was introduced in [14]. Control system sta-

bility was evaluated by Lyapunov methods and LaSalle’s invariance theorem

with the presence of external disturbances. Other backstepping-based con-

trol schemes of multi-rotors can be found in [15, 16, 17]. Sliding mode control

has also been used for multi-rotor UAV control. In [18], an adaptive fuzzy

gain-scheduling sliding mode controller is introduced for multi-rotor attitude

control. The sliding mode controller is used to control the attitude of the

aircraft in the presence of modelling uncertainness and disturbances while

the fuzzy logic system is used to reduce the chattering problem produced by

the sliding mode controller. In [19], a robust integral sliding mode controller

is developed for attitude control to cope with the parametric uncertainty of

quadcopters. A backstepping controller with sliding mode observer is pro-

posed in [20] that overcomes the uncertainty and disturbances of the vehicle.

A similar approach was conducted in [21] to reduce external disturbance and

load variation effects. Dynamic inversion control has also been employed to

control a quadcopter. In [22], a nonlinear dynamics inversion control scheme
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is developed for a multi-rotor system to decouple the attitude and position

dynamics and maximize the transmission bandwidth of position control by

considering system uncertainty and disturbances. Similarly, a robust dy-

namic inversion approach is proposed in [23] for controlling and stabilizing

under disturbances. A sensor-based incremental nonlinear dynamic inversion

controller is developed in [24], with sliding mode disturbance observers for

fault-tolerant control, in order to reduce the effects of model uncertainty and

disturbances. Control of multi-rotor UAVs, which concern themselves by ei-

ther modelling error or by flight disturbances, have been subject to various

investigations [25, 26, 27].

Although there have been a variety of controllers proposed to control

multi-rotors, most of the work available is either concerned with modelling

uncertainty or with disturbances. Both inertial matrix uncertainty and ex-

ternal disturbances are important factors and can affect the craft at the same

time in practice. The upper limits of these need to be known in order to be

included in the design and to be known to onboard decisions affecting flight

safety .

In this paper a control scheme for a generic multi-rotor is presented that

consists of inner and outer loops, now common in aerospace. The inner

loop is a robust nonlinear dynamic inversion (RNDI) attitude controller to

deal with modelling uncertainty and external disturbances. It is developed

based on the well-known dynamic inversion technique [28, 29]. The outer

loop is a feedback position controller, which handles the vehicle lateral and

vertical transitions. A Lyapunov method is used as part of the attitude

controller design to ensure system stability. The novelty of this paper is
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represented by introducing a new controller that is robust to both modelling

errors and external disturbances, while it can monitor the violation of its

stability condition as well.

2. Mathematical Model

This section introduces the dynamical model of a generic multi-rotor using

quaternions to avoid the singularity associated with the gimbal lock [30],

which is important in high-performance control.

2.1. Quaternions

Gimbal lock occurs due to possible singularity of the direct cosine ma-

trix (DCM) in terms of Euler angles. To avoid gimbal lock, a quaternions

representation [31, 32] can be used to define rigid body attitude. The unit

quaternions are defined as

q = [q0 qTv ]
T = [q0 q1 q2 q3]

T , (1)

where q ∈ ℜ4 is the quaternion, q0 ∈ ℜ is its scalar element (cosine of a

rotation angle), and q v ∈ ℜ3 is its vector element (aligned with the axis of

rotation). The quaternion is suitable to describe any attitude of a rigid body

by Euler’s theorem, which states that two geometrically identical bodies can

be transformed into each other by a parallel shift of one of the bodies and a

single rotation around some axis in 3D space .There is the convention that for

attitude we use unit quaternions such that ‖q‖ =
√

q20 + q21 + q22 + q23 = 1,

hence q v ∈ ℜ3 is a unit vector multiplied by the sine of the rotation angle.

Note that no-rotation (no attitude change) is not the zero quaternion but

[1 0 0 0].
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The transformation from Euler angles sequence (yaw ψ, pitch θ, roll φ)

to quaternion can be described as [31]
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while the transformation from quaternion to Euler angles
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. (3)

There is however no problem with relating the Euler angle rotation rates

to quaternion rates. The relationship between the quaternion rates q̇ ∈ ℜ3

and the angular velocities ωωω(t) = [ωx(t) ωy(t) ωz(t)]
T ∈ ℜ3 in the B-frame

can be stated [31] as

ωωω = Z̃q̇ ,
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, (4)

and q̇ = Z̃Tωωω where Z̃T = Z̃−1 is an orthogonal matrix. This is useful in

control as solid state gyroscopes are available to measure ωx, ωy, ωz, hence

giving an opportunity to integrate the attitude changes in realtime.

The transformation from the body coordinates, B-frame for short, to the

world (inertial) coordinates, W -frame for short, can be expressed using the
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following matrix [31]

Rq =











q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q20 − q21 − q22 + q23











, (5)

and from W -frame to B-frame using RT
q where RT

q = R−1
q is an orthogonal

matrix of 3D rotations.

2.2. Multi Rotor Dynamic Model

The multi-rotor translational dynamics in the B-frame using a Newton

equation is

mv̇ + Γ(ωωω)mv = RT
q f G + f B, (6)

where m ∈ ℜ is the total mass of the craft, v(t) = [vx(t) vy(t) vz(t)]
T ∈ ℜ3

is the velocity vector of mass centre, v̇(t) = [v̇x(t) v̇y(t) v̇z(t)]
T ∈ ℜ3 is

the acceleration vector, f G = [0 0 −mg]T is the gravitational force, f B =

[0 0 U ]T ∈ ℜ3 is the total force of thrusters, U = F1 + F2 + F3 + F4, and

Γ(ωωω) ∈ ℜ3×3 is the cross-product matrix for the Coriolis forces such that

ωωω ×mv = Γ(ωωω)mv ,

Γ(ωωω) =











0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0











. (7)

The dynamics in the world frame W = [XW YW ZW ]T will be

r̈ =
1

m
(f G +Rqf B), (8)

where r(t) = [x(t) y(t) z(t)]T ∈ ℜ3 is the position vector in W -frame; since

r̈ = Rqv̇ . The multi-rotor rotational dynamics in the B-frame, using a

8



 

𝑀1 𝑀4 

𝑌𝐵 

𝑋𝐵 

𝑍𝐵 

𝑌𝑎𝑤 𝛹 
𝑀2 𝑀3 𝑅𝑜𝑙𝑙 ɸ

𝑃𝑖𝑡𝑐ℎ 𝜃 

𝑌𝑊 

𝑍𝑊 

𝑋𝑊 

𝛺1 

𝛺2 𝛺3 

𝛺4 

Figure 1: A quadcopter illustration in body frame and in inertia frames.

Newton-Euler equation, is

Iω̇ωω + Γ(ωωω)Iωωω + τττ d = τττ , (9)

where I ∈ ℜ3×3 is the symmetric and positive-definite inertia matrix of the

craft about its mass centre. τττ d(t) = [τdφ(t) τdθ(t) τdψ(t)]
T ∈ ℜ3 are the un-

known disturbances torques with φ, θ and ψ are roll, pitch and yaw respec-

tively. τττ(t) = [τφ(t) τθ(t) τψ(t)]
T ∈ ℜ3 is the torque vector of the onboard

controller in the B-frame which produces the multi-rotor motion.

We assume that for our multi-rotor each motor is aligned with the ver-

tical main axis of the vehicle and has an angular velocity Ωi that produces

body-aligned forces Fi = lΩ2
i and a torques Mi = bΩ2

i with l and b are the

aerodynamic force and torque constants of the rotors. All angular veloci-

ties of the motors are bounded by a known maximum value Ωmax so that,
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|Ωi| < Ωmax.

The torque output of the onboard control system, τττ , for plus-configuration

is

τττ =
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, (10)

where ℓ is the length from the centre of mass of the multi-rotor to the rotor.

For an X-configuration, where propellers 1-2 are on the front, these equations

are modified to

τττ =
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, (11)

For a hexacopter one of the options is, where propellers 1-2 are on the front,

to have the attitude control torques generated by

τττ =
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τθ

τψ











=











ℓl(−Ω2
1/2 + Ω2

2/2 + Ω2
3 + Ω2

4/2− Ω2
5/2− Ω2

6)

ℓl(−Ω2
1 − Ω2

2 + Ω2
4 + Ω2

5)
√
3/2

b(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4 − Ω2
5 + Ω2

6)











, (12)

The torques can be modelled in a similar manner for other types of mult-

irotor configurations, which are out of the scope of this paper.

For all cases of multi-rotors, from Eq. (9), and denoting by c(ωωω) = Γ(ωωω)Iωωω

the torque generated by the rotational moments, the attitude state-space

equation derives from

ω̇ωω = I−1[τττ − c(ωωω)− τττ d]. (13)
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3. Control System Design

The nonlinear rotational dynamics, when combined with minor inaccu-

racies in rotor shaft alignments and propeller deficiencies can lead to errors

in actuated control torques. The effect of these can be eliminated by an

inner-loop feedback controller of the multi-rotor attitude. The same attitude

controller can also be used to compensate for external disturbances of wind

gusts, aerodynamic interactions with nearby structures and ground effects.

Fig. 2 shows the proposed control system where the inner loop is embedded

in an outer feedback loop to control lateral and vertical movements, which

include pre-computing desired roll and pitch angles for manoeuvre-goals in

the x, y, z lateral position frame.
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Figure 2: The inner and outer control loops of the proposed multi-rotor controller. The

notation is explained through equations (16)-(30).

3.1. Position Control

Multi-rotor lateral transition is obtained by tilting the vehicle around X-

axis by (q0, q1) and Y -axis by (q0, q2) for the quadrotor illustrated in Fig.1.
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These angles are computed based on the reference trajectory of the position

controller, which passes them to the inner attitude controller. However,

the outer feedback position control loop is chosen as cascaded P (x), P (y)

controllers to handle the ẋ and ẏ. Another cascaded P (z) controller is also

chosen to control ż and hence obtaining the required linear movement.

Given the reference trajectory vector r r(t) = [xr(t) yr(t) zr(t)]
T ∈ ℜ3 and

qr3(t) as in Eqs. (5) and (8) while keeping ‖q‖ = 1, the quaternion reference

q r is computed by

q r =
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. (14)

The force f B including the total thrust U is computed for vehicle altitude

control as

f B =











0

0

U











=











0

0

(mz̈ +mg)/(2q20 + 2q23 − 1)











. (15)

Definition 1. The translational motion is controlled by choosing

r̈ = Kd(Kp(rr − r)− ṙ), (16)

or in terms of components

r̈ =











ẍ

ÿ

z̈











=











Kdx(Kpx(xr − x)− ẋ)

Kdy(Kpy(yr − y)− ẏ)

Kdz(Kpz(zr − z)− ż)











, (17)

where Kp = diag[Kpx Kpy Kpz]
T ∈ ℜ3×3 and Kd = diag[Kdx Kdy Kdz]

T ∈
ℜ3×3 are positive-definite diagonal gain matrices.
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The controller represented in Eq. (16) is implemented using Eq. (14) to

get the quaternion reference required for the multi-rotor attitude control and

using Eq. (15) to compute the total amount of thrust, U .

3.2. Attitude Control

Our nonlinear control system is designed based on the dynamic inversion

control principle [28], for controlling the multi-rotor attitude while accounting

for the bounded but uncertain mass distribution of the aircraft and external

force and torque disturbances. Lyapunov’s method will be used to prove

asymptotic stability under these bounded uncertainties for the control system

defined as follows.

Definition 2. Controller Torque Computation. Based on the attitude

dynamics in Eq. (9), the nonlinear control law is defined by

τττ = Îu+ ud + ĉ(ωωω), (18)

Here Î is an estimated matrix of the inertia matrix I of the craft, u

represents a new input vector to be designed later on in Eq. (25), ĉ(ωωω) is

an estimate of c(ωωω) as based on Î and measured ωωω . The additional term

ud is added to render the effects of uncertainty and disturbances in addition

to guarantee robustness of these effects; ud will be defined later to counter

these effects in Eq. (42).

Suppose that the attitude reference is q r and the measured value is q ,

the quaternion error q e will be defined by

q e = q r ⊗ q∗, (19)
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where ⊗ is the Hamiltonian quaternion product and q∗ denotes conjugate.

Note that q−1 = q∗ as the attitude quaternion has norm 1. In algebraic

detail, the quaternion error q e is

q e =

















qe0

qe1

qe2

qe3

















=

















qr0q0 + qr1q1 + qr2q2 + qr3q3

−qr0q1 + qr1q0 + qr3q2 − qr2q3

−qr0q2 + qr2q0 + qr1q3 − qr3q1

−qr0q3 + qr3q0 + qr2q1 − qr1q2

















. (20)

The tracking error vector will be defined as

ξξξ = [qe1 qe2 qe3 ]
T , (21)

since ξξξ is chosen to reduce the dimensions of qe by neglecting qe0 that is near

1 for small attitude errors and is only indicative of the size of the rotation

error. ξξξ will be used later in Eq. (25). Definition (21) can be justified on the

grounds that ξξξ converges to zero when the attitudes of q and q r converge, as

then qe0 converges to 1 and [qe1 qe2 qe3 ]
T converges component-wise to zero.

For large rotational-error correction of attitude, we will define the desired

reference quaternion rate q̇ r based on the error q e as

q̇ r = [kq0qe0 [Kqξξξ]
T ]T , (22)

where the scalar kq0 > 0 and Kq = diag[kq1kq2kq3 ] ∈ ℜ3×3 is a positive-

definite diagonal gain matrix, and hence we account for large rotational errors

through the rate reference. Note that the value of qe0 is not included in Eq.

(21) but it is included in Eq. (22) to compute the reference quaternion rate.

Using the defined rate q̇ r and the relation in Eq. (4), the error rate is

can be derived as

ξ̇ξξ = Z̃rq̇ r − Z̃q̇ = ωωωr −ωωω. (23)
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This choice of a reference rate q̇ r will aid our proofs of control performance.

Also note that ω̇ωωr can now be obtained from ωωωr, as the latter can be made

differentiable by a suitable choice of the desired attitude q r. For very small

quaternion error, Eq. (23) can be simplified such that

ξ̇ξξ = Z̃qeξξξ = I ξξξ = ωωωr −ωωω, (24)

where I is identity 3 × 3 matrix. Note that Eq. (24) is only valid when the

attitude error is small enough, i.e. qe vector values with the maximum of

[1, 1.2350 ∗ 10−5, 1.241 ∗ 10−3, 0.850 ∗ 10−7]T .

Definition 3. Controller Signal Computation. The control input u for

Eq. (18) is defined by

u = ω̇ωωr +Kωωωξ̇ξξ +Kqξξξ, (25)

where Kω = diag[kω1
kω2

kω3
] ∈ ℜ3×3 is a positive-definite diagonal gain matrix

setting the error gains in feedback.

By substituting the control torque (18) into (13), the rotational dynamics

in Eq. (13) becomes

ω̇ωω = I−1Îu + I−1ud + I−1[∆∆∆(ωωω)− τττ d]

= u + (I−1Î − I)u + I−1ud + I−1[∆∆∆(ωωω)− τττ d]

= u + I−1ud − y

(26)

where

y = [I− I−1Î]u − I−1[∆∆∆(ωωω)− τττ d] , ∆∆∆(ωωω) = ĉ(ωωω)− c(ωωω). (27)

By Eqs. (21)-(26), it follows that we have the error dynamics as

ξ̈ξξ +Kωξ̇ξξ +Kqξξξ = y − I−1ud. (28)
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By setting ηηη = [ξξξ ξ̇ξξ]T ∈ ℜ6×1, the closed-loop error dynamics equation is

η̇ηη = Aηηη +G[y − I−1ud] (29)

where

A =





03×3
I
3×3

−K3×3
q −K3×3

ω



 , G =





03×3

I
3×3



 . (30)

To bound the error ηηη we need to control the right-hand-side of Eq. (29) to

be kept small and that will be achieved by definitions in Eq. (42) later. The

new control input u need to guarantee asymptotic stability for any y varying

within a bounded range. To ensure this, the following assumptions are made

on the circumstances of the flight.

Assumption 1. (Flight Envelop): As the motors have limited rotational

rates, they have limited angular velocities |Ωi| < Ωmax. The vehicle angular

velocities ‖ωωω‖ < ωmax and angular accelerations ‖ω̇ωω‖ < ω̇max are also limited.

It is assumed that a known upper bound α > 0 limits the desired vehicle

angular accelerations vector ω̇ωωr as

sup(‖ω̇ωωr‖) < α. (31)

Assumption 2. (Payload Characteristics): As the moments of inertia

and mass of the vehicle may change with the payload to dangerous levels, they

need to be constrained by limiting the amount of variation in the moments of

inertia. The inertia matrix I is assumed to have a lower and upper bound,

λmin > 0, λmax > 0, hence the requirement made is that

λmin ≤ ‖I−1‖ ≤ λmax. (32)
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Consequently, the deviation between the estimated matrix Î and actual matrix

I can also be described with some δ > 0 in the format of

‖I− I−1Î‖ ≤ δ ≤ 1. (33)

Assumption 3. (Weather and Aerodynamic Disturbances): The ex-

ternal torque disturbance τττ d is sufficiently smooth, due to mechanical inertia,

and an upper constant bound γ > 0 is known so that

‖τττ d‖ ≤ γ, (34)

where γ = sup w(t); since w(t) is the wind function that could violate the

vehicle and its superior value can be estimated in practice.

Lemma 1. Setting ∆∆∆(ωωω) as the error between the estimated vector ĉ(ωωω) and

the actual vector c(ωωω), there exist β > 0 such that

‖∆∆∆(ωωω)‖ ≤ β. (35)

Proof. From ∆∆∆(ωωω) = ĉ(ωωω)− c(ωωω), ĉωωω = Γ(ωωω)Îωωω, and c(ωωω) = Γ(ωωω)Iωωω , we

have

∆∆∆(ωωω) = Γ(ωωω)Îωωω − Γ(ωωω)Iωωω

I−1∆∆∆(ωωω) = −(I− I−1Î)Γ(ωωω)ωωω,
(36)

by Assumption 1, where the upper limit of the angular acceleration is known,

it is possible to compute the upper bound of the angular velocity, ωωω. Hence

the angular velocity-dependent matrix, Γ(ωωω), is such that: sup(‖ωωω‖) ≤ σ and

sup(‖Γ(ωωω)‖) ≤ ̺ where σ > 0 and ̺ > 0; and using Assumption 2, we get

‖∆∆∆(ωωω)‖ ≤ (‖I− I−1Î‖ ‖Γ(ωωω)‖ ‖ωωω‖)/‖I−1‖

≤ (δ ̺ σ)/λmax := β.
(37)

�
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3.3. Attitude Stability Analysis

The following theorem states the stability of the proposed controller based

on Lyapunov’s direct method, including the definition of the control term ud

in Eq. (18).

Theorem 1. For the nonlinear dynamics in Eqs. (9), (25) using the control

law in Eq. (18), the close-loop system is asymptotically stable and the control

system’s errors converge to zero with Assumptions 1-3.

Proof. Setting the equilibrium point ηηη = 0 where V (0) = 0 and choosing the

following positive-definite function

V (ηηη) = ηηηTQηηη > 0 , ∀ηηη 6= 0 (38)

where Q ∈ ℜ6×6 is a symmetric positive-definite matrix, the time derivative

of V (ηηη) in Eq.(38) along the trajectory of the system errors is

V̇ (ηηη) =η̇ηηTQηηη + ηηηTQη̇ηη

=ηηηT [ATQ+QA]ηηη + 2ηηηTQG(y − I−1ud),
(39)

considering A has eigenvalues with all negative real parts, hence for a sym-

metric positive-definite matrix P , Lyapunov equation is written as

ATQ+QA = −P. (40)

This gives a unique solution Q then the term ηηηT [ATQ+QA]ηηη in Eq. (39) is

negative and the equation will be

V̇ (η) = −ηηηTPηηη + 2ηηηTQG(y − I−1ud). (41)

As the first term −ηηηTPηηη is strictly negative, the second term ηηηTQG(y −
I−1ud) need also to be strictly negative to ensure V̇ (ηηη) < 0. Therefore, ud

must be chosen to render the second term.
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Definition 4. For a positive time-varying scalar function ζ(ηηη, t) which will

be chosen to bound y, the term ud is defined as

ud =















ζ(ηηη, t)

‖GTQηηη‖G
TQηηη, if ‖GTQηηη‖ ≥ µ

ζ(ηηη, t)

µ
GTQηηη, if ‖GTQηηη‖ < µ.

(42)

The term ud is defined as a continuous approximation of the discontinu-

ous control because if ud =
ζ(ηηη, t)

‖GTQηηη‖G
TQηηη when ‖GTQηηη‖ 6= 0 and ud = 0

at ‖GTQηηη‖ = 0, a chattering problem will produce since ud will be discon-

tinuous which causes trajectories oscillation. To eliminate this problem, the

error should vary within the boundary of µ if ‖GTQηηη‖ is less than this value.

Note that ud depends on the error ηηη and with (42) bounded-norm error will

be ensured.

Assuming that ‖GTQηηη‖ ≥ µ, using Cauchy-Schwartz inequality we have

ηηηTQG(y − I−1ud) ≤‖GTQηηη‖‖y‖ − λminζ(ηηη, t)‖GTQηηη‖

=‖GTQηηη‖(‖y‖ − λminζ(ηηη, t)),
(43)

and if ζ(ηηη, t) is chosen such that the above term λminζ(ηηη, t) is strictly positive

and greater than ‖y‖, then V̇ (ηηη) < 0.

Definition 5. If the term y is bounded such that ‖y‖ ≤ ε for ε > 0, and for

λmin > 0, ζ(ηηη, t) can be chosen depending on y as

ζ(ηηη, t) ≥ ε

λmin
. (44)

From y in Eq. (27) and the Assumptions1− 3 with Eq.(35), we get

‖y‖ ≤ ‖I− I−1Î‖(‖ω̇ωωr‖+ ‖Kω‖‖ξ̇ξξ‖+ ‖Kq‖‖ξξξ‖) + ‖I−1‖(‖∆∆∆(ωωω)‖+ ‖τττ d‖)

≤ δ(α + ‖Kω‖‖ξ̇ξξ‖+ ‖Kq‖‖ξξξ‖) + λmax(β + γ) := ε,

(45)
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from the previous two equations, ζ(ηηη, t) obtained as

ζ(ηηη, t) ≥ δ

λmin
(α + ‖Kω‖‖ξ̇ξξ‖+ ‖Kq‖‖ξξξ‖) +

λmax
λmin

(β + γ). (46)

Finally, for ‖GTQηηη‖ ≥ µ, Eq. (41) becomes

V̇ (ηηη) = −ηηηTPηηη + 2ηηηTQG(y − I−1 ζ(ηηη, t)

‖GTQηηη‖G
TQηηη) < 0, (47)

and for ‖GTQηηη‖ < µ,

ηηηTQG(y − I−1ud) ≤µ‖y‖ − λminζ(ηηη, t)µ

=µ(‖y‖ − λminζ(ηηη, t)),
(48)

then

V̇ (ηηη) = −ηηηTPηηη + 2ηηηTQG(y − I−1 ζ(ηηη, t)

µ
GTQηηη) < 0. (49)

�

4. Simulation Studies

In order to test the controller performance in a realistic scenario, simu-

lations have been carried out using the MathWorks team’s detailed model

[33] in Simulink/Matlab. The aircraft’s nonlinear dynamics in (6) and (9)

have been implemented in the model. The DC motors with propeller dy-

namics were also modelled based on parameters taken from real multi-rotor

motor combinations. Moreover, the model has included computations of the

motors’ angular velocities Ωir from the computed thrust U and torques τττ de-

manded by the control scheme. The computed Ωir values had been applied

to the motor and propeller dynamics and then realistic thrust U and torques

τττ were obtained to approach the behaviour of a real dynamics. The original
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MathWorks model has been modified with the use of quaternions instead of

Euler angles, inertia moments variations, according to the payload change,

were considered, disturbances were added to the torques. The proposed non-

linear controller has been compared to a nonlinear adaptive fractional order

sliding mode based back-stepping (FRSDBKAD) controller presented in [21]

in terms of robustness and stability and in this section reported.

4.1. Nominal Performance

The initial task is to track the desired position trajectory r r = [xr yr zr]
T

and a desired rotation q3r without disturbances, where all the initial reference

xr, yr, zr, q3r are set to zero. Fig. 3 illustrates the desired trajectory of the

drone which includes take-off, several manoeuvres and landing. According

to the given trajectory, the RNDI controller shows that the measured x, y, z

well followed the reference trajectory as can be seen in Fig. 3. The attitude

controller results are shown in Fig. 4, where the attitude controller tracks

the reference quaternions produced by the position controller. Note that the

actual quaternion q is computed from the measured rates using the standard

continuous solver ode23 in simulation which is based on Bogacki-Shampine

method with order three, four stages and adaptive step size. The actual

quaternion is normalized to reduce error accumulation using the standard

quaternion normalization algorithm in [31]. In nominal flight conditions, the

aircraft tracked the reference trajectory well and more accurately than the

FRSDBKAD controller.
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Figure 3: Three dimensional xyz trajectory in the W -frame. Ref: reference trajectory,

RNDI: the proposed dynamic inverse controller, and FRSDBKAD: adaptive fractional

order sliding mode based back-stepping controller. Differences can be seen under wind

disturbances.

The controller parameters obtained are listed in Table 1. From Eq. (40),

the positive definite diagonal matrix P ∈ ℜ6×6 is chosen as

P = diag[9 ∗ 10−12 9 ∗ 10−12 5 ∗ 10−13 3 ∗ 10−10 3 ∗ 10−10 8 ∗ 10−10], (50)

and the symmetric positive definite matrix Q is obtained

Q =











1.566 ∗ 10
−11

0 0 −4.5 ∗ 10
−12

0 0

0 1.566 ∗ 10
−11

0 0 −4.5 ∗ 10
−12

0

0 0 2.539 ∗ 10
−9

0 0 −2.5 ∗ 10
−13

−4.5 ∗ 10
−12

0 0 2.466 ∗ 10
−10

0 0

0 −4.5 ∗ 10
−12

0 0 2.466 ∗ 10
−10

0

0 0 −2.5 ∗ 10
−13

0 0 6.347 ∗ 10
−8











.

(51)
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Figure 4: The measured angles track the reference attitude by adaptive fractional order

sliding mode based back-stepping control (FRSDBKAD) and by robust nonlinear dynamics

inversion (RNDI) control. The ”Roll angle φ” shows the roll rotation around X-axis,

”Pitch angle θ” shows the pitch rotation around Y-axis and ”Y aw angle ψ” shows the

yaw rotation around Z-axis; The blue continuous reference line almost coincides with

the dashed RNDI controller proposed in this paper, while the dot-dashed FRSDBKAD

controller is far from achieving that.
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Table 1: Multi-rotor Parameters

Parameter Value Parameter Value

Îx 5.831 ∗ 10−3 kg.m2 b 12 ∗ 10−8 N.m/(rad/sec)2

Îy 5.831 ∗ 10−3 kg.m2 l 9 ∗ 10−6 N/(rad/sec)2

Îz 1.166 ∗ 10−2 kg.m2 α 180.7904

kq0 0.01 σ 36.3485

kq1 16 δ 0.04231

kq2 16 β 0.332

kq3 25 γ 0.4231

kω1
0.9 µ 0.0095

kω2
0.9 ̺ 36.3485

kω3
0.0064 λmin 171.045

ℓ 0.2 m λmax 171.47

m 0.9272 kg Ωmax 707.1068 rad/sec

4.2. Performance under Payload Uncertainties

The multi-rotor’s flight controller should maintain the stability of the air-

craft if its total mass changes due to adding payload, which causes a shift of

its centre of gravity (CG) and changes the inertia matrix. In this subsection,

we demonstrate this problem by testing our control scheme under a mass dis-

tribution change. Referring to Assumption 2, the maximum payload of the

proposed multi-rotor has been set to 300 grams. Due to this mass distribu-

tion change, the moments of inertia will be altered. Considering the specified

payload capacity that the multi-rotor can hold, the range of variation in the

inertia moments is computed, hence the values of λmin, λmax, δ in Eqs. (32)
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and (33) can be specified. By knowing these bounds, the proposed controller

can compensate any variation of inertia moments within the specified range,

where any change in inertia components is due to payload variation. These

can even be inaccurate values of the inertia moments. Centre of the gravity

error in modelling can be compensated by the proposed term ud in Eq. (42)

hence the aircraft will stay in the stable region.

The CG is computed by assuming the geometric CG is at the centre

of the aircraft’s hub, i.e. at point (0, 0, 0). Then the nominal diagonal

inertia matrix components are computed. For any additional payload of up

to 300 grams located within the hub of 10 × 10 × 4 cm, for instance if the

aircraft equipped with an omnidirectional camera or an arm to catch objects,

the inertia matrix components (not diagonal) are computed for testing the

controller with any payload change within the specified limits. Figure 5

illustrates the simulation test which is conducted to monitor the performance

of the proposed control scheme when different payloads are applied. We have

conducted this test by changing the aircraft’s mass since different payloads

were added to the aircraft’s hub for up to 300 grams and consequently the CG

and inertia moments were varied. The results show that the controller can

cope well with any mass, CG and inertia matrix change within the specified

bounds of λmin, λmax and δ which have been formulated in Assumption 2.

However, to further increase the robustness of our control scheme for

more reliable performance, a test can be executed before the flight to make

an estimation of the range of uncertainty in terms of the payload changes,

i.e. more accurate estimation of λmin, λmax, and δ. known methods such as

in [34, 35, 36] can be used to estimate the inertia matrix while in flight and
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disallow the flight if the λmin, λmax, δ are violated.

4.3. Performance under Aerodynamic Disturbances

This second illustration exposes the multi-rotor to some external torque

disturbances to test the controller’s behaviour and stability. External dis-

turbances have been applied to the nominal torques and their effects on

vehicle attitudes are illustrated in Fig. 6. We assumed that the distur-

bances are varying within 40% of the minimum/maximum torque τττmin/max =

[±0.7446 ± 0.7446 ± 0.0993]T Nm; where the range of disturbances for

both roll and pitch is τdφ, τdθ = [−0.2978, 0.2978] Nm and for yaw τdψ =

[−0.0397, 0.0397] Nm. The results in Fig. 6 illustrate how the controllers are

reacting to the disturbances by counter acting the extra torques with some

success in order to return the vehicle to follow the reference trajectory. The

figures show the aircraft’s attitudes in terms angles, where quaternions have

been transferred to Euler angles using Eq. (3) for illustration. A comparison

between FRSDBKAD control and our robust RNDI control is conducted to

show how this controller is performing well, especially under high external

disturbances for roll and pitch motion where the FRSDBKAD control per-

formed less with some oscillations. The robust RNDI controller also does not

hit the limits of the maximum actuator (Ωi max = 707.1068 rad/sec) even

under high disturbances as can be seen from the measured angular velocities

of the motors, Ωi, in Fig. 7.

5. Discussion of Applicability

The ultimate aim of this work is to design a robust control scheme for

multi-rotor UAVs that can provide a good or at least an acceptable per-
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Figure 5: The first graph illustrates the norm of inertia matrix inverse ‖I−1‖ variation

with payload change within the aircraft’s hub (Assumption 2 - Eq. (32)). The term ‖I−1‖
varies within the specified upper limit λmax and lower limit λmin. The second graph shows

the effect of payload variation on the term ‖I−I−1Î‖ which stays below the specified upper

bound δ (Assumption 2 - Eq. (33)).
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Figure 6: Attitudes under external disturbances show some oscillation in roll, φ, and pitch,

θ, motion of the FRSDBKAD controller (dot-dashed green line) with less deviation in yaw,

ψ, but not so for the RNDI (dashed red line) controller.
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Figure 7: Actuators angular velocities computed from the RNDI control. It can be seen

that the actuators limit, Ωi max, has not been reached even with the presence of distur-

bances.
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formance and able to deal with different flight conditions such as payload

change during the flight or when the vehicle is exposed to external forces,

e.g. winds. These two conditions are very common in practice which may

force the aircraft into unstable state-space regions, and as a consequence,

the craft may crash and potentially cause damage to property, humans and

privacy. However, in this paper we tackled these conditions in the modelling

and design of a robust nonlinear controller for multi-rotor unmanned aircraft.

5.1. Environmental Conditions

The main two environmental conditions, which the aircraft may be ex-

posed to, are the payload change and wind disturbances. The first considered

condition, the payload variation, leads to a change in the mass of the aircraft,

hence in its inertia moments can change. The range of these variations can

be computed from the fact that the additional mass or payload is limited by

the rotors lifting limits. Therefore, the aircraft should have a limited amount

of payload that the actuators can handle. Knowing the possible range of ve-

hicle’s mass variations, one can set the lower and upper bounds of inertia

moments as in Eqs. (32) and (33). This way any change in the payload

within the specified range will produce stable control. For the second distur-

bance, wind disturbances, knowing the range of wind strengths, which the

craft may be exposed to during its flight, leads to the design of a controller

that accounts for additional torques that represent these disturbances for up

to the maximum specified limit. The nonlinear term ud defined in Eq. (42)

compensates the variation of these conditions based on the specified bounds

in Eqs. (32) and (34). Hence any variation in these two disturbances un-

der specified bounds results in stable control of the aircraft. Note that ud
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is mainly defined based on the attitude errors under stability conditions to

compensate for any external variation caused by winds or payload change.

In terms of inertia moment changes, which can be attributable to payload

variation, the RNDI controller performs well by compensating the amount

of moments change through the ud term for any mass change that is within

the specified limits as illustrated in Fig. 5. The RNDI controller has less

deviation and oscillation in comparison with FRSDBKAD especially for roll

and pitch for dealing with external wind disturbances as can be seen from

Fig. 6. Keeping this deviation in attitude at the minimum will reduce

the deviation from the reference trajectory, as can be seen in Fig. 3. It

is also essential to avoid reaching the maximum motors’ speed which has

been considered in our control scheme as illustrated in Fig. 7 to preserve

aircraft stability. Note that both payload change and wind disturbances have

been applied at the same time to the aircraft in order to test the controller

performance. The simulation results show that the RNDI controller can cope

well even if both conditions occur within the specified limits stated in the

proposed assumptions. This is a more realistic scenario that happens in

practice and with this controller the aircraft can preserve its stability and

tracking the given trajectory more effectively.

5.2. Multi-rotor UAVs Supported with Decision Making Strategies

The remaining question is how to address the situations when the max-

imum payload is reached or when the aircraft is exposed to extreme gusts

of wind beyond the craft abilities, i.e. exceeding the maximum disturbance

torques bounds considered during the control design. Answering these ques-

tions is essential for a safe and reliable flight of unmanned vehicles in general
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and for autonomy in particular. Several studies have been conducted to pro-

vide the aircraft’s autopilot with the ability to monitor its flight condition

[37, 38, 39]. Other studies in [40, 41, 42, 43, 44, 45] have implemented intelli-

gent agents supported by decision-making abilities to supervise the variations

in the environmental conditions and to see whether they go beyond the spec-

ified limits then take the appropriate decisions.

The advantages of these studies can be exploited by providing the au-

topilot with a software agent, which is able to monitor whether the term ud

in Definition 4 reaches its bounds or stay within the safe (stable) region.

Another approach can be implemented by detecting out of bounds status by

monitoring the limits of the actuators, i.e. observing the angular velocities

of motors against their maximum boundaries (Ωi max); see Fig. 7. If these

boundaries are reached for some period of time (can be tested and computed

in practice), the agent can take the required decisions and perform emer-

gency procedures to prevent incidents or reduce the risk of a crash. The

agent may also inform the pilot or send warning messages to the nearest

station to inform the need for an emergency landing, for instance. This

approach increases flight safety and reduces the risk of collision or causing

material damage.

Using the proposed RNDI control scheme under mild disturbances, the

aircraft’s autopilot does not need to estimate the inertia moments or wind

disturbances on board as any variation of the conditions within the limits

will be handled by the controller. When combined with inertia estimation

and an onboard decision agent, high levels of robustness and safety can be

achieved.
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6. Conclusion

This paper has introduced a novel robust multi-rotor controller that ac-

counts for both inertial uncertainty and disturbances. The proposed control

system consists of two loops: an inner and outer loop. The inner loop is a

nonlinear attitude controller, which is designed based on dynamic inversion

control by taking into account dynamical uncertainty and external distur-

bances. The outer loop is a feedback position controller that computes the

total thrust and reference quaternion values, which are passed to the inner

loop. Lyapunov’s second method is used as part of the control design to com-

pute an additional nonlinear term that compensates for the uncertainty and

disturbances and ultimately ensures stability under well-defined conditions

in practice. The control system has been simulated based on a nonlinear

multi-rotor model developed by MathWorks to test the control performance

and it was compared with a competitive nonlinear controller. Ultimately,

the paper’s results may enhance the safety of multi-rotor unmanned aerial

vehicles.
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[34] R. Lopéz, I. Gonzalez, J. Flores, J. Ordaz, S. Salazar, R. Lozano,

Real time parameter identification of the inertia tensor for a quad-rotor

mini-aircraft using adaptive control, IFAC Proceedings Volumes 46 (30)

(2013) 32–37.

[35] M. Krznar, D. Kotarski, P. Piljek, D. Pavković, On-line inertia mea-
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