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Abstract—Accurate predictions of joint contact forces through 

computer simulation of musculoskeletal dynamics can provide 

insight, in a non-invasive manner, into the joint loads of patients 

with osteoarthritis and healthy controls. The current approach to 

assume optimal control, in terms of metabolic energy expenditure, 

remains a major limitation of the prediction of muscle activation 

patterns that determine joint contact forces. Stochastically 

optimal muscle control, in the form of a stochastic component 

superimposed to the optimal control, could potentially explain the 

inter-trial variability as observed in measured knee contact forces 

during level walking. A probabilistic approach was used to predict 

sets of possible muscle activation patterns within a 5 and 10% limit 

from the optimal muscle activation pattern. The knee contact 

forces determined by both the optimal and stochastically optimal 

muscle activation patterns were compared to the corresponding 

knee contact force patterns measured by an instrumented implant. 

The range of muscle control patterns captured the inter-trial 

variability of knee contact forces for most of the gait cycle, 

suggesting that the probabilistic approach used here is 

representative of a stochastically optimal control that accounts for 

co-contraction, whereas during some time intervals a more explicit 

representation of the motor control strategy is required. These 

findings underline the importance of stochastically optimal muscle 

control in the prediction of knee forces within a multi-body 

dynamics approach. 

 
Index Terms—knee contact force, level walking, muscle 

recruitment, musculoskeletal modelling, stochastically optimal 

muscle control 

I. INTRODUCTION 

The relevance of the forces experienced by the articular 

surface of weight-bearing joints during activities of daily 

life to the onset and progression of joint degenerative 

diseases, such as osteoarthritis, has been discussed extensively 

in the literature, e.g. [1]. Experimental data on the forces 

experienced by the joints can typically only be obtained from a 

patient population with end-stage osteoarthritis through force 

sensors in a hip or knee implant. Alternatively, accurate 

predictions of joint contact forces through computer simulation 

of musculoskeletal dynamics can provide insight in the joint 
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loads of early-stage patients and healthy controls, are relevant 

to study treatment effects in a non-invasive manner, and could 

potentially inform clinical practice. Open-source datasets from 

instrumented joint implants serve as an important validation for 

these predictive models [2], [3].  

Numerous studies used publicly available experimental datasets 

to validate different approaches to simulate musculoskeletal 

dynamics and predict knee contact forces, such as the inclusion 

of complex and subject-specific joint contact models [4]–[8], 

force-dependent knee kinematics [9] and patient-specific 

musculoskeletal geometry in a segment-based model [10]. 

Experimental joint forces data has also been used to argue the 

importance of the discretization of large muscles into separate 

compartments and subject-specific muscle parameters in 

musculoskeletal dynamic simulations when predicting knee 

contact forces [11], [12]. A limitation to all the above studies is 

their assumption of optimal control to predict muscle activation 

patterns, assuming minimal metabolic energy expenditure [13]. 

Whereas this might be a valid assumption for healthy gait, it 

does not necessarily hold for pathological gait: overall 

metabolic energy expenditure, in fact, has been shown to 

increase in pathological gait [14]. Also, the amount of co-

contraction observed during gait has been associated with 

painful joints [15], [16] and instability [17], [18], which 

logically leads to an increase in metabolic energy expenditure. 

However, the assumption of energetically optimal control does 

not account for co-contraction. Different approaches, such as 

EMG-driven forward dynamics and muscle synergies, 

successfully included experimental data to personalize muscle 

control in the estimation of knee contact forces [19]–[22]. 

However, the assumptions required for the translation from 

measurements of electrical activation to units of force, the 

cross-talking between muscles, and the limited information on 

the activation levels of deep muscles with surface 

electromyography remain a major limitation of such EMG-

driven approaches. 

One could argue that we aim for ‘good enough’ control rather 
than optimal control as “an organism uses trial-and-error 

learning to acquire a repertoire of sensorimotor behaviours that 

are known to be useful, but not necessarily optimal” [23]. This 
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principle of ‘good enough’, or stochastically optimal control, 
partially explains the observed kinematic variability in repeated 

tasks, but kinematic variability has been argued to serve a 

purpose: variability in directions that are independent to task 

performance does not have to be controlled and could 

potentially provide stability to sudden changes or perturbations 

[24]. This theory of an uncontrolled manifold can equally be 

applied to muscle control, but only few studies have 

investigated the influence of such variability in muscle control 

on the loads experienced by the joints. A solution space of 

possible muscle activations and knee contact forces was 

obtained through a parametric variation of the contribution of 

agonist muscle groups and their individual muscles [25], [26]. 

However, a vectorized approach resulted in a larger possible 

variability in muscle activation and consequently a larger 

variability in hip contact forces [27]. A probabilistic approach 

to sample the solution space of muscle activations showed an 

even larger variability in muscle activations [28]. However, this 

study focused primarily on the range of possible muscle force 

patterns and it lacked a direct comparison to experimental 

measurements of joint contact forces. Therefore, the potential 

of a stochastically optimal control approach to improve the 

accuracy of joint contact force predictions remains unclear. 

This study aims to explore the limitations of optimal control 

in predictions of knee contact forces by answering the following 

questions: 1) Does at least one muscle activation pattern exist 

for which a subject-specific musculoskeletal dynamics model 

of level walking predicts the forces at the knee within 

measurement precision?; 2) Assuming such a solution exists, 

how different is it from an optimal control solution in terms of 

knee contact forces, but also in terms of muscle activation?; 3) 

How well can this difference be explained by a stochastic 

component superimposed to the optimal control, consistent 

with the uncontrolled manifold theory? 

II. METHODS 

Experimental data for one elderly participant (male, age: 83 

years, height: 1.72 m, mass: 70 kg) with an instrumented total 

knee replacement on the right side was obtained from the sixth 

Knee Grand Challenge dataset [2]. This is an open-source 

dataset that includes knee contact force data measured with an 

instrumented implant alongside motion capture, ground 

reaction force, EMG, CT and X-ray data 

(https://simtk.org/projects/kneeloads). The musculoskeletal 

model, the dynamic simulations and the muscle activation 

solution that minimized the sum of muscle activations squared 

(𝐽𝑎𝑐𝑡) as described for p02 previously [29], were re-used for this 

study. The following section briefly summarizes the re-used 

data and methodology and presents the additional data and 

methodology in more detail. 

A. Experimental data 

Six trials of level walking at a self-selected speed (1.03 ± 0.02 

m/s), defined from right heel strike to right heel strike, were 

included. The name and trial numbers from the original dataset 

(‘DM_ngait_og’, trial 3, 4, 5, 6, 7 and 9) were maintained to 

allow for comparison across studies. Two out of eight available 

trials were excluded because the foot strike was too close to the 

edge of the force plate. The forces and moments acting on the 

right knee joint were available from a six-axis load cell 

embedded in the stem of the tibial prosthesis (eTibia; [30]).  

EMG data were available for 15 muscles of the right lower 

extremity: The Gluteus Maximus, the Gluteus Medius, the 

Adductor Magnus, the Tensor Fasciae Latae, the Sartorius, the 

Semimembranosus, the long head of the Biceps Femoris, the 

Vastus Medialis and Lateralis, the Rectus Femoris, the 

Gastrocnemius Medialis and Lateralis, the Soleus, the Tibialis 

Anterior and the Peroneus Longus muscles. The data for the 

Gluteus Medius and the Vastus Medialis muscles were 

identified to be of insufficient quality given the signals’ small 
amplitudes, in accordance with an EMG-driven forward 

dynamics simulation study that used the same dataset [20]. 

Details on how the envelope trajectories and onset times were 

computed can be found in the supplementary materials 

(https://doi.org/10.0.59.27/shef.data.11370216). 

B. Musculoskeletal model 

The subject-specific musculoskeletal model of the right lower 

limb included five segments, 11 degrees of freedom and 43 

actuators. The bone geometries, segment mass properties and 

orientation of joint axes were determined from the available CT 

images and point-cloud data of the implant. Further details on 

the model identification can be found in [29]. To allow for a 

direct comparison of the simulated knee contact force with the 

measured values from the instrumented knee implant, a knee 

contact joint was placed in the tibial tray aligned with the origin 

of the reference frame of the implant (Fig. 1). A massless body 

linked the articulating knee joint with the knee contact joint, 

which was in turn linked distally to the tibia segment. All six 

coordinates of the knee contact joint were locked such that the 

original orientation of the massless body and the tibia with 

respect to each other was maintained. The knee contact forces 

as predicted by the model and reported in the following sections 

were resolved around this knee contact joint. 

C. Muscle activation patterns 

Muscle activation patterns were obtained through two different 

methods: an optimization approach and a probabilistic 

approach. 

 

1) Optimization approach  

Muscle activation patterns for all trials were obtained by 

solving the optimization problem defined as [29]: 

 min 𝐽(𝑎⃑)subject to 𝑇⃑⃑(𝑡) = 𝐵(𝑞)(𝑎⃑𝑇(𝑡)𝐹⃑𝑚𝑎𝑥) 0 ≤ 𝑎⃑(t) ≤ 1  (1) 

 

where 𝑎⃑ is the vector of activations with its entries defined as 𝑎𝑖(𝑡) =  𝐹𝑖(𝑡) 𝐹𝑚𝑎𝑥,𝑖⁄ , 𝐹⃑𝑚𝑎𝑥 is the vector of 𝑚 maximum 
actuator forces, 𝐹𝑖 is the force of actuator 𝑖, 𝑇⃑⃑ is the 𝑛 · 1 vector 

of forces and moments of force acting at the generalized 

coordinates and 𝐵 is the 𝑛 · 𝑚 matrix of muscle moment arms. 

The variables required to define the optimization problem were 

obtained using the OpenSim API through MATLAB (v2017a, 

The MathWorks Inc., Natick, MA, USA).  
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Fig 1: The coordinate system (anterior posterior (AP) axis (red), 

mediolateral (ML) axis (yellow) and superior-inferior (SI) axis 

(green)) fixed in the locked knee contact joint and used to resolve the 

simulated joint contact forces and moments. 

One muscle activation pattern for each trial was available from 

the previously defined 𝐽𝑎𝑐𝑡  solution [29]: 

 𝐽𝑎𝑐𝑡(𝑎⃑) = ∑ (𝑎𝑖(𝑡))2𝑚𝑖=1  (2) 

 

A second muscle activation pattern was obtained with an 

objective function aimed to minimize the difference between 

the measured and estimated knee resultant force: 

 𝐽𝐹𝑚𝑎𝑡𝑐ℎ(𝑎⃑) = 𝑤1 (‖𝐹⃑𝑒𝑥𝑝𝐾 (𝑡)‖−‖𝐹⃑𝐾(𝑎⃑⃑,𝑡)‖‖𝐹⃑𝑒𝑥𝑝𝐾 (𝑡)‖ )2 + 𝑤2R(𝑎⃑, 𝑡) (3) 

 

where ‖𝐹⃑𝑒𝑥𝑝𝐾 (𝑡)‖ is the magnitude of the experimental knee 

resultant force, acting on the tibia segment, as measured by the 

instrumented knee implant and ‖𝐹⃑𝐾(𝑎⃑, 𝑡)‖ is the magnitude of 

the resultant force acting on the tibia in the knee joint as 

predicted by the musculoskeletal model, 𝑅(𝑎⃑, 𝑡) is a 

regularization term and 𝑤1 and 𝑤2 are constant weights that 

define the relative contribution of both parts to the objective 

function. The regularization term 𝑅(𝑎⃑, 𝑡) was included to 

prevent the optimization problem from being ill posed, as some 

muscles do not contribute directly to the first part of the 

objective function [29]. MATLAB’s nonlinear programming 

fmincon, leveraging on the interior-point algorithm, was used to 

solve the problem.  

The weight ratio 𝑤1: 𝑤2 was set to 10:1, based on the 

asymptotic behaviour of the objective function value with an 

increasing weight ratio in a preliminary sensitivity analysis. The 

initial guesses for the minimizations were set to 0⃑⃑ after a 

preliminary bootstrap study confirmed the uniqueness of the 

solution, regardless of the initial value. 

 

2) Probabilistic approach   

A probabilistic approach was used to draw two sets of possible 

muscle activation patterns {[𝑎⃑𝑀(𝑡)]1, [𝑎⃑𝑀(𝑡)]2, … , [𝑎⃑𝑀(𝑡)]𝑁} 

from the following probability distribution:  

 𝜋(𝑎⃑𝑀(𝑡)|𝑇⃑⃑(𝑡)) ∝  𝜋𝑝𝑟(𝑎⃑𝑀(𝑡))𝜋(𝑇⃑⃑(𝑡)|𝑎⃑𝑀(𝑡)) (4) 

 

where 𝜋𝑝𝑟(𝑎⃑𝑀(𝑡)) is the prior term that represents the 

constraints on the muscle activations, 𝜋(𝑇⃑⃑(𝑡)|𝑎⃑𝑀(𝑡)) is the 

likelihood term that represents the probability of the known 

generalized torques, 𝑇⃑⃑(𝑡), given a vector of muscle activations 𝑎⃑𝑀(𝑡) and 𝜋(𝑎⃑𝑀(𝑡)|𝑇⃑⃑(𝑡)) is the posterior distribution that 

represents the probability of a vector of muscle activations that 

satisfies the dynamic equilibrium: 

 𝑇⃑⃑(t) = 𝐵(𝑞)(𝑎⃑(𝑡)𝑇𝐹⃑𝑚𝑎𝑥) (5) 

 

The constraints on the muscle activations were set to a limit 

radius r around the 𝐽𝑎𝑐𝑡  solution: 

 max {𝑎⃑𝑎𝑐𝑡(𝑡) − r, 0⃑⃑} ≤ 𝑎⃑(t) ≤ min {𝑎⃑𝑎𝑐𝑡(𝑡) + r, 1⃑⃑} (6) 

 

where 𝑎⃑𝑎𝑐𝑡(𝑡) is the vector of muscle activations that resulted 

from the minimization of 𝐽𝑎𝑐𝑡 . Two sets of 1 × 105 muscle 

activation patterns were sampled using Bayesian statistics to 

estimate the posterior probability density functions (PDF) of the 

unknowns of interest, and then generate samples from this 

distribution by means of a Markov Chain Monte Carlo 

(MCMC) algorithm (Metabolica, [31]),  implemented in 

MATLAB and used to sample muscle activation patterns before 

[28], [32]. The limit radius of the first set was defined as 0.05, 

or 5% of the maximum activation of 1, and the limit radius of 

the second set was defined as 0.1, or 10%. 

D. Data analysis 

The contact forces at the knee joint were computed, leveraging 

on the implementation in OpenSim through the MATLAB API, 

for each muscle activation pattern that was obtained as an 

optimization solution or as a sample from the solution space. 

The root-mean-square error (RMSE) and the coefficient of 

determination (R2) values were the suggested measures of 

comparison for the Knee Grand Challenge, so allowed for 

comparison with previous studies [2]. RMSE and R2 values 

were obtained for the 𝐽𝑎𝑐𝑡  and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ  solutions of each trial. 

III. RESULTS 

The magnitude of the knee contact force for the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ 

solutions matched the measured values throughout the gait 

cycle, except for an overestimation during the loading response 

phase (0-10 % of the gait cycle) of trial 3 and 5 and during the 

terminal stance phase (30-50 % of the gait cycle) of trial 9 (Fig. 

2, Table 1).  
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The 𝐽𝑎𝑐𝑡  solutions underestimated the knee force at initial 

contact, during the mid-stance phase (10-30% of the gait cycle) 

and during swing phase (except for the final 8% of the swing 

phase in trial 4) and overestimated the knee force during the 

loading response phase for each trial. The differences between 

the predicted and measured values were less consistent 

throughout trials for the first peak and during terminal stance 

(Fig. 2, Table 1).  

For a limit radius of 0.05, the measured knee contact forces 

were outside of the range of forces estimated by the sampled 

muscle activation patterns for larger intervals (Fig. 2). 

Therefore, this set of muscle activation patterns was not 

analysed any further. 

For a limit radius of 0.1, the measured knee contact forces 

were within the range of forces estimated by the sampled 

muscle activation patterns for most of the gait cycle, except for 

a time interval during the loading response phase when all 

sampled muscle activation patterns overestimated the measured 

knee force. Also, for trial 4, 6 and 9, all sampled muscle 

activation patterns overestimated the measured knee contact 

force during a time interval in the terminal stance phase, 

whereas for trial 6 all samples underestimated the measured 

knee contact force around 30 % of the gait cycle (Fig. 3).  

Except for the first 10% of the gait cycle, the muscle 

activations as predicted by the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ  solutions were within the 

range sampled by Metabolica (Fig. 4 for trial 3, figures in 

supplementary materials for other trials). 

Overall, the agreement between activation patterns from the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ solutions and EMG onset data for muscles spanning the 

knee changed minimally and non-consistently across muscles 

when compared to the 𝐽𝑎𝑐𝑡  solutions for each trial (Fig. 4 for 

trial 3, supplementary material for other trials). One difference 

between the EMG data and the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ  solutions was consistent 

across trials: predicted activations did not capture the EMG 

activity of muscles that span the knee during the loading 

response. 

IV. DISCUSSION 

This study investigated, firstly, the capability of a subject-

specific musculoskeletal dynamics model of level walking to 

match the measured knee contact forces within measurement 

precision and, secondly, the difference of such a best-match 

solution from an optimal control solution in terms of both 

muscle activation and knee contact forces. Lastly, this study 

assessed the suitability of stochastically optimal control (a 

stochastic component superimposed to optimal control) to 

explain this difference in muscle activation required to 

accurately predict physiological knee contact forces. 

The reported results showed that the model, with its 

idealisations and methods used to identify its input, is 

compatible with the experimental observations over multiple 

repeated trials. In fact, for each trial a muscle activation pattern 

(𝐽𝐹𝑚𝑎𝑡𝑐ℎ) existed for which the corresponding knee force 

tracked the force measured with an instrumented implant; only 

during a brief time interval during terminal stance in one trial a 

difference in knee force occurred. The 𝐽𝐹𝑚𝑎𝑡𝑐ℎ  solutions, given 

their uniqueness, serve as a reference activation pattern for 

solutions obtained in a blinded manner. 

The mean RMSE and R2 values of the 𝐽𝑎𝑐𝑡  solutions (0.5 BW 

and 0.61, respectively) were comparable to the values reported 

for blinded predictions of the total knee force in various studies 

that assumed optimal control in simulations of different trials 

(normal and instructed ‘bouncy’ and ‘smooth’ gait) from the 
same Knee Grand Challenge dataset: 0.4 – 0.8 BW and 0.54 – 

0.74, respectively [4], [8], [10], [12]. In each of these studies, 

the objective functions to obtain muscle activation patterns 

included a term comparable to 𝐽𝑎𝑐𝑡: the minimization of the sum 

of muscle activation squared. It should be noted that some of 

these studies included some form of a contact force term in the 

objective function [4], [12] and for most studies only one or two 

trials of smooth and bouncy gait were included compared to the 

six trials of normal, level walking included in this study. Hence, 

the model described in this study showed predictive accuracies 

against this particular validation experiment comparable to 

those achieved by other published models. The agreement of 

the predicted muscle activation patterns with the EMG onset 

timing did not change notably between the 𝐽𝑎𝑐𝑡  and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ 

solutions. This result raises questions on the capability of EMG-

driven approaches to identify the activation patterns that best 

match the measured knee forces. We made no quantitative 

comparison between the EMG data and predicted muscle 

activations because of the evident qualitative differences. 

A probabilistic approach explored the solution space of 

stochastically optimal muscle activation patterns within a 5 and 

10% limit radius from the solution for optimal control. For all 

trials, a 5% limit radius did not capture the measured knee 

contact forces during large parts of the gait cycle. However, the 

probabilistic approach with a 10% limit radius captured the 

best-match solutions in terms of both knee force and muscle 

activation for most of the gait cycle: only during limited time 

intervals during the loading response phase (all trials) and the 

terminal stance phase (three out of six trials) did the low knee 

contact force not appear in the set of stochastically optimal 

solutions. The range of sampled knee forces was larger 

compared to a study that explored potential variability in 

muscle control with a parametric approach in a different Knee 

Grand Challenge dataset [25]. The tendency of the probabilistic 

approach to sample higher knee forces compared to the optimal 

control solution corresponded to the range of hip forces found 

in a previous study that used the same approach on a different 

dataset [28]. The wide range of muscle activations that resulted 

in accurate predictions of knee contact forces suggest that the 

probabilistic approach used here is representative of a 

stochastically optimal or ‘good-enough’ control that accounts 

for co-contraction and captures the inter-trial variability in knee 

forces during most of the gait cycle, whereas in the interval 

immediately before and after heel strike a more explicit 

representation of the motor control strategy is required. In this 

specific case, the minimization of the knee force might provide 

a more accurate prediction during the loading response phase. 
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Fig. 2: Knee contact force trajectories in bodyweight (BW) for all trials; the sampled values from Metabolica, with a limit radius of 0.05, are 

shown as a range for which the colour indicates the number of samples that resulted in the corresponding knee force (see colour bar); the values 

from the instrumented implant (eTibia; black, solid), the 𝐽𝑎𝑐𝑡 (blue, dashed) and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, dashed) solutions are shown as lines. The 

vertical dashed line indicates the time instant when toe off occurred. 

  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2020.3003559, IEEE

Transactions on Neural Systems and Rehabilitation Engineering

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

 
Fig. 3: Knee contact force trajectories in bodyweight (BW) for all trials; the sampled values from Metabolica, with a limit radius of 0.1, are 

shown as a range for which the colour indicates the number of samples that resulted in the corresponding knee force (see colour bar); the values 

from the instrumented implant (eTibia; black, solid), the 𝐽𝑎𝑐𝑡 (blue, dashed) and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, dashed) solutions are shown as lines. The 

vertical dashed line indicates the time instant when toe off occurred.  
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Fig. 4: Trial 3, the activation patterns of the muscles that span the knee for which EMG data were available. For each muscle, the top graph shows 

the 𝐽𝑎𝑐𝑡 (blue, dashed) and 𝐽𝐹𝑚𝑎𝑡𝑐ℎ (yellow, solid) solutions as lines and the sampled muscle activation patterns as a range for which the colour 

indicates the number of samples (see colour bar); the bottom graph shows the EMG data: the rectified values in light grey, the envelope in black 

and the onset timing as dark grey boxes. The vertical axis of the bottom graph was normalized to the maximum value in the rectified EMG data. 

The vertical dashed lines indicate the time instant when toe off occurred.  
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Table 1: Root-mean-square errors (RMSE; in bodyweight (BW)) and coefficients of determination (R2) for each trial and the mean values over 

trials for the 𝐽𝐹𝑚𝑎𝑡𝑐ℎ and 𝐽𝑎𝑐𝑡 solutions. 

 

 

 

 

 

 

 

Other approaches, such as an EMG-driven approach, have 

previously underlined the importance of muscle control in the 

predictions of joint contact forces. Such an approach could 

provide a subject-specific muscle activation pattern 

representative of possible pathological muscle control, as 

opposed to the assumption of optimal control. The probabilistic 

approach would then assume a level of stochastic optimality of 

muscle control around this muscle activation pattern. The level 

of stochastic optimality would, for example, be representative 

of the uncertainty in the muscle activation prediction resulting 

from the EMG-force calibration. However, one could question 

the difficulty to validate the model predictions qualitatively 

when EMG is already included in the model definition and 

measured joint contact forces data are not available. 

This study suffered of three main limitations: firstly, the study 

included only one participant and therefore the conclusions 

drawn here are only valid for this specific participant. However, 

the measured knee-contact forces show a particularly high 

variability between trials. Therefore, the authors believe that 

our findings indicate a research direction for this complex 

problem despite the single case they are based on. Nonetheless, 

current work should be expanded to other datasets that include 

measured joint contact forces to confirm the generalizability of 

the current approach. Also, it remains an open question how to 

validate approaches that predict joint contact forces when no 

experimental data on joint contact forces, through instrumented 

implants, is available. Secondly, the force-length-velocity 

relationship was not considered when determining the force 

producing capacity of the muscles, which ultimately defined the 

5 and 10% limit radius of the solution space. However, the 

relationship can in most cases not be measured for ethical or 

experimental limitations and no consensus currently exists on a 

standardized method to accurately predict this relationship for 

each muscle individually. Therefore, the authors decided not to 

include the force-length-velocity relationship to prevent an 

influence of poorly estimated muscle parameters on the 

outcomes of the study. Thirdly, only the resultant force and not 

the direction of the forces experienced by the knee were 

considered. Given the relatively large contribution of the axial 

component to the resultant force and the small mediolateral and 

anterior-posterior orientation of the muscle lines of action with 

respect to the joint during the stance phase, no difference in the 

obtained results was expected if the directional components of 

the contact force were included separately. Nonetheless, future 

work should study the influence of muscle control on the 

distribution of loads over different compartments of the knee 

joint. 

In conclusion, the results presented in this study underline the 

importance of stochastically optimal muscle control in the 

prediction of knee forces within a multi-body dynamics 

approach. A subject-specific musculoskeletal dynamics model, 

built according to the current best practice, was compatible with 

the experimentally measured knee forces during level walking. 

In case of pathological gait, such as studied here, the 

assumption of optimal motor control was not representative of 

the considerable level of inter-trial variability. A probabilistic 

approach that assumed an uncontrolled manifold of 10% around 

the optimal control solution did capture this variability for most 

of the gait cycle. In cases when the motor control strategy is 

severely sub-optimal or when a higher level of accuracy for the 

predicted joint contact forces is required, the authors believe the 

only solution is to include an explicit model of control. A 

mechanistic model would for example allow for the 

differentiation between hierarchical levels of motor control 

such as the involuntary spinal control and the cognition-driven 

anticipatory control. 
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