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Title 1 

Evaluating the Potential of Full-waveform Lidar for Mapping Pan-Tropical Tree Species Richness 2 

 3 

Short title 4 

Lidar and Pan-Tropical Tree Species Richness 5 

 6 

Abstract  7 

Aim: 8 

Mapping tree species richness across the tropics is of great interest for effective conservation and 9 

biodiversity management to help prevent species extinction. In this study, we evaluated the potential of 10 

full-waveform lidar data for mapping tree species richness across the tropics by relating measurements 11 

of vertical canopy structure, as a proxy for the occupation of vertical niche space, to tree species 12 

richness. 13 

Location:  14 

Tropics 15 

Time period:  16 

Present  17 

Major taxa studied: 18 

Trees  19 
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Methods: 20 

First, we evaluated the characteristics of the vertical canopy structure across 15 study sites using 21 

(simulated) full-waveform lidar data and related these findings to in-situ tree species information. Then, 22 

we developed structure-richness models at the local (within 25-50 ha plots), regional (biogeographic 23 

regions), and pan-tropical scale at three spatial resolutions (1.0, 0.25 and 0.0625 ha) using Poisson 24 

regression. 25 

Results:  26 

The results showed a weak structure-richness relationship at the local scale. At the regional scale (within 27 

a biogeographical region) a stronger relationship was found between canopy structure and tree species 28 

richness across different tropical forest types, for example across Central Africa and in South America (R2 29 

ranging from 0.44-0.56, RMSD ranging between 23-61%). A weaker relationship was found at the pan-30 

tropical scale, including data across four continents (R2 = 0.39 and RMSE = 43%, 0. 25 ha resolution). 31 

Main Conclusions: 32 

Our results may serve as a basis for future development of a set of structure-richness models to map 33 

high resolution tree species richness using vertical canopy structure information from the Global 34 

Ecosystem Dynamics Investigation (GEDI). The value of this effort would be enhanced by access to a 35 

larger set of field reference data for all tropical regions. Future research could also support the use of 36 

GEDI canopy structure data in frameworks using environmental and spectral information for modelling 37 

tree species richness across the tropics. 38 

Keywords 39 

Biodiversity, canopy structure, GEDI, lidar, plant area index, tropical forests  40 
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1. Introduction 41 

Tropical forests are known for their high tree species diversity. Current estimates suggest in the order of 42 

15,000 tree species in Amazonia alone, in contrast to 124 tree species in temperate forests in Europe, 43 

and more than 40,000 different tree species across the tropical region (Slik et al., 2015; Ter Steege et al., 44 

2015). High levels of tree species richness are essential for maximizing the provision of essential 45 

ecosystem services (Liang et al., 2016). Unfortunately, 35% of pre-agricultural global forest cover has 46 

been lost over the past 300 years, largely due to increasing human pressures on the environment. 82% 47 

of the remaining forest is estimated to have experienced some degree of human impact (Watson et al., 48 

2018). Current extinction rates are estimated to be at least 1000 times higher than background 49 

extinction rates (Pimm et al., 2014), and it was recently estimated that in the Amazonian tropics alone 50 

approximately 25% of the tree species are threatened with extinction (Ter Steege et al., 2015). The 51 

Convention of Biological Diversity (CBD) and Group on Earth Observations Biodiversity Observation 52 

Network (GEO BON) have developed a list of important variables aiming to provide quantitative 53 

information on biodiversity to reach the Aichi biodiversity targets 2020 (Pereira et al., 2013; Skidmore et 54 

al., 2015). Among the identified needs is the mapping of taxonomic diversity at high spatial resolution 55 

over large scales (Pereira et al., 2010). Here we focus on tree species diversity. The collection of tree 56 

species diversity data is traditionally done in the field, and such information has previously been used to 57 

create predictive maps of tree species richness across the globe at low spatial resolution (Kier et al., 58 

2005; Mutke & Barthlott, 2005). More recently, passive remote sensing data, such as optical imagery 59 

from different airborne and spaceborne platforms, has been used in combination with field reference 60 

data to predict tree species diversity in different regions (Foody & Cutler, 2006; Carlson et al., 2007; 61 

Féret & Asner, 2014; Rocchini et al., 2016; Schäfer et al., 2016; Bongalov et al., 2019). Even though such 62 

methods have been progressively developing over the last decade, they are not yet operational for 63 
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mapping tree species richness across the tropics due to, among others, a lack of consistent remote 64 

sensing and training data over such scales, insufficient model accuracy and/or low spatial resolution. 65 

The scientific community has called for bolder science in conservation strategies to enable effective 66 

management of the Earth’s forests and allow for better conservation of our natural ecosystems (Watson 67 

et al., 2016). In this study we focus on the use of active remote sensing, specifically lidar, for mapping 68 

taxonomic tree species richness in the tropics. While local tropical forest diversity is largely independent 69 

of biomass (Sullivan et al., 2017), it remains unclear if substantial amounts of variation in species 70 

diversity are associated with other features of forest structure. Here, we explore for the first time 71 

whether small-scale vertical canopy structure variation is significantly associated with the spatial 72 

variation in tropical tree species richness. On a global scale it has previously been shown that canopy 73 

height explains a limited portion of the variation in tree species diversity, as such data provides 74 

information on the available niche space (Gatti et al., 2017). It has since been hypothesized that 75 

including information on the vertical canopy structure, must explain more of the variation in tree 76 

species diversity than canopy height alone; as such data provide information on the occupation of the 77 

vertical niche space. Marselis et al., (2019) demonstrated that information on canopy height and vertical 78 

canopy structure, expressed as the Plant Area Index (PAI) profile from full-waveform airborne lidar data, 79 

could be used to map tree species diversity in Gabon, Africa. However, it is not clear whether this 80 

relationship is of similar nature and strength across different regions, or even the entire tropics. If 81 

existent, than the use of such a structure-diversity relationship(s) could become operational at a pan-82 

tropical scale with the rapidly increasing availability of spaceborne canopy structure information derived 83 

from the Global Ecosystem Dynamics Investigation (GEDI), a full-waveform spaceborne lidar system 84 

(Dubayah et al. under review). GEDI is expected to provide over 10 billion measurements of vertical 85 

canopy structure across the temperate and tropical forests between 2019 and 2021.  86 
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Factors influencing tree species diversity on a global scale differ from those affecting spatial patterns at 87 

regional or local scales. In general, tropical tree species diversity increases with increasing precipitation, 88 

forest stature, soil fertility, time since catastrophic disturbance and rate of canopy turnover and 89 

decreases with seasonality, latitude, and altitude (Givnish, 1999). At large-grain scales historical 90 

biogeography processes are more important, whereas at the plot-scale environmental variables strongly 91 

influence diversity (Keil & Chase, 2019).  92 

Similar to species diversity, forest structure at the global scale is influenced by interacting historic, 93 

environmental, and human related variables; precipitation in the wettest month being the most 94 

important single predictor of plant height (Moles et al., 2009). Forest structure measured in the field is 95 

mainly comprised of four variables: canopy height, biomass, basal area and tree density (Palace et al., 96 

2015). However, active remote sensing techniques have revolutionized the study of canopy structure 97 

(Newnham et al., 2015). With lidar remote sensing, for example, it is now possible to obtain information 98 

on canopy height, as well as the position and amount of plant material along the vertical axis of the 99 

canopy (Tang et al., 2012). Palace et al. (2015) stressed that high resolution lidar data possess vertical 100 

structure information which is inherently linked to ecological processes. 101 

We hypothesize that structure-diversity relationships will vary across different biogeographical and 102 

phylogenetic regions (Corlett & Primack, 2011; Slik et al., 2018) and that it may be more fruitful to 103 

develop multiple relationships rather than one pan-tropical relationship for operationalizing tree species 104 

diversity mapping with spaceborne active remote sensing data. Additionally, the strength of the 105 

relationship between a variable and tree species diversity often changes with resolution (plot size) as 106 

tree species diversity is not linearly related with area (species-area curve) (MacArthur & Wilson, 1967). 107 

This complicates the development of predictive models at specific resolutions, and also limits the 108 

extrapolation of estimates at one resolution to a larger area, which impedes the mapping of pan-tropical 109 

tree species diversity at high spatial resolution.   110 
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In sum, we know that both species diversity and canopy structure vary greatly within and across 111 

continents. Hence, our objective is to assess whether canopy structure information can explain tree 112 

species richness at the local, regional and/or global scale with the ultimate goal to evaluate the efficacy 113 

of spaceborne full-waveform lidar for mapping tree species richness across the tropics. First, we 114 

compare characteristics of the vertical canopy structure, measured with full-waveform lidar data, of 115 

tropical forests across the world. Second, we evaluate the differences in species richness and species-116 

area curves across the different study sites using field measurements. Third, we evaluate the potential 117 

for developing local (within 25-50 ha field plots), regional (within biogeographical regions) and pan-118 

tropical structure-richness relationships, relating canopy structure metrics from lidar to tree species 119 

richness measurements from the field at three spatial resolutions (0.0625, 0.25 and 1.0 ha). Lastly, we 120 

discuss the potential of full-waveform lidar data from GEDI for mapping tree species richness across the 121 

tropics using structure-richness relationships.   122 
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2. Materials and Methods  123 

We address the relationship between canopy structure and tree species richness in terra firme forest in 124 

the tropical region between 23.5° N & S. We compiled a comprehensive field and lidar dataset covering 125 

colonizing forest, old-growth tropical forest and forests under different degrees of degradation and 126 

savanna. We included such a wide variety of forest stages as most of the Earth’s tropical forests have 127 

been degraded or otherwise affected by natural and human influences (Lewis et al., 2015). Hence, when 128 

developing a method that allows for estimating pan-tropical tree species richness it is important to 129 

include data from across this range of possibilities. Species diversity can be expressed with many 130 

different metrics. Generally, three levels of diversity are recognized: α, β, and γ diversity. α diversity 131 

refers to the local diversity of a community, habitat or field plot. β diversity refers to the differences in 132 

diversity between habitats and γ diversity to the total diversity of a region (Colwell, 2009). In this study 133 

we focus on α diversity. α diversity can be expressed with many different indicators. In this study we 134 

focus on species richness (S) expressed as the total number of species in a plot of a given size. Hence, 135 

from here on forward we only refer to tree species richness, used to express the local tree species 136 

diversity.  137 

2.1 Field Datasets  138 

Field data were used to calculate the reference values of tree species richness. We used 15 datasets: 139 

one from Australia, two from South-East Asia, six from Africa, three from South America and three from 140 

Central America (Figure 1). All field datasets used in this study have been previously collected and 141 

published and have coincident airborne lidar data available. Each field dataset is labeled with a three-142 

letter code and contained information on tree location, species and diameter at breast height (DBH). All 143 

datasets were collected by different organizations and research teams resulting in different data 144 

characteristics (Table 1, SI1). Four datasets consisted of one large plot of 25 ha (rob, Australia and rab, 145 
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Gabon) or 50 ha (dan, Malaysia and bci, Panama). The other eleven datasets consisted of multiple (3-21) 146 

smaller plots with sizes ranging from 0.16 ha to 4.0 ha.  147 

 148 
Figure 1: Location of field sites across the three continents, colors of each study site are consistent 149 
throughout the paper. Gridlines indicate 10° intervals in longitudinal and latitudinal directions. The size 150 
of the place markers represents the size of the total sampled area relative to each other.  151 

  152 
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Table 1: Information on the original plot size, the amount of total area sampled in the field and the 153 
source of the data which is either a website where the data are published and/or a publication in which 154 
the data are described further.  155 

Country Project 

code 
No.  

native 

plots 

Total 

area 

(ha) 
Source / Additional Information 

Oceania 

Australia rob 1 25 (Bradford et al., 2014) 

South-East Asia 

Malaysia dan 1 50 https://forestgeo.si.edu/sites/asia/danum-valley 
Malaysia sep 9 36 https://www.forestplots.net/en/ (Jucker et al., 2018) 

Africa 

DRC mal 21 21 (Bastin et al., 2015) 
DRC  yan 9 9 (Kearsley et al., 2013) 
Gabon rab 1 25 https://forestgeo.si.edu/sites/africa/rabi (Memiaghe et 

al., 2016) 
Gabon lop 11 9.5 https://www.forestplots.net/en/ (Labrière et al., 2018) 
Gabon mon 10 10 (Fatoyinbo et al., 2017) 

Gabon mab 10 10 (Bastin et al., 2015; Labrière et al., 2018) 

South America 

Peru tam 6 6 https://www.forestplots.net/en/ (Boyd et al., 2013) 
Brazil s11 9 1.44 http://www.paisagenslidar.cnptia.embrapa.br/webgis/  
Brazil s12 19 4.8 http://www.paisagenslidar.cnptia.embrapa.br/webgis/   

Central America 

Costa Rica lsv 12 6 https://tropicalstudies.org/carbono-project/ 
Costa Rica cha 3 2  
Panama bci 1 50 https://forestgeo.si.edu/sites/neotropics/barro-colorado-

island (Lobo & Dalling, 2013) 
In this study, we assessed the structure-richness relationship at three spatial resolutions (1.0, 0.25, 156 

0.0625 ha) because of the non-linear relationship between the number of tree species (S) and sampled 157 

area. We selected squares of 1.0 ha (100x100 m) because they are often-used in ecology and it has been 158 

shown that the spatial mismatch of plot location and remote sensing products is minimized at this 159 

resolution (Réjou-Méchain et al., 2014). We used squares of 0.25 ha (50x50 m) because these yielded 160 

the best results describing the structure-diversity relationship in Gabon (Marselis et al., 2019), and 161 

squares of 0.0625 ha (25x25 m) because they correspond to a resolution close to the GEDI footprint size. 162 

The datasets were used at one, two or three of the aforementioned resolutions depending on the 163 

original plot size and the availability of stem maps or subplots (Error! Reference source not found., full 164 

https://forestgeo.si.edu/sites/asia/danum-valley
https://www.forestplots.net/en/
https://forestgeo.si.edu/sites/africa/rabi
https://www.forestplots.net/en/
https://www.forestplots.net/en/
http://www.paisagenslidar.cnptia.embrapa.br/webgis/
http://www.paisagenslidar.cnptia.embrapa.br/webgis/
https://tropicalstudies.org/carbono-project/
https://forestgeo.si.edu/sites/neotropics/barro-colorado-island
https://forestgeo.si.edu/sites/neotropics/barro-colorado-island
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table in SI1). For each of the field sites we calculated S for the entire dataset and for each plot at each 165 

plot size (Table 2). Only live trees with a DBH ≥ 10 cm were included, to ensure consistency among 166 

datasets and we removed all plots of each resolution in which more than 20% of the trees were not 167 

identified to the genus level.  168 

Table 2: The total number of species identified at each study site and the average (x)̄ and standard 169 
deviation (s) of the species richness for each of the three plot sizes expressed as x ̄± s (including only live 170 
trees with DBH ≥ 10 cm). 171 

Country 

Project 

Name 

Total No. 

species 

Total sampled 

area used (ha) 

Species 

richness 

1.0 ha 

Species 

richness 

0.25 ha 

Species 

richness 

0.0625 ha 

Oceania 

Australia rob 205 25 98 ± 10 56 ± 8 27 ± 5 

South-East Asia 

Malaysia dan 430 2 117 ± 13 51 ± 7 19 ± 4 
Malaysia sep 517 32 102 ± 22 53 ± 11 - 

Africa 

DRC mal 116 21 37 ± 11 20 ± 7 - 
DRC  yan 232 9 50 ± 23 24 ± 13 10 ± 6 
Gabon rab 234 25 84 ± 8 42 ± 6 17 ± 4 
Gabon lop 118 9.5 32 ± 22 17 ± 10 8 ± 4 
Gabon mon 146 10 32 ± 15 15 ± 9  7 ± 5 

Gabon mab 196 10 55 ± 8 - - 

South America 

Peru tam 517 6 171 ± 13 70 ± 9 24 ± 5 
Brazil s11 91 1.44 - - 17 ± 3 
Brazil s12 135 4.8 - - 16 ± 4 

Central America 

Costa Rica lsv 216 6 - 48 ± 8 19 ± 5 
Costa Rica cha 81 2 58 28 ± 5 13 ± 4 
Panama bci 220 50 87 ± 8 42 ± 6 17 ± 3 

 172 

2.2 Lidar Datasets  173 

Each of the field datasets had coincident discrete return airborne laser scanning (ALS) data, or full-174 

waveform lidar data from the Land Vegetation and Ice Sensor (LVIS), collected over the field plots within 175 

5 years of field data collection. We used the GEDI simulator (Hancock et al., 2019) to create lidar 176 

waveforms from the ALS data over the field plots. The ALS data was originally collected with a variety of 177 
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airborne instruments, but the GEDI simulator ensures a reliable GEDI-like waveform with minimal 178 

influence of the original instrument-specific characteristics. In this way, all lidar information could be 179 

processed in a consistent way across all study sites ensuring a reliable inter-comparison of canopy 180 

structure metrics derived from the waveforms and allowing for easy transfer of the developed models to 181 

future on-orbit GEDI data. Lidar waveforms were simulated with a 22 m ground footprint (Gaussian 182 

distribution of laser energy, σ = 5.5 m). Lidar waveform locations were determined by filling each field 183 

plot, using the original field plot size and shape, with footprint center locations 6.25 m from the plot 184 

edge and 5 m between footprint center locations (Error! Reference source not found.). In this way, a 185 

reliable measure of canopy structure could be acquired for each plot by averaging lidar metrics from all 186 

waveforms inside the plot, instead of using single waveforms in the plot center and evaluating structure-187 

richness relationships based on such potentially biased or unrepresentative waveforms. The following 188 

information was extracted from each simulated lidar waveform using mature and published algorithms: 189 

canopy height (expressed as the 98th percentile of the relative height metric; RH98), total Plant Area 190 

Index (PAI), and Plant Area Index at a 1 m vertical resolution (Drake et al., 2002; Tang et al., 2012; 191 

Marselis et al., 2018; Hancock et al., 2019). The 1 m vertical profile was used to compare the canopy 192 

structure across the study sites. It was aggregated into a 10 m vertical profile, summing all PAI values in 193 

each 10 m vertical bin, to be used in the structure-richness analyses. We chose to use the PAI profile 194 

because it is a biophysical variable describing the amount of plant material along the vertical forest axis, 195 

thus directly indicating the occupation of vertical niche space, and Marselis et al., (2019) previously 196 

showed this information relates well to tree species richness in Africa. The average of each of the 197 

resulting metrics from all waveforms within each plot was computed to represent the canopy structure 198 

for each plot at each spatial resolution. 199 
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 200 
Figure 2: Illustration of simulated lidar waveform layout. The waveforms (red circles) have a Gaussian 201 
energy distribution with σ=5.5 m, resulting in a roughly 22 m diameter footprint. Example of simulated 202 
footprint distribution locations in a 1.0 (solid outline), 0.25 and 0.0625 ha field plot (dashed outline). 203 

2.3 Canopy Structure across the tropics  204 

To evaluate the canopy characteristics across the different study sites we calculated the median plant 205 

area volume density profile (composed of the PAI values for each 1 m vertical bin), using all simulated 206 

lidar waveforms for each study site. In addition to the median (50th percentile), we calculated the 10, 30, 207 

70 and 90th percentiles of the PAI values in the same 1 m vertical bins, to provide a representative 208 

distribution of the canopy structure across the study site. 209 

2.4 Species-area relationships across the tropics 210 

We created species-area relationships, calculating the mean and standard deviation of S for plot sizes 211 

ranging between 0.01 and 50 ha, to assess how species richness changes by plot size across our study 212 

sites. Each of the original field plots was filled with as many non-overlapping subplots as possible at 17 213 

spatial resolutions (0.01, 0.0225, 0.04, 0.09, 0.16, 0.25, 0.36, 0.64, 1.0, 2.25, 4.00, 6.25, 9.00, 12.25, 16.0, 214 

25.0, 50.0 ha) with each tree assigned to a subplot at each resolution. The plot sizes used at each study 215 

site depended on the original plot size and the availability of stem maps (SI1). We visualized the mean 216 
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and standard deviation of S for each plot size at each study site to evaluate the differences in species-217 

area curves across the tropics.  218 

2.5 Structure-Richness Analysis  219 

To evaluate the existence of a relationship between vertical canopy structure and tree species richness 220 

across the tropics, we developed models at three scales: local, regional and pan-tropical, because many 221 

historical and environmental drivers of (tree) species diversity have stronger or weaker relations 222 

depending on the scale of observation (Gaston, 2000; Keil & Chase, 2019) as do different ecosystem 223 

functions (Chisholm et al., 2013). Definitions of the scales are presented in the following sections.  224 

2.5.1 Local Analysis 225 

The local analysis focused on the structure-richness relationship within large (25 or 50 ha) plots. We 226 

used data from adjacent field plots to evaluate the relationship between S and the canopy structure 227 

expressed as canopy height (RH98), total PAI and vertical canopy profile (PAI at 10 m vertical intervals). 228 

The local analysis was performed on data collected in bci (50 ha), rab and rob (25 ha). The other 50 ha 229 

plot (dan) was not suitable for this analysis because the species identification was incomplete at the 230 

time of analysis (Error! Reference source not found., Error! Reference source not found.). We related 231 

the canopy structure with S using a generalized linear model with a Poisson error distribution. We used 232 

5-fold cross-validation, extracting 20% of the data at random in each fold as test data. We first 233 

performed feature selection on the training data, choosing the model with the lowest Bayesian 234 

Information Criterion (BIC) score, and then constructed the predictive model based on the same training 235 

data. We evaluated model performance using R2, Root Mean Squared Difference as a percentage of the 236 

mean (RMSD%) and bias based on the predictions for the test data (Piñeiro et al., 2008). The average 237 

and 95% confidence interval of these metrics were recorded for each study site at each resolution. 238 

  239 
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2.5.2 Regional and Pan-tropical Analysis  240 

The regional analysis was focused on the structure-richness relationship based on non-adjacent plots 241 

across study sites within the same biogeographical zone. We evaluated different combinations of study 242 

sites at three spatial resolutions (Error! Reference source not found.). To prevent the large plots from 243 

dominating the regional and pan-tropical analyses, we thinned their contribution to both the regional 244 

and pan-tropical datasets. From the 25 ha plots we selected 1.0 ha plots at each corner, and from the 50 245 

ha plots we selected all corner and the middle plots along the long sides of the plot (6 1.0 ha plots total). 246 

To avoid mixing local and regional effects, we employed a Monte-Carlo simulation approach in which we 247 

drew different samples from the full regional dataset. In each Monte-Carlo run we randomly sampled 248 

one plot at the given resolution from each original plot location (especially important at the 0.25 and 249 

0.0625 ha resolutions at which up to 16 plots exist at the location of each original 1.0 ha plot) and 250 

applied a cross-validation (80/20) or leave-one-out cross validation (if n ≤ 25) approach. In the cross-251 

validation we again performed a two-step approach: first we performed variable selection on the 252 

Poisson regression model choosing the model with lowest BIC (using the bestglm package in R), and 253 

then built the predictive model with the chosen variables. We applied the model to the test data and 254 

calculated the model performance statistics for each fold according to Piñeiro et al. (2008).   255 

The pan-tropical analysis focused on the structure-richness relationship combining the information from 256 

all 15 study sites across all tropical regions, in other words, it was a special case of the regional analysis 257 

in which data from all sites was included. Thus applying the same methods as for the regional analysis. 258 
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Table 3: Datasets used for regional and pan-tropical analysis of the structure-richness relationships. Note 259 
that one region may not contain the same number of plots across all resolutions (values in the table 260 
indicate total number of plots for each region) and resolution due to limitations in the availability of 261 
subplot and stem map information, limiting the use of data from some study sites to only one or two 262 
resolutions.  263 

Region 1 ha resolution 0.25 ha resolution 0.0625 ha resolution 

Africa 
(Gabon & DRC) 

62 

 

56 

 

36 

 

South America 
(Brazil & Peru) 

 

 
 
 
 

  36 

 

Central America  

  
 
 
 

27 

 

27 

 

South-East Asia 11 

 

11 

 

  

Pan-tropical 89 

 

101 

 

105 

 
Legend  

  264 
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3. Results  265 

3.1 Vertical forest structure across the tropics 266 

The vertical canopy structure of forests, in terms of the vertical distribution of plant material varies 267 

between tropical regions (Error! Reference source not found.). Maximum canopy height in our study 268 

sites in the Neotropics and Central Africa is typically around 40 m, and slightly lower in Australia, while 269 

canopy heights in South-East Asia exceed 60 m. Many sites show a distinct understory layer and a 270 

decrease in plant material through the canopy. Relative to the understory, the canopy layer sharply 271 

declines in vegetation density (sep and dan, Malaysia) or steadily declines along the vertical axis (bci, 272 

Panama; rab, Gabon; mal, DRC; rob, Australia). This vertical distribution of declining vegetation is 273 

exacerbated in degraded forests: in s11, s12 (Brazil) and mon (Gabon), where the bulk of the vegetation 274 

exists close to the forest floor at ~5 m height, but remnant trees in some plots may reach 40 m. Other 275 

sites, especially undisturbed ones, have distinct canopy layers. In tam (Peru) and in the old-growth 276 

forest in lsv (Costa Rica) there are multiple peaks of high-density vegetation across the vertical strata of 277 

the forest. The profiles of yan (DRC) and lop (Gabon) are characterized by a multiple-peak pattern, with 278 

one peak 20-30 m in the canopy and another within 5 m of the ground, reflecting the inherent structure 279 

of the forest-savanna mosaic. The less disturbed mab (Gabon) forest shows high variability in canopy 280 

structure between plots (e.g. the wide shaded area in Figure 3) and higher canopies.  281 
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 282 
Figure 3: Canopy structure expressed as the Plant Area Volume Density profile (PAVD), expressing the 283 
Plant Area Index for each 1 m vertical bin, displayed as the median of all plots within each study site 284 
(solid line), the 30th-70th percentile (darker shaded area) and 10th-90th percentile (lighter shaded area). 285 

 286 

3.2 Species-area relationships 287 

The number of species increases with plot size, but the rate of increase varies across study sites (Error! 288 

Reference source not found.). For example, in rob (Australia) 82-117 species occur in a 1.0 ha plot 289 

compared to 16-44 species in 0.0625 ha plots. By contrast, tam (Peru) contains 154-185 species/ha, but 290 
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only 11-35 species in a 0.0625 ha plot, similar to rob. Thus, species’ composition of adjacent 0.0625 ha 291 

plots in tam must be more different from each other than adjacent 0.0625 ha plots in rob (Australia), in 292 

other words, the β diversity of the plots in tam is higher than in rob. The species-area curves vary in 293 

shape across study sites, with the highest total species richness in tam and lowest species richness in the 294 

African sites (Error! Reference source not found.). Curves that are initially steep and decrease in slope 295 

at larger plot sizes indicate a high α diversity but a lower β diversity (e.g. when the area is increased, the 296 

same species are encountered). 297 

 298 
Figure 4: Relationships between tree species richness and area for each study site (note the change in y-299 
axis across panels from left to right). 300 

 301 

3.3 Structure-richness relationships 302 

Pulling together the information on tree species richness and canopy structure (RH98 and Total PAI), 303 

species richness generally increases with increasing canopy height and increasing total Plant Area Index 304 

across the tropics (Figure 5).  305 
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 306 
Figure 5: Relation between canopy height (left) and total PAI (right) across three spatial scales for all 307 
study sites across the tropics. Each point represents one plot at the specific resolution. Dots are colored 308 
by study site corresponding to legend in Figure 1. 309 
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The cross-validation results of the local models reveal weak structure-richness relationships. Of the 310 

three large plots (25 and 50 ha), only the models for bci (50 ha) show evidence of a significant 311 

relationship between the predicted and observed values (R2=0.32 at 1.0 ha, SI2). Even though species 312 

richness within all three large plots can be predicted with a root mean squared error between 7-20% of 313 

the mean species richness, the low RMSD% found only indicates that the predictions at the local scale 314 

are close to the mean species richness, however in rab and rob the canopy structure is insensitive to the 315 

local variation in tree species richness (see example figure in SI2).  316 

Regional structure-richness models generally show much better performance (Figure 6) than the local 317 

models in terms of the variance in species richness that can be explained with the canopy structure 318 

information (mostly significant models and higher R2 values). However, prediction error (as percentage 319 

of the mean species richness) is generally higher, partly due to the larger range in species richness in 320 

these regional datasets. Regions of Africa and South America (Table 3) show the best model 321 

performance whereas regions including the Costa Rica datasets show much poorer performance 322 

(regions indicated with centralamerica). Results from an additional analysis on the compositional 323 

similarity (Bray-Curtis; Faith et al., 1987, SI3) of the Costa Rica dataset showed that, even though species 324 

richness varies in Costa Rica (Error! Reference source not found.), the plots share many species, i.e. the 325 

composition is similar. In the africa and southamerica datasets the variation in species richness is 326 

accompanied by a much larger variation in species composition (SI3). The variation of the model 327 

performance for seasia is very high to the low number of plots available for this region and at the 0.25 328 

ha resolution it was not possible to create a significant model >95% of the monte-carlo iterations (Table 329 

3). 330 
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 331 
Figure 6: Cross-validated model performance of regional structure-richness models. Error bars indicate 332 
the 95% range of values for each performance metric. Solid dots indicate >95% of the generated models 333 
was statistically significant, open circles indicate a lower percentage was significant. 334 

Pan-tropical structure-richness models show more similar performance across all spatial resolutions 335 

with mean R2 ranging between 0.25 and 0.39 and RMSD% between 66 and 43%, for the plot sizes from 336 

1.0 and 0.0625 ha (Figure 8), indicating that around 39% of the variation in tree species richness can be 337 

explained using canopy structure metrics alone at the 0.25 ha resolution at the global scale. Sites with 338 

extremely high values of observed species richness are generally predicted poorly (SI4). 339 

  340 
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 341 

Figure 7: Cross-validated model performance at the pan-tropical scale in terms of R2 and RMSD%. Error 342 
bars indicate the range between which 95% of the performance values of the cross-validated models fall.  343 

  344 
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4. Discussion  345 

4.1 Structure-richness relationships across scales 346 

In this study we explored the relationships between vertical canopy structure and tree species richness 347 

at different resolutions across local, regional and pan-tropical scales. We found weak relationships 348 

between canopy structure and tree species richness at the local scale and the strongest relationship at 349 

the regional scales in Africa and South America. We also found significant relationships between canopy 350 

structure and tree species richness combining the data from all study sites across the tropics.  351 

At the local scale, within one big plot inside one forest type, the variation in the canopy structure is 352 

determined largely by variability in growth structure within the same species (the 25 and 50 ha plots 353 

have a similar composition throughout the plot, SI1). For example, an adult tree of species X may range 354 

in height from 20-40 m, so even though structure may differ between two plots of similar composition, 355 

the difference is not attributed to a difference in species composition. Furthermore, if a 20 m and 40 m 356 

tree of species X exist in the same plot, due to the difference in canopy structure the model may predict 357 

a species richness of 2 based on variation in structure. On the other hand, as area increases it is more 358 

likely that the difference in structure is caused by a difference in composition. Individuals of most 359 

tropical forest species are spatially aggregated (Condit, 2000) so the composition of two adjacent plots is 360 

more similar than the composition of two more distant plots. This is the case for bci, where a 50 ha area 361 

was sampled and included in the local analysis, which led to more successful prediction of species 362 

richness based on structure. Within the 25 ha plots sampled at rab and rob, the variation in composition 363 

is smaller and no significant structure-richness relationships were found (SI3).   364 

Increasing the scale, we found that regions consisting of sites exhibiting a large variation in species 365 

composition among plots, but with a similar biogeographical history, show a much stronger structure-366 

richness relationship. However, we note that model performance differed quite drastically across 367 
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regions. The forest in lsv, Costa Rica, consists of largely similar species composition, whereas species 368 

composition is much more different in regions where the structure-richness models perform better 369 

(South-America, Africa), supporting the result from local scale models that species richness can be 370 

better predicted from canopy structure in areas with greater β diversity.    371 

At the pan-tropical scale we find a significant relationship between canopy structure and tree species 372 

richness across all spatial resolutions. At the intermediate resolution (0. 25 ha) this relationship appears 373 

to be slightly stronger than at the higher and lower resolutions, but no significant difference was found. 374 

However, the observed difference may be attributed to the lower sensitivity of species richness to rare 375 

species at smaller plot sizes. For example, tam (Peru) plots have very high species richness at the 1.0 ha 376 

resolution (Error! Reference source not found.), whereas at the 0.0625 ha resolution the species 377 

richness ranges between 11-35 species, which is still higher than most other sites but much less than at 378 

the 1.0 ha plot size. Because the 1.0 ha plot size captures more rare species in each plot, the 1.0 ha pan-379 

tropical model predictions for tam contain highly erroneous predictions that are not present in 0.0625 380 

ha models (SI4). Rare species do not contribute much to the canopy structure, thereby complicating the 381 

relationship between structure and richness at a scale at which they contribute largely to species 382 

richness numbers.  383 

4.2 Limitations 384 

This research could be significantly improved by using more coincident lidar and field data to thoroughly 385 

evaluate the existence and strength of the structure-richness relationship across all tropical regions. 386 

However, the collection of such data is costly and time-consuming. Here, we were able to exploit 15 387 

independently collected datasets (SI1). However, there is quite a data gap, especially in the Amazon 388 

basin, the mainland of South-East Asia, New Guinea and Australia. Apart from the spatial representation 389 

problem, the low number of plots for certain regions attributes largely to the observed variability in 390 
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model performance. The pan-tropical models (with n ≥ 89) show much more stable performance than 391 

models of regions with low numbers of plots (e.g. seasia). A training dataset that does not fully 392 

represent the range of structure in the full dataset can lead to highly erroneous predictions for some of 393 

the test plots. Such errors are exacerbated by the logarithmic link model in Poisson regression because 394 

errors can increase exponentially. Even so, negative predictions are possible with linear regression and 395 

the risk of underestimating tree species richness is higher for diverse areas. Hence, we chose to use 396 

Poisson regression, knowing that it may lead to extreme predictions in some cases that should be 397 

accounted for when operationalizing this method.  398 

Species diversity can be identified in many different ways (Gotelli & Colwell, 2001; Colwell, 2009) and 399 

there are risks and pitfalls using just one metric. In this study we only used ‘species richness’ (S), defined 400 

by the number of different tree species in a defined area (the plot, with different sizes), as this metric is 401 

easy to interpret and a prediction of the number of species/area can probably be used most directly by 402 

ecosystem managers. Hereby we did not control for the number of stems in the plot, nor for the 403 

abundancy of the different species. Such things can be taken into account for example by using the 404 

Shannon diversity index or rarefaction curves. Moreover, depending on the type of metric, a different 405 

model will need to be selected. For example, a generalized linear regression with a Poisson error 406 

distribution, as used here, is more suitable for estimated tree species richness as this is count data, 407 

whereas a linear model with a Gaussian error distribution will be better for estimating Shannon 408 

diversity. Hence, we chose to focus on one metric of diversity to test the structure-richness 409 

relationships, while acknowledging other metrics may provide better, worse, or more useful predictions 410 

of tree species diversity and these should be considered in the future. 411 

This study serves as a first attempt to study the pan-tropical structure-richness relationship and should 412 

be improved and further developed when more data become available. Additionally, the characteristics 413 

of each dataset differed widely because all data were collected by different people and institutions. We 414 
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accounted for this as much as possible by using datasets only at reliable plot and subplot resolutions, 415 

including only trees ≥ 10 cm DBH and including only plots with less than 20% of unidentified trees at the 416 

genus level. Nonetheless, we acknowledge that the quality of the species identification varied and may 417 

have affected our models as species identification in the tropics can be challenging due to the vast 418 

variety of tree species and the fact that new species are still encountered. Species identification of new 419 

and existing data could be improved using more botanists or genetic tests in the lab, which has been 420 

done for some of the datasets used here, but is not yet feasible for all datasets.  421 

The availability of stem maps and subplots in each study site determined the spatial resolutions at which 422 

datasets could be used. This resulted in the inclusion of different datasets for each region (Table 3). This 423 

makes the comparison of model performance in the same region at different resolutions unreliable 424 

because the models were not always built on the same data (plots and study sites), but we weighed this 425 

decision to maximize the sizes of the datasets used to build the structure-richness models. Hence, no 426 

conclusion can be drawn about the optimal resolution for the structure-richness relationships. 427 

Accurate geolocation of field plots is key for the development of reliable species-richness models. 428 

However, geolocation of field plots in the tropical forest can be challenging due to difficulties receiving a 429 

reliable GPS signal under dense canopy. This should be taken into account, especially when evaluating 430 

the performance of models build with small field plots, where the effects of such geolocation errors will 431 

be larger (Réjou-Méchain et al., 2014).  432 

We included data from a range of forest stages, including old-growth forest, successional stages, 433 

disturbed forest and even low tree density savanna sites. The relationships we found are partially driven 434 

by this gradient (Figure 5). However, we deemed it essential to include data from across this range of 435 

forest types, because if this method is to be operationalized using canopy structure information from 436 

across the tropics, we will encounter all these different stages of forest (Lewis et al., 2015).  437 
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4.3 Future research & Applications  438 

Our results provide confidence regarding the existence of regional and pan-tropical structure-richness 439 

relationships that may be used to map pan-tropical tree species richness. The most accurate predictions 440 

seem to be achieved at the regional scale when adequate data are available and when forested areas 441 

are grouped by regions of similar biogeographical history. However, in the absence of such data it may 442 

be of more immediate interest to further develop pan-tropical models that can explain up to 39% of 443 

variation in tree species richness. At the time of writing, GEDI is collecting canopy structure information 444 

close to the finest resolution tested here (0.0625 ha) and thus these data may be well suited for 445 

mapping tree species richness across the tropics. GEDI is a sampling mission in which lidar waveforms 446 

with 25 m diameter footprints are collected across 8 tracks (600 m between-track spacing, 60 m along-447 

track spacing). GEDI gridded data products will have a 1 km2 resolution in which the GEDI data samples 448 

are averaged to 1 km2 values (Dubayah et al. under review). Our local scale models show that 449 

predictions of adjacent 0.0625 ha plots (or in the future, footprints) are on average correct, but they will 450 

not detect local nuances in species richness within forests of uniform composition. We suggest that the 451 

species richness predictions could potentially be used in a similar way as for gridded GEDI data products 452 

and estimate the average number of species/0.0625 ha within a 1 km2 cell, as such information may still 453 

be of interest to local land managers. Given the variable species-area relationships, it is not easy to 454 

translate species richness predictions at 0.0625 ha resolution to the expected number of tree species in 455 

1 km2. Also, the amount of variance in species richness explained is limited. Therefore, we propose two 456 

future research avenues of interest: fusion with spectral and/or radar data and using an environmental 457 

framework. Both spectral data and radar data have previously been shown to predict some of the 458 

variance in tree species richness (Foody & Cutler, 2006; Wolf et al., 2012; Schäfer et al., 2016; Bae et al., 459 

2019; Bongalov et al., 2019; Marselis et al., 2019) and may improve our models and allow for more 460 

accurate predictions of tree species richness across the tropics and the creation of wall-to-wall data 461 
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products at higher spatial resolution. Especially data from the hyperspectral HISUI (Matsunaga et al., 462 

2013) instrument, that is soon to be launched to the International Space Station, the radar BIOMASS 463 

mission (Le Toan et al., 2011), or the TanDEM-X mission (Qi et al., 2019), may be highly relevant for such 464 

applications. Alternatively, we believe that the inclusion of structural data within previously developed 465 

environment and biogeographical frameworks will help to predict tree species diversity (Keil & Chase, 466 

2019). Such frameworks could benefit from GEDI lidar data providing information on the occupation of 467 

the vertical niche space and likely improve predictions of tree species richness across the tropics.  468 
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5. Conclusions  469 

In this study we evaluated the existence of local, regional and pan-tropical relationships between 470 

vertical canopy structure and tree species richness in the tropics at three spatial resolutions: 1.0, 0.25, 471 

and 0.0625 ha. Our results show that canopy structure can explain a limited percentage of variation in 472 

tree species richness across the different regions. On a pan-tropical scale, 39% of the variation in tree 473 

species richness can be explained with the vertical canopy structure using one single predictive model at 474 

a 0.25 ha plot size. A full set of regional structure-richness models will most likely aid accurate pan-475 

tropical species richness mapping, but the development of such a set of models is contingent on the 476 

availability of sufficient coincident field & lidar data across the tropics. Alternatively, canopy structure 477 

information from GEDI could be included in existing modeling frameworks, combining spectral, 478 

environmental and structural information to provide more accurate tree species richness predictions.  479 
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Data Availability Statement 735 

Some of the field and lidar data used in this study can be downloaded directly from the internet. We 736 

have grouped the data in three groups here: (i) LVIS lidar data, (ii) ALS lidar data and (iii) field data. All 737 

datasets not mentioned in this statement were previously collected but have not been made publicly 738 

available and were accessed through personal collaboration with the data providers.  739 

(i) LVIS lidar data 740 

The LVIS data for the rab, lop, mon and mab study sites can be downloaded from the NASA data archive 741 

at the following DOI: https://doi.org/10.3334/ORNLDAAC/1591. 742 

The LVIS data for the cha and lsv study sites is available on the following website: 743 

https://lvis.gsfc.nasa.gov/Data/Maps/CR2005Map.html. 744 

(ii) ALS lidar data  745 

The ALS data over rob is available through the auscover data portal 746 

ftp://qld.auscover.org.au/airborne_validation/lidar/robsons_creek/. 747 

The ALS data over s11 and s12 can be downloaded from the sustainable landscapes data portal 748 

http://www.paisagenslidar.cnptia.embrapa.br/webgis/. 749 

(iii) Field data  750 

Field data from rob has been published through the Terrestrial Ecosystem Research Network (TERN) 751 

data portal linked from https://supersites.tern.org.au/supersites/fnqr-robson.  752 

The dan and rab field data are all available through the Forestgeo website at  753 

https://forestgeo.si.edu/sites/asia/danum-valley, https://forestgeo.si.edu/sites/africa/rabi and 754 

https://doi.org/10.3334/ORNLDAAC/1591
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https://forestgeo.si.edu/sites/neotropics/barro-colorado-island. 755 

The sep, lop and tam field data are all available through forestplots.net and can be found under the 756 

project names ‘sepilok’, ‘lope’ and ‘tambopata’ at https://www.forestplots.net/en/.  757 

The mon field data is archived through the NASA data archiving center and available at DOI: 758 

https://doi.org/10.3334/ORNLDAAC/1580. 759 

The s11 and s12 were available throught the data portals of the sustainable landscapes projects and can 760 

be found under the field data from the São Félix do Xingu region collected in 2011 and 2012 in the 761 

following data portal: http://www.paisagenslidar.cnptia.embrapa.br/webgis/.  762 

https://forestgeo.si.edu/sites/neotropics/barro-colorado-island
https://www.forestplots.net/en/
https://doi.org/10.3334/ORNLDAAC/1580
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