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Abstract 13 

Cystic fibrosis (CF) is one of the most common autosomal recessive life-limiting 14 

conditions affecting Caucasians. The resulting defect in the cystic fibrosis 15 

transmembrane conductance regulator protein (CFTR) results in defective chloride 16 

and bicarbonate secretion, as well as dysregulation of epithelial sodium channels 17 

(ENaC). These changes bring about defective mucociliary clearance, reduced airway 18 

surface liquid and an exaggerated proinflammatory response driven, in part, by 19 

infection. In this short article we explore the overlap in the pathophysiology of CF 20 

and COVID-19 infection and discuss how understanding the interaction between 21 

both diseases may shed light on future treatments. 22 

 23 

COVID-19 (SARS-CoV-2) infection triggers a cytokine storm, sepsis and life-24 

threatening acute respiratory distress syndrome1. Patients with cystic fibrosis (CF) 25 

also manifest cytokine dysfunction and hyper-inflammation which overlaps with the 26 



pathophysiology of COVID-192-4. Intuitively, it might be concluded that CF patients 27 

infected with COVID-19 would be at high risk of serious illness. As a result, health 28 

services have responded with shielding or cocooning policies. Thus, a Mendelian 29 

randomised experiment is effectively underway, in real time, whereby patients with 30 

two mutant copies of the CFTR gene are being exposed to a new virus. While 31 

respiratory viruses, such as rhinoviruses and influenza, are associated with 32 

increased pulmonary exacerbations5, 6, the morbidity and mortality from respiratory 33 

syncytial virus (RSV) infection is lower than expected in children with CF7. In a past 34 

epidemic of RSV, it was noted that relatively few patients with CF became severely 35 

ill. For example, at a time when so many babies became ill that a regional intensive 36 

care unit exceeded its ventilator capacity for sick children, not a single CF-affected 37 

child became ill (AM personal observations over two decades). This paucity of CF 38 

patients in the RSV cohort might be explained by the recent proposal that RSV may 39 

need an intact autophagic pathway for replication8, allied to the finding that 40 

autophagy is dysregulated in CF cells9. There is some speculation that inducing 41 

autophagy, which is increased in CF, may counteract COVID-19  infection, although 42 

data remain limited10.   43 

Conversely, there are sound theoretical reasons why CF might be expected to 44 

accentuate rather than mitigate the impact of COVID-19 infection. CFTR mutations 45 

disrupt cellular metabolism and exaggerate both lung and systemic inflammatory 46 

responses, with dysregulation of assembly of the multiprotein NLRP3 inflammasome 47 

complex that processes pro-inflammatory cytokines2, 3 (figure 1). The SARS-CoV-2 48 

virus enters host cells by using a spike protein to bind to the cell membrane protein, 49 

angiotensin-converting enzyme 2 (ACE2)11, 12. Cellular entry, via ACE2, is facilitated 50 

by the furin enzyme, making both critical players in infection. ACE2 has a site that is 51 



potentially activated by furin, which converts and activates viral surface glycoproteins 52 

and also regulates ENac13. Activation of furin, which is increased in CF14, 15, together 53 

with the cellular damage induced by viroporins, might be expected to upregulate 54 

NLRP3 and cause inflammation16. We, and others, have reported that NLRP3 55 

inflammasome is abnormal in CF cells2, 3. 56 

The role of furin in viral pathogenesis has recently been reviewed and the authors 57 

state that ‘the pathogenesis of some CoVs has been previously related to the 58 

presence of a furin-like cleavage site in the S-protein sequence’17 . For example, the 59 

insertion of a similar cleavage site in the infectious bronchitis virus (IBV) S-protein 60 

results in higher pathogenicity, pronounced neural symptoms and neurotropism in 61 

infected chickens. Thus, it is entirely plausible that furin activity may be a key factor 62 

in COVID-19 infections and the testing of furin inhibitors as therapeutic agents will be 63 

important in future studies18. The SARS-CoV-2 virus is reported to mimic the 64 

proteolytic activation of ENaC, an ion channel which is significantly upregulated in 65 

CF, where it drives inflammation and is critical to airway surface liquid 66 

homeostasis19.  67 

As yet there are limited data on the response of CF patients to COVID-19 infection, 68 

although preliminary information suggests that the course of disease may be milder 69 

than expected. Globally, from a  population of about 100,000 patients, there have 70 

been over a hundred cases of COVID-19 infection in people with CF, with around 71 

90% exhibiting relatively few symptoms and complications20-23 . Although numbers 72 

and outcome may simply reflect effective shielding, it is highly likely that certain 73 

regions, such as New York State and Northern Italy, would have reported significant 74 

numbers of excess CF-COVID-19 deaths had patients been highly susceptible.  75 



If further clinical experience indicates that the course of COVID-19 infection in CF 76 

patients is milder than anticipated, then it could be proposed that the relative 77 

protective effect associated with CF might accrue from CF-affected cellular 78 

processes linked to viral processing, including autophagy, mitophagy, endosomal 79 

function and cellular metabolism, which may all be co-opted by COVID-19 for viral 80 

replication24, 25.   81 

We hypothesise that CFTR modulator therapy might also confer additional benefit to 82 

patients with severe respiratory problems due to COVID-19 infection2, 26.  For 83 

example, CFTR modulator therapy given to people with CF helps to restore cellular 84 

function, increases airway hydration, reduces oxidative stress, and down-regulates 85 

activation of the NLRP3 inflammasome2.The influence of CFTR in non-CF 86 

respiratory disease is intriguing and relatively poorly understood. Recent reports 87 

have demonstrated that acquired CFTR dysfunction occurs in smokers, and that the 88 

acute reduction in CFTR function due to cigarette smoke extract can be reversible by 89 

a CFTR potentiator in vitro
27, 28. Carriers of the (commonest by far) Phe508del 90 

mutation found in over 70% of patients, have also been reported as having an 91 

increased risk of developing chronic bronchitis and bronchiectasis29.   92 

The role of CFTR in COVID-19 needs further elucidation in patients without CF. In an 93 

influenza model, the CFTR corrector, lumacaftor, was found to reverse in vitro down-94 

regulation of CFTR and ENaC following viral infection and to restore airway surface 95 

liquid30-32. Both CFTR and ENaC have been proposed as theoretical cleavage sites 96 

for the coronavirus proteinase 3CLpro enzyme, which controls viral replication33. The 97 

transmembrane protease serine 2 (TMPRSS2), which can facilitate viral entry into 98 

the target host cell, also reduces ENaC activity in airway epithelium34. The detailed 99 



analysis of clinical outcomes in CF affected people may provide clues as to how 100 

these factors interact in the real world of COVID-19 disease. 101 

The clinical importance of characterising the effects of COVID-19 infection in CF 102 

patients, and understanding the possible underlying protective effects, could shed 103 

light on novel targets and new approaches to antiviral therapy. We suggest that 104 

clinical trials of modern CF drugs should be explored in those infected by this new 105 

virus. In practice, a pragmatic trial is already underway, the outcome of which will 106 

depend on the response to COVID-19 in patients who either receive or do not 107 

receive modern CF drug combinations, and we also urge all CF registries to collect 108 

such case-control data to inform future studies. 109 
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Figure: 1.  SARS-CoV-2 and Cystic Fibrosis 247 



 248 




	Article File
	Figure 1

