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Abstract 

Background: Long-term studies of community and population dynamics indicate that abrupt disturbances often 
catalyse changes in vegetation and carbon stocks. These disturbances include the opening of clearings, rainfall sea-
sonality, and drought, as well as fire and direct human disturbance. Such events may be super-imposed on longer-
term trends in disturbance, such as those associated with climate change (heating, drying), as well as resources. 
Intact neotropical forests have recently experienced increased drought frequency and fire occurrence, on top of 
pervasive increases in atmospheric  CO2 concentrations, but we lack long-term records of responses to such changes 
especially in the critical transitional areas at the interface of forest and savanna biomes. Here, we present results from 
20 years monitoring a valley forest (moist tropical forest outlier) in central Brazil. The forest has experienced multiple 
drought events and includes plots which have and which have not experienced fire. We focus on how forest structure 
(stem density and aboveground biomass carbon) and dynamics (stem and biomass mortality and recruitment) have 
responded to these disturbance regimes.

Results: Overall, the biomass carbon stock increased due to the growth of the trees already present in the forest, 
without any increase in the overall number of tree stems. Over time, both recruitment and especially mortality of trees 
tended to increase, and periods of prolonged drought in particular resulted in increased mortality rates of larger trees. 
This increased mortality was in turn responsible for a decline in aboveground carbon toward the end of the monitor-
ing period.

Conclusion: Prolonged droughts influence the mortality of large trees, leading to a decline in aboveground carbon 
stocks. Here, and in other neotropical forests, recent droughts are capable of shutting down and reversing biomass 
carbon sinks. These new results add to evidence that anthropogenic climate changes are already adversely impacting 
tropical forests.
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Background
Monitoring vegetation changes in natural ecosystems is 
key to understanding the complexity of ecological pro-
cesses, including the interactions between species and 
responses to environmental conditions as they change 

over time and space [1]. Special attention has been 
focused on tropical forests due to their ecological impor-
tance, characterized by environmental heterogeneity, 
high biological diversity, and globally significant carbon 
stocks and dynamics [2–4]. With increasing anthropo-
genic interference in natural landscapes and global cli-
mate change, understanding how forests respond to these 
changes is becoming increasingly important. The results 
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of such investigations have value in helping to validate 
model predictions of global change impact on tropical 
forests [5], and in practical terms can assist in propos-
ing alternative management practices for conservation 
and forest production that are resilient to environmental 
changes [6].

The dynamic equilibrium, which is generally described 
in vegetation monitoring studies, is the result of cyclical 
fluctuations [7–9]. These fluctuations are characterized 
by periods of increasing forest density and biomass, and 
to a lesser extent, a reduction in the number of individu-
als and biomass. More importantly, all of these features 
contribute to the maintenance of a stable community 
structure [3, 9, 10]. Studies on community and popula-
tion dynamics indicate that both internal and exter-
nal events are important catalysts of vegetation change. 
These can be natural; such the opening and regeneration 
of clearings, rainfall seasonality, or seasonal droughts 
[11]; or anthropogenic, such with forest fire and felling 
of the forest [12]. Additionally, global climate change 
impacts forests [13, 14]. Climate change may promote an 
increase in tree mortality which in turn can trigger suc-
cessional processes [15]. This is seen through the estab-
lishment and growth abundance of species that have a 
fast growth rate and intrinsically have a short life cycle, 
leading to overall reduction in tree longevity and poten-
tially loss of carbon stocks [16]. Increasing tree mortality 
rates have thus been identified as one of the main threats 
faced by tropical forests [17] in the face of environmental 
changes.

The increase in greenhouse gas concentrations is 
widely acknowledged as the major cause of recent 
increases in global average temperature [13, 18, 19]. If 
this current trend continues, future climate changes are 
likely to result in increases in global average temperature 
of > 2 ℃, as well as changes in the frequency and severity 
of extreme droughts and waves of heat [20]. Already, even 
though many parts of South America have not experi-
enced a decline in total annual precipitation [21], tropical 
forests are becoming more droughted due to increased 
intensity of dry seasons [21–23]. In the last two decades, 
forests in Amazonia and beyond have experienced four 
multiple severe drought events, during 2005 [24], 2010 
[25] and 2016 [26]. In addition, in 2015 and 2016 the El 
Niño—Southern Oscillation (ENSO) in the tropical Ama-
zon region was at least as strong as the 1997 and 1998 
ENSO, itself the largest of the twentieth century [27].

These periods of prolonged drought have affected trop-
ical vegetation, with increases in tree mortality being the 
most evident factor in all periods [14, 28]. Across Amazo-
nia we know that long-term plots have been experiencing 
increases in dry season intensity and that this is impact-
ing forest composition [29, 30]. Individual droughts 

have also negatively impacted biomass, largely through 
enhanced mortality which is diminishing the size of the 
forest carbon sink [e.g. 12, 21]. Climate change also has 
the potential to increase the occurrence, size and inten-
sity of forest fires, and is primarily associated with drier, 
warmer climates in several regions of the world [31, 32]. 
Forest fires can cause significant changes in the struc-
ture and composition of species in forests, especially in 
sensitive environments such as tropical forests [33], and 
changes in forest structure may occur faster than changes 
in biodiversity [34].

Overall, increased frequency of extreme drought events 
can cause disruption of large parts of the Amazon forest 
subject to mortality rates [35]. And when drought events 
provide conditions for forest fires to occur, degradation 
in tropical forests tends to be greater [36]. Data from 
multiple permanent plots in forest ecosystems have been 
used to show that increases in tree mortality rates can 
substantially reduce the carbon stock and carbon sink 
potential of tropical forests [14], but it is far from clear 
how pervasive these effects are and large areas of tropical 
forest go essentially unmonitored. A particular gap is the 
huge area of endangered forests at the transition between 
the Amazon and adjacent Cerrado in central Brazil. In 
spite of a few recent studies in eastern end of these sys-
tems [37, 38] we know little about how such transition 
zones—potentially already on the edge climatically due 
to their marginal status—are faring in the changing cli-
mates of the early twenty-first century. In the Amazon-
Cerrado transition, several types of forest formations 
occur [39, 40]. We have been monitoring a moist tropi-
cal forest outlier in southern Mato Grosso, central Bra-
zil, for 20  years (1996–2016) using a careful permanent 
plot methodology with regular reinventories of woody 
vegetation in a valley forest. These have been subjected 
to period droughts, and, in some localities, also to recent 
fire. Now, using these records we here evaluate the struc-
tural and dynamic changes of the forest and identify 
two key questions: First, what is the behaviour of above-
ground biomass and the number of stems over 20 years of 
monitoring? Second, how have forest dynamic processes 
of productivity, mortality and recruitment changed over 
time in response to periodic droughts and to fire?

Methods
In this study, we evaluated the effects of long dry periods 
on the structure of a tropical forest over 20 years.

Area of study
The study was carried out in the Véu de Noiva Forest 
Valley (FVVN), located in the Chapada dos Guimarães 
National Park, 15º 24′ 18.80″ S and 55º 49′ 55.35″ W. 
The FVVN is a fragment of tropical forest, and although 
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located in the Cerrado biome, it is a mix between the gal-
lery forest, which is located in near the water course at 
the bottom of the valley, and the seasonal forest, which 
occupies the slope of the valley [41] and is influenced flo-
ristically by the Amazon and Atlantic Forest [42].

According to the classification of Köppen, the climate 
of the region is of the Cw type, which is characterised by 
a subtropical humid climate and dry winter [43]. The cold 
and dry periods usually comprise the months of May to 
September, and the rainy season, October to March. The 
rainy season contributes approximately 80% of the annual 
precipitation [44]. Based on data from the INMET Mete-
orological Database for Teaching and Research (BDMEP) 
in June 2017, the mean annual rainfall was 1680  mm, 
with an average temperature of 24.6  °C during the last 
20 years [44].

The soil in the FVVN is shallow with rocky outcrops 
and fairly steep topography [45]. This is because most of 
the forest covers the slope that was formed just below the 
cliffs, by the deposition of debris from the erosive process 
in the valley. Therefore, soils are classified as predomi-
nantly Litolics in the sandy phase, or spots of Quartz 
Sands and Alluvial Soils, which generally occur at the 
bottom of the valley [45]. A topographic gradient exists 
within the valley (low, medium and high slope), and 
Pinto, Oliveira-Filho, and Hay [44] identified five micro-
sites, determined by the topographic position and the 
type of source rock (phyllite and sandstone). While the 
structure of the vegetation can differ between them these 
microsites are distributed equally on both sides of the 
valley, which allows us to analyze the forest as a whole.

The vegetation in the FVVN is well preserved as it is 
within an area only prone to natural disturbances, such 
as opening of clearings by the natural fall of trees [46]. In 
July 2010, the vegetation was affected by a forest fire [47]. 
This was the first forest fire registered in the FVVN since 
the creation of the Chapada dos Guimarães National 
Park in 1989 (see Additional file  1: Figure S1), based 
onpersonal comments from Park managers, and prob-
ably for many decades before, because of the complete 
absence of fire scars on vegetation.

Data collection
We sampled the woody vegetation in 18 permanent 
plots with area of 600  m2, totalling 1.08 hectare. This 
area is systematically distributed into three transects 
perpendicular to the watercourse, including a total of 
nine plots of 600  m2 on each side of the slope of the 
valley (Fig. 1 ). The plots were positioned in three top-
ographic sectors: the middle and the top of the slope 
and close to the water course. The plots positioned in 
the middle and at the top of the slope are rectangular 
(20 × 30 m) and the plots positioned at the edge of the 

stream have a transect shape (10 × 60  m). This form 
of transect was adopted to better capture the riparian 
effect of vegetation that occurs close to the watercourse 
[45].

We sampled all living and remaining tree recorded in 
previous surveys, and included new individuals (recruits) 
who met the minimum inclusion criterion: diameter 
measured at 1.3  m aboveground (diameter-at-breast-
height, DBH) greater than 5  cm. The measurements 
were always taken in the same position, 1.30 m above the 
ground (DBH). Most trees being small here buttressing 
at 1.30  m stem height was not an issue. The aluminum 
identification plates of the individuals were fixed with 
nails, always respecting the 1.30  m position. Thus, all 
measurements of the diameter were performed taking 
as a reference point the position of the tree identifica-
tion plate. Additionally, to guarantee the measurement 
of DBH in the same position in all six measurements, 
we fixed the height of 1.30 m on the shirt of the person 
responsible for measuring diameter. Finally, to avoid the 
potential for transcription errors, the field records con-
tained the values of the previous measurements, which 
facilitated in-the-field checking against the values of the 
last measurement. Thus, any potential outliers could be 
immediately identified and checked in the field. To make 
the reader’s understanding clear, this information is now 
included in the manuscript.

For the remnants and recruits, we measured the DBH 
and total height (H). To review and update the names of 
the species, we referred to the database of the List of Spe-
cies Flora do Brasil [48], which uses the botanical clas-
sification system Angiosperm Phylogeny Group—APG 
IV [49]. Sampling followed the same methodological pro-
cedures adopted in the six surveys already carried out at 
the FVVN, in the years 1996, 1999 [46], 2003 [45], 2006, 
2010 [47] and 2016. Plot establishment and protocols are 
described in detail elsewhere [40, 43, 44].

We directly measured the wood density (WD) of the 
species that correspond to 80% of all individual trees, in 
relation to the 2016 census. For the remaining 20% of 
individuals we used the weighted mean of all other spe-
cies. To measure WD, we collected a non-destructive 
sample of wood extracted from the trunk of trees, with 
the aid of the increase factor, using a Thread Increment 
Borers (Pressler core borer) [50], which is a minimally 
invasive method for sampling wood. To obtain the wood 
samples, we randomly selected five tree per species with 
selection probability being proportional to the diametric 
range of the species. For the determination of WD, we 
followed the methodology proposed by Smith [51]. We 
separated the plots into two sites conditions, according to 
the record of occurrence of forest fire recorded in Sep-
tember 2010: (1) site with forest fire (FF) registry, with 
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eight plots; and (2) site without forest fire (NF) registry, 
with 10 plots.

We sought information about the long periods of 
drought that occur in the study region. For this, we meas-
ure self-calibrating palmer drought severity index (scP-
DSI) [52]. The scPDSI is calculated from time series of 
precipitation and temperature obtained by data every 0.5º 
for latitude and longitude in homepage climexp.knmi.nl.

Data analysis
To calculate aboveground biomass we adopted the equa-
tion proposed by Chave et al. [53], considered as the best 
fit equation for data for forest formations in the tropical 
region and used the BIOMASS package [54] in software 
R [55] 

AGB = aboveground green biomass (kg), WD = woody 
density (g.cm−3), H = tree height (m), DBH = diameter 
measured at 1.3 m aboveground (cm).

AGB = 0.0673×

(

WD ×H × DBH2
)0.976

To determine the changes in density of tree within the 
woody community assembly, we used the equation of 
Sheil et al. [56], which considers the mortality rate based 
on the initial number of trees, and the recruitment rate 
based on the final number of trees. As the time interval 
between measurements was not constant, we applied the 
correction factor proposed by Lewis et  al. [57] ( �corr ). 
This corrected small biases caused by the influence of 
differing census intervals and allowed us to estimate the 
dynamics of the woody community assembly. We thus 
calculated the mean annual rates of mortality (M), and 
recruitment (R):

R = 100×
[

1− (1− (Nr/Nt)
1/t

]

.

where t = time between monitoring;  N0 = initial num-
ber of individuals;  Nm = dead number of individuals; 
 Nr = number of recruits;  Nt = final number of trees; and 

M = 100×

[

1− (N0 − Nm/N0)
1/t

]

�corr = �× t0,08

Fig. 1 Spatial distribution of plots in the Véu de Noiva Forest Valley, Chapada dos Guimarães National Park, Mato Grosso State, Brazil. Where: sites with 
forest fire (FF, red) and without forest fire (NF, green) registered in 2010
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�corr = crected rate of mortality or recruitment, as sug-
gested by Lewis et al. [58].

Wferred to the sequential intervals between the meas-
urements as1 (1996–1999), I2 (1999–2003), I3 (2003–
2006), I4 (2006–2010) and I5 (2010–2016). We classified 
the tree trunks into three categories: (A) small (between 
5 and 10 cm DBH), (B) medium (between 10 and 35 cm 
DBH), and (C) large (greater than 35 cm DBH) [58]. We 
used these categories to arrive at a better understanding 
of the changes in the structure of the woody community 
assembly.

We calculated the productivity in aboveground bio-
mass (PB) by summing the aboveground biomass of 
recruiting individuals, and the growth of the surviving 
trees, relative to time [14] PB =

∑

Bi +
∑

Bj − Bj−1 
where: Bi = Where:  Bi = biomass of recruits tree, 
 Bj = subsequent monitoring biomass for tree;  Bj-1 = pre-
vious monitoring biomass for tree. We measured net 
biomass change (NBC) between each interval as the dif-
ference between the later and the previous biomass totals 
, i.e.NBC = Bn − Bm , where:  Bn = total biomass subse-
quent monitoring biomass;  Bm = total biomass previous 
monitoring.

To evaluate the effect of forest fire time and occurrence 
of the aboveground biomass (AGB) and number of stems 
(NS) variables, we used the Generalized Estimating Equa-
tion (GEE) [57, 58], with the log binding function and the 
Gamma distribution for AGB, and Poisson for NS. This 
method of adjustment has an advantage, as it evaluates 
the temporal autocorrelation that incorporates the cor-
relation structure between observations within the plots 
[58]. To evaluate the relationship between the predictor 

variables (AGB, NS, M) and dependent variables (time 
and forest fire), we performed the modified Wald chi-
test [59]. When effects of time, forest fire or interaction 
between these were apparent a Bonferroni post hoc test 
was used to assess significance [60]. We performed the 
analysis using SPSS version 24 [61], and adopted α < 0.05 
as the significance level for all analyses.

Results
We observed a trend toward increasing drought sever-
ity over the years, with four major drought events dur-
ing the vegetation monitoring: 2002, 2005, 2010 and 2016 
(Fig. 2). The 2010 drought period was the most severe in 
the whole period, coinciding with the forest fire in region 
FVVN.

Descriptive information on the number of stems, basal 
area, AGB, mortality rates, recruitment, loss and gain, 
and the annual periodic increase is presented in Addi-
tional file  1: Table  S1. We observed that the time effect 
had a significant influence on mortality and recruitment 
rates, i.e. that rates differed significantly between the 
intervals (Additional file 1: Table S2). However, only the 
mortality rate and AGB differed between NF and FF sites 
 (X2w = 11.793; p = 0.01).

In the NF site, mortality rates tended to increase 
over time, with little variation in the first measurement 
interval, a significant reduction in I3 (2003–2006) and a 
greater increase by I5 (2010–2016), which experienced 
the highest mortality rate (Fig.  3 and Additional file  1: 
Table S1). Recruitment rates presented oscillatory behav-
ior, with lower values in the first measurement intervals 
and significant increase in the latter. In site FF, the lowest 
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mortality rates were recorded early on, in I1 (1996–1999) 
and I2 (1999–2002), and increased significantly in subse-
quent intervals, with the highest values recorded during 
I4 (2006–2010) (Fig.  3 and Additional file  1: Table  S1). 
Recruitment rates here also showed a tendency to 
increase over the evaluated intervals, with significant 
differences between evaluated periods and exceptionally 
high recruitment during I5 (2010–2016).

We observed that the effect of time and sites had a 
significant influence on AGB (Fig.  4 and Additional 
file  1: Table  S2). For NF, time was the only factor that 

significantly influenced AGB (Additional file 1: Table S3). 
At the NF site, AGB increased until 2010, after which, 
there was a significant reduction, with the value 
approaching that recorded in 2003, 13  years earlier, but 
still greater than when we began monitoring it (Fig.  4 
and Additional file 1: Table S1). The FF site experienced 
net AGB gains until the 2006 census. In 2010, the year of 
the forest fire, there was a reduction in AGB; however, 
this difference was not significant compared to that of 
the previous year. By the time of the 2016 census, AGB 
declined significantly relative to previous years and was 
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similar to values recorded in 1999 (Fig. 4 and Additional 
file 1: Table S1). Both sites presented reduction in num-
ber of steams overtime, significant from 2006 in FF site 
and from 2016 in NF site, with greater intensity reduc-
tion in the FF site (Fig. 4 and Additional file 1: Table S1).

We observed that although biomass has tended to 
increase overall since the start of monitoring, the positive 
net biomass changes (NBC) from one census to another 
have declined over time in both sites (Fig. 5). Since 1996, 
until 2003 in the FF site and until 2006 in the NF site, 
there was an increase in NBC. Both sites experienced 
sharp NBC declines since then, although both still ended 
with higher total biomass than at the start.

Rates of productivity in aboveground biomass (PB) 
showed a behaviour similar to that registered for NBC, 
with substantial increases between 1999 and 2002, and 
a tendency to decline subsequently (Fig. 6). Overall, the 
tendency was for biomass productivity to decrease over 
time as a result of particularly low values in both forests 
during the final census interval.

Above-ground mortality tended to increase over time. 
This trend was observed at both the sites (Fig.  7), due 
to the increase in mortality of medium and large trees 
(Fig.  8), which even though comprising relatively few 
individuals, in terms of biomass impact on the forest 
structure.
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Discussion
We monitored a tropical forest for 20  years in order 
to evaluate the long-term dynamics of a moist for-
est outlier at the southern fringes of Amazonia and 
to explore influence of periods of prolonged drought 
on the woody vegetation. We observed four periods 
of drought during the 20  years of monitoring that are 
in agreement with the information reported by other 

authors [15]. In the last two decades, Brazil has expe-
rienced severe large-scale drought events, during 2005 
[24], 2010 [25] and 2016 [26]. Our results show, first of 
all, that this is intrinsically a very dynamic forest, with 
high rates of mortality and recruitment even in the site 
which wasn’t burned and even in those intervals with-
out major droughts. These measurements thus extend 
and confirm the earlier conclusion drawn from sites 
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further east of here that the southern borders of Ama-
zonia contain some of the most dynamic of all tropi-
cal forests—these are truly ‘hyperdynamic’ in terms of 
stem turnover rates [37] with some of the fastest tree 
turnover rates recorded anywhere in the tropics.

We noted that in addition to having remarkably high 
background values of between 3 and 5% each year, mor-
tality rates have also been increasing in the woody veg-
etation of our study site. These occurred in both the 
burned and unburned forests. An increase in tree mor-
tality has long been observed generally in many tropical 
forests [14, 62, 63], including in Brazil [64]. However, 
the ultimate drivers and proximal mechanisms respon-
sible for this increasing tree mortality remain unknown 
[15]. Tree mortality often represents a low magnitude 
disturbance to the forest structure, helping to trigger 
local processes of forest succession [65, 66], promoting 
the opening of canopy space which enables increased 
recruitment [12, 67, 68]. The trend of increasing rates 
of mortality and recruitment over time has been more 
pronounced in periods of more prolonged droughts in 
the tropical region [15]. However, in the site with forest 
fire, the availability of new space did not result in higher 
recruitment rates than mortality, which resulted in a 
net reduction in the number of stems. We can discount 
stochastic flooding events as a confounding driver of 
change here, since over the 20 years of study, we have 
not registered any flooding process in the sampling 
units, including those positioned near the watercourse, 

and did not observe any physical consequences of over-
banking such as sediment deposition or erosion.

In addition to the long-term increase across out 
study landscape, our data suggest that mortality rates 
can also reflect interactions between and forest fire 
(‘cascade effect’). Thus, during periods of prolonged 
droughts [69], mortality itself increases the probabil-
ity of subsequent tree death by opening up the canopy, 
with environmental changes within the forest favour-
ing the occurrence of fires [31, 32]. The opening in the 
canopy favours the entry of more light inside the forest, 
with leaves and other combustible material both drying 
and increasing in abundance [31, 32]. This drought-fire 
interaction has been identified elsewhere as responsi-
ble for tree mortality in some tropical forests [36]. In 
part because of this potential for positive feedback, 
researchers have focused on the impacts of extreme 
droughts and climate change on tropical forests [27]. 
Climate change drivers are consistent with the overall 
increase in mortality rates of tropical forests in general, 
and especially with the specific patterns of increased 
mortality of large trees [68] and the fact that the floris-
tic composition of extensive regions of tropical forests 
has slowly changed to favour those species which have 
greater resistance to drought [31, 69]. If severe drought 
events continue to increase mortality rates in tropical 
forests a more open forest structure could result, which 
provides conditions for more frequent occurrence of 
forest fires.
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In our forests, the stock of biomass (and therefore car-
bon, which in these forests is equivalent to AGB × 0.47 
[70] generally increased until the most severe drought 
and the burning of some of our plots (in 2010). A general 
increase in tropical forest biomass has also been reported 
widely (in Amazonia, Africa, and Southeast Asia [29, 71, 
72]. Indeed the vegetation of the whole terrestrial surface 
has acted as a strong carbon sink in recent decades, with 

a substantial fraction of this sink probably located in the 
tropics, particularly in the Amazon [73]. Overall, struc-
turally intact tropical forests were responsible for half of 
global terrestrial carbon uptake between 1990 and 2007, 
so removing ~ 15% of anthropogenic  CO2 emissions [21, 
73]. This widespread increase in tropical forest biomass is 
often interpreted as a response to the increase accumula-
tion in atmospheric  CO2 [73, 74], which over long-time 
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scales should favour an increase of productivity biomass 
in conserved tropical forests [75]. In our site, the increase 
of biomass reflects the growth of trees already present in 
the area, since the number of stems did not differ notably 
over time, a pattern that appears to hold more generally 
across Amazonia too [14, 70].

In Chapada dos Guimarães National Park, net biomass 
change during monitoring intervals was strongly posi-
tive early on, but from 2006, 1 year after the first major 
drought of the twenty-first century [24], and became neg-
ative by the time of the 2010 drought—a pattern remark-
ably consistent with the larger South American trend 
based on an independent dataset [14, 15, 28]. Although 
tropical forests remain carbon sinks, their capacity to 
absorb atmospheric  CO2 appears to be declining [14]. 
One of the causes of this reduction is climate extremes, 
which exert a strong effect on biomass when evaluated on 
a short time scale [75, 76]. Indeed, the sensitivity of tropi-
cal forests to environmental changes, especially drought, 
has already been documented by observational data from 
permanent plots networks, flux towers, remote sensing 
and greenhouse gas measurements [29, 77]. Thus, the 
influence of current climate change—as well of course as 
more direct human intervention—is significantly impact-
ing the carbon balance of the tropical land surface.

Long periods of drought seem to reduce primary pro-
ductivity, number of trees, biomass production and 
increase tree mortality, especially when forest fires occur. 
We observed that these characteristics began in 2006 and 
remained during the monitoring period of 2010 (year 
of the forest fire) and 2016. During these periods, pro-
longed drought events were also recorded [24–26]. Even 
in our plots that were not affected by the forest fire, we 
observed similar behaviors of reduction in biomass pro-
duction, recruitment and increased mortality. The occur-
rence of fire in tropical forests is one of the consequences 
of periods of drought [78] and serves as a catalyst for the 
reduction of accumulated biomass and productivity, and 
increase mortality. During years of severe drought, forest 
fires in the Amazon are typically destructive, killing up 
to 64% of trees where they occur [79]. Overall, drought 
periods can significantly affect the structure of the woody 
vegetation, and especially so when there are fires.

As well as impacts on biomass carbon balance in gen-
eral, droughts in tropical and temperate forests fre-
quently have greatest impact on larger trees [56]. In our 
study, large trees experienced increasing mortality, and 
this is associated with prolonged drought events. The 
main hypotheses to explain the mortality of trees with 
drought events invoke either hydraulic failures or car-
bon ‘starvation’ [56, 64]. Hydraulic failure risks increase 
in proportion to tree height and tree crown exposure to 
light and heating, so they are more intensely experienced 

by larger trees [64]. The hydraulic and carbon balance 
risks may be associated—in response to the water deficit 
provided by drought events, and potentially therefore to 
avoid the risk of hydraulic failure, plants close stomata in 
their leaves, but in this process the tree may suffer from 
carbon deficiency and “starve to death” [80]. Regardless, 
drought-driven mortality of large trees in forests initi-
ates processes of local succession, with the opening of 
the canopy and the entrance of light [2, 3, 7], and so can 
increase the temperature of the local microclimate [81], 
resulting in an even more drought-sensitive environment 
more prone to forest fire.

Potentially cyclical fluctuations between periods of dis-
turbance and forest reconstruction can trigger longer-
term recurrent outcomes, as large trees tend to suffer 
more from drought than smaller trees [68]. Long-term 
tropical forest records, including ours, are consistent 
with greater growth due to increased atmospheric  CO2 
and this fertilization-induced stimulated especially of the 
growth of larger trees. These, in turn, are precisely those 
which experience the highest mortality rates during peri-
ods of drought, and so a loss of biomass stock. Thus, even 
without the aggravating effects of fire, contemporary, 
twenty-first century tropical forests may be especially 
susceptible to prolonged drought periods, leading to 
deeper changes in the structure and functioning of these 
ecosystems than was previously the case.

Lastly, we note that long-term research is clearly cru-
cial to understand and measure the effects of natural and 
anthropogenic changes on forests. However, these studies 
are particularly demanding, requiring persistence often 
across generations of academic careers, and a great deal 
of standardization and data collection in the field. The 
present study was no exception. It required 20  years of 
monitoring as well as considerable financial support and 
the involvement more than a dozen different graduate 
students, three master’s dissertations and two doctoral 
theses. More sustained, long-term initiatives like these 
are urgently needed so that the effects of climate change 
on tropical forest formations can be assessed accurately.

Conclusions
In summary, here we have shown for the first time that 
moist forest outliers (e.g. valley forest) in central South 
America are vulnerable to climate change as it reduces the 
number of stems and increases the mortality of large trees 
in the forest. Our result extends the conclusion that many 
Amazonian forests and forests in the Amazon-Cerrado 
transition are being impacted by anthropogenic climate 
change as it reduces forest biomass stock. Although valley 
forests have been thought to be at a lower risk of direct cli-
mate impact due to the peculiar relief condition in which 
they occur. Climatic changes appear to make vegetation 
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more susceptible to forest fires, which compromises the 
functioning of the forest, the provision of ecosystem ser-
vices such as carbon sinks, and the maintenance of bio-
diversity. Overall, our results from a moist tropical forest 
outlier (valley forest) reinforce the findings from other 
neotropical forests that recent droughts have shut down 
and potentially even reversed a long-term biomass carbon 
sink. Anthropogenic climate changes are already adversely 
impacting tropical forests.
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