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The Nature of the Frequency Spectrum of Shear Alfvén waves in a Solar Coronal

Arcade

Rekha Jain
1, a)

School of Mathematics and Statistics, University of Sheffield (UK),

S3 7RH

(Dated: 13 June 2020)

Frequency power spectra are computed theoretically for shear Alfvén waves excited in

a solar coronal arcade by two separate perturbations, a Cosine-modulated Gaussian

perturbation and an impulsive driver. The arcade is assumed to consist of potential

magnetic field lines embedded in a stratified plasma. It is shown that although the

power spectra have discrete frequencies for each field line, a cumulative effect of

many field lines of different widths/lengths in an arcade will be that of a continuous

spectrum, if seen together as one entity. The nature of the frequency power spectra

can constrain the size and the type of the driver.
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I. INTRODUCTION

Solar coronal loop-tops are often clearly visible in the Extreme Ultra Violet (EUV) images

of the solar corona with their footpoints believed to be anchored in the photosphere. Such

loop-tops may oscillate in response to nearby flaring activity (e.g. Aschwanden et al. 1999)

and the resulting period of oscillations may provide a useful diagnostic tool for understanding

the physical characteristic of the loops when compared with theoretical models (e.g. Edwin

and Roberts, 1983). A collection of many visible loops in the solar corona is referred to as

a coronal arcade.

A common interpretation is that the coronal loop oscillations are Magnetohydrodynamics

(MHD) waves (Aschwanden et al. 1999; Nakariakov et al. 1999) and the normal modes of

oscillation are studied in different magnetic field and density profiles, a combination of which

represents a typical coronal magnetic configuration. In the past, the solar coronal loops have

been generally modelled either as magnetic slabs (see for example, Roberts, 1981; Edwin

and Roberts, 1982; De Groof and Goossens 2002; Terradas et al. 2007) or as magnetic flux

tubes (Edwin and Roberts, 1983; Diaz et al. 2004).

Transverse loop oscillations have been observed in detail, with the Atmospheric Imaging

Assembly (AIA) instrument (Lemen et al. 2012) on board the Solar Dynamics Observatory

(SDO) (Pesnell et al. 2012) and the measured periods have been used to determine the Alfvén

speeds in the loops (see for example, White and Verwichte, 2012). Transverse oscillations

can be modelled as incompressible modes (Edwin and Roberts, 1983; Verwichte et al., 2004,

Goossens et al. 2009) due to weak compression in the long-wavelength limit. They have

also been modelled as interference of waves in a three-dimensional wave cavity (Hindman

and Jain, 2015). Observationally, one can measure the period or frequency of a bundle

of oscillating coronal loops and their decay time using the EUV images. Therefore, it is

important to understand the excitation and damping mechanisms of transverse oscillations

in solar coronal arcades on the basis of two measurements i.e. the observed power spectrum

and the damping times, both of which are frequency dependent. There are many mechanisms

suggested for damping of these oscillations. For example, resonant absorption (see Goossens

et al. 2002; Hindman and Jain, 2018), phase mixing (Heyvarts and Priest, 1983) and K-H

instability (see for example, Soler et al. 2008) are some of the popular mechanisms. The

excitation mechanisms also need to be investigated in detail. Observationally, this requires
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simultaneous multi-wavelength observations to track the propagation of waves through the

different layers of the solar atmosphere. Theoretically, one needs to model coronal loops and

study the excitation of oscillations using different excitation sources and their corresponding

frequency power spectra. The comparison of observational and theoretical power spectra

can then give us some insight into the size of the driver and the responsible mechanism of

excitation.

The simplest magnetic field model for generating oscillations, within the MHD framework,

is a potential magnetic field model. One such investigation was carried out by Oliver et al.

(1993) who studied Alfvén and Fast MHD waves in a two-dimensional potential magnetic

field with equilibrium gas pressure and density decreasing with height. Tarr (2017) then

extended this study of Oliver et al. (1993) to estimate the frequency spectrum of Alfvén

waves in a coronal arcade generated by a local Gaussian perturbation representing a small

reconnection event. Oliver et al. (1993) had shown that the frequencies of the modes are

shifted depending on the separation of loop footpoints and the parameter, δ, the ratio of

the magnetic field to pressure scale height. Tarr (2017) calculated the frequency spectrum

analytically and hence they only investigated the case of zero δ, i.e. for uniform pressure

and density. For coronal conditions the value of δ is expected to be around 1 (see Oliver et

al. 1993). Considering non-zero finite values of δ makes the coefficient non-constant in the

governing equation and it becomes necessary to solve the equation numerically. This paper

revisits the model of Tarr (2017) to compute frequency spectrum numerically for different

values of the parameter δ. Two different drivers are chosen both of which vanish at the

line-tied boundaries. One driver represents a small reconnective event at the top of the loop

and the other one an impulsive driver such as a big flare (see e.g. Aschwanden et al., 1999;

Jain et al. 2015; Li et al. 2017).

In Section 2, the models of Oliver et al. (1993) and Tarr (2017) are described and the

governing equations for the transverse Alfvén waves derived. The eigenvalues and eigenfunc-

tions are also computed subject to boundary conditions. Section 3 determines the power

spectra arising from a Cosine modulated Gaussian perturbation at the loop-top. For com-

parison, we also show the power spectra for an impulsive driver. A brief summary and

conclusions are then mentioned in Section 4.
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II. THE MODEL

The model set-up considered for a coronal arcade in Cartesian coordinate system is as in

Oliver et al. (1993).

A potential magnetic field, B0, is assumed in an equilibrium atmosphere at rest where the

plasma pressure, p0 and the force due to gravity balance each other, i.e.

−∇p0 + J0 ×B0 + ρ0g = 0. (1)

Here J0 is the current density.

Using

p0(z) = p0e
− z

Hp , (2)

for equilibrium plasma pressure with Hp(=
KBT
mg

) as the pressure scale height in the vertical

direction ẑ, and

ρ0(z) = ρ0e
− z

Hp , (3)

for equilibrium density, we can show that

B0 = B0

[

cos
(

x

HB

)

, 0, sin
(

x

HB

)]

e−z/HB (4)

with HB

(

= 2l
π
; with 2l as the separation between the footpoints) as the magnetic scale

height.

A. The Linearised Momentum Equation

Assuming small perturbations to the equilibrium magnetic field and ignoring the per-

turbed pressure and gravitational forces, the linearised momentum equation for a force-free

and inviscid plasma can be given by

ρ0(z)
∂v1

∂t
=

1

µ0

[(∇×B1)×B0] , (5)

where µ0 is the permittivity in the vaccuum. Here, v1 and B1 are the perturbed velocity

and perturbed magnetic field respectively.

Differentiating the above equation with respect to time and using the linearised ideal induc-

tion equation, we obtain

ρ0(z)
∂2v1

∂t2
=

1

µ0
[∇× {∇× (v1 ×B0)}]×B0. (6)
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Using the vector identities and considering invariance in ŷ direction, we can write the above

equation as

ρ0(z)
∂2v1

∂t2
=
(

∇2(v1 · ∇A)
)

∇A +
[

(B0 · ∇)2 vy
]

ŷ. (7)

with vy as the y-component of the perturbed velocity. Here, we have also used the fact that

B0 = ∇A(x, z)× ŷ =

(

−∂A

∂z
, 0,

∂A

∂x

)

.

Fourier analysing the perturbed quantity in time i.e. v1 ∝ eiωt, we obtain

−ω2ρ0(z)v1 =
(

∇2(v1 · ∇A)
)

∇A +
[

(B0 · ∇)2 vy
]

ŷ. (8)

Note that similar to Oliver et al. (1993), we consider MHD waves with ky = 0 with ky as

the wavenumber in y-direction. Therefore, we also rule out the resonantly damped waves

here.

B. The Governing Equation

Using v1 = ∂ξ
∂t
, we can write the y-component of the Equation (8) as:

d2ξy
dx2

+

{

ω2

v2A0

[

cos
(

x0

HB

)]δ−2 [

cos
(

x

HB

)]−δ
}

ξy = 0, (9)

where, δ = HB

Hp
and vA0

(

= B0√
µρ0

)

is the Alfvén speed at the base of the arcade. (x0, 0) is

the coordinate of a particular field line. (see Tarr, 2017; Equation (30) in Oliver et al., 1993).

Note that the Alfvén speed vA(z) decreases with height for 0 ≤ δ < 2 and x/HB < π/2

otherwise cos(x/HB) will make the coefficient infinite.

Let

x

HB
= x̃,

x0

HB
= x̃0. (10)

Thus, Equation (9) can be written as:

d2ξy
dx̃2

+
{

k2 [cos(x̃0)]
δ−2 [cos(x̃)]−δ

}

ξy = 0, (11)
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where

k = HB
ω

vA0
. (12)

1. No stratification due to gravity: δ → 0:

For δ → 0, Hp becomes very large and the gas pressure and density do not vary with

height. Thus, for δ = 0, Equation (11) reduces to

d2ξy
dx̃2

+ k2
xξy = 0; k2

x = k2 cos−2(x̃0), (13)

which has the following solutions:

ξy = A cos(k(n)
x x̃) with k(n)

x =
(n+ 1

2
)π

x̃0
for n = 0, 1, 2, .. (14)

and

ξy = A sin(k(m)
x x̃) with k(m)

x =
mπ

x̃0
for m = 1, 2, .. (15)

such that ξy = 0 at x̃ = ±x̃0.

This was the case considered by Tarr (2017).

2. Effect of stratification δ 6= 0:

Through homogeneity, we use ξy = 1 at x̃ = 0 in solving Equation (11) numerically. For a

given δ and x̃0, we find k satisfying ξy = 0 at x̃0. In this model, the parameter x̃0 indirectly

measures the influence of density changes with height; smaller values of x̃0 indicate low lying

loops and hence less affected by density changes with height. The interesting cases are when

the density is different at the base and at the loop-tops i.e. when the loop/arcade footpoints

are far apart. As an example, we choose values of 0.5 (blue) 0.9 (black) for x̃0 and solve

the Equation (11). The resulting k values are shown in Figure 1 for the fundamental and

the first four harmonics. The symbols plus, asterisk, diamond, triangle and cross are for 5

different values of δ of 0, 0.5 1.0, 2.0 and 3.0 respectively. Figure 1 clearly suggests that for

these choice of parameter x̃0, the k values are lower for the higher value of x̃0 and for each

x̃0, the dimensionless k increases with δ compared with its value for the uniform density
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FIG. 1. Dimensionless eigenvalue k as a function of mode numbers for x̃0 = 0.5 (blue/light) and

0.9 (black/dark): the x-axis denotes the fundamental mode (0), first (1), second (2), third (3) etc.

harmonic modes. The symbols plus, asterisk, diamond, triangle and cross are for the δ values of

0, 0.5, 1.0, 2.0 and 3.0 respectively.

case (recall that uniform density case is when δ = 0). Also, note that the shift is larger for

higher harmonic index or mode number.

In Figure 2 we show the first four harmonics of the normalised eigenfunctions for x̃0 = 1.3,

for three different values of δ. We have discrete oscillations on a given field line but the nodes

will be shifted for different field lines (i.e. for different x0) as suggested from Figure 1. Thus,

if seen from above an arcade consisting of many field lines of different lengths and separations

could yield a continuous frequency spectrum for excited Alfvén waves.
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FIG. 2. Normalised eigenfunction as a function of x/HB for δ = 0 (top), 1, and 2 (bottom). Here

x̃0 = 1.3 is used. The solid, dotted, dashed and dot-dashed lines are for fundamental, first, second

and third harmonics respectively.

III. EXCITATION OF ALFVÉN MODES BY AN INITIAL

PERTURBATION

Tarr (2017) investigated the excitation of the Alfvén modes by an initial Gaussian per-

turbation at the loop-top. Here, we consider an even function of the form

ξy(x̃) =
cos( πx̃

2x̃0

)
√
2πσ

e−
x̃2

2σ2 , (16)

for a small finite width σ. This function vanishes at the line-tied boundaries. Such a per-

turbation is quite restricted and can be envisaged at the top of the loop when the magnetic

reconnection occurs there and perturbs the loop tops. When projected onto the even per-

turbations ξy(= Y ) obtained from solving the Equation (11), yields

ξy(x̃) =
∞
∑

i=0

AiYi(x̃). (17)
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FIG. 3. Normalised power as a function of ωn/2π. Left: for x̃0= 1.3 showing δ = 0 (plus), 1

(diamond) and 2 (triangle). Right: δ = 1 for x̃0= 1.3 (red), 0.9 (purple), 0.77 (black), 0.6 (green)

and 0.5 (blue). Here, all values are computed for σ = 0.1.

The amplitude An can be given by

An =
∫ x̃0

−x̃0

w(x̃)ξy(x̃)Yn(x̃)dx̃, (18)

where w(x)
(

= [cos(x̃)]−δ
)

is the weighting function. For the purpose of finding the ampli-

tude, we have taken the normalisation as

∫ x̃0

−x̃0

w(x̃)[Yn(x̃)]
2dx̃ = 1. (19)

The frequency power spectrum can be plotted as A2
n, as a function of ωn

2π
, where ωn is

obtained from different eigenvalues.

We plot the normalised power as a function of this frequency ωn/2π in Figure 3. In the left

panel, we examine the effect of parameter δ on the frequency power spectrum for one field

line so we fix x̃0 = 1.3 and plot the normalised power for δ = 0 (plus), 1 (diamond) and

2 (triangle). It is clear from the Figure that for all three values of δ, the power decreases
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with increasing harmonic index with substantial power up to 1.5 Hz for higher δ. When

δ = 0, the effect of gravity is zero resulting in a constant gas pressure everywhere and plasma

β increasing with height. In fact, the plasma β = 2µ p
B2

0

e
z

HB
(2−δ)

increases with height for

0 ≤ δ < 2 with the rate slowing down with higher values of δ within this range. When

δ = 2, the magnetic pressure and the gas pressure decay with height at the same rate and

thus, the basic equilibrium has a constant plasma β. We therefore, examined and compared

frequency spectrum for three values of δ = 0, 1 and 2 to study the effect of varying plasma

beta.

Recall that the perturbation is a Cosine-modulated Gaussian function
(

i.e. ξy(x̃) =
cos( πx̃

2x̃0
)

√
2πσ

e−
x̃2

2σ2

)

.

We first examine the frequency power spectrum for many field lines in an arcade resulting

from this perturbation. This would give us an idea about the frequency-power spectrum for

a collection of field lines with different separations in an arcade when viewed from above.

Oliver et al. (1993) suggest that δ ≈ 1 is appropriate for coronal conditions. So, in the

right panel of Figure 3, we show normalised power for a fixed δ(= 1) and choose parameters

x̃0= 1.3 (red), 0.9 (purple), 0.77 (black), 0.6 (green) and 0.5 (blue). The peak amplitude

occurs at a fundamental frequency which is relatively low (< 1 Hz). For higher harmonics,

the power appears to increase slightly with x̃0 due to the shift in frequency (refer to Figure

1). The effect of varying x̃0 is that it shifts the eigenvalues and hence the presence of many

different x̃0 in an arcade will yield a continuous spectrum if the arcade is seen from above

as one entity.

It would be interesting to compare the power spectrum for an arcade in an atmosphere

where the plasma β decreases with height. This requires choosing δ > 2. We expect the

effect to be more apparent for higher loops (i.e. larger values of x̃0) in the arcade. In Figure

4, we plot normalised power as a function of ωn/2π for δ = 2.5 (plus), 2.7 (diamond) and

3 (asterisk) in the left panel. Here, x̃0 =1.3 is kept fixed. The power is normalised by the

maximum value which occurs for the first harmonic instead of for the fundamental mode.

In the right panel, we show the normalised power for a fixed value of δ = 3 for different

x̃0. It is clear from the figure that for the wider loops (refer to x̃0 = 1.2 and 1.3), we see

higher power for all harmonics with substantial power even at high frequencies (ν > 3).

Once again, it can be inferred that an arcade will yield a continuous spectrum if the arcade

is seen from above as one entity with fluctuations in this continuous spectrum depending on

various sizes of the loop comprising the arcade.
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FIG. 4. Normalised power as a function of ωn/2π. Left: for x̃0= 1.3 showing δ = 2.5 (plus), 2.7

(diamond) and 3.0 (asterisk). Right: δ = 3 for x̃0= 1.3 (red), 1.2 (turquoise), 0.9 (purple), 0.77

(black), 0.6 (green) and 0.5 (blue). Here, all values are computed for σ = 0.1.

FIG. 5. Normalised power as a function of ωn/2π: for x̃0= 1.3 and δ = 1. The values of σ are 0.1

(diamond), 1.5 (triangle) and 0.2 (cross).
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FIG. 6. Normalised power as a function of ωn/2π for an impulsive driver. Left: for x̃0= 1.1 showing

δ = 0 (plus), 1 (diamond) and 2 (triangle). Right: δ = 1.0 for x̃0= 1.1 (red), 0.9 (purple), 0.77

(black), 0.6 (green) and 0.5 (blue). Here, all values are computed for σ = 0.1.

Now, we examine the size of the perturbation that drives the oscillations. In Figure

5, we investigate the effect of the size of the perturbation on the power spectrum. To do

this, we fix the size of the field line with x̃0 = 1.3 and also fix the scale-heights in the

background atmosphere with δ = 1. We show the computed normalised power spectrum

for three values of σ = 0.1 (diamond), 0.15 (triangle) and 0.2 (cross). It is clear that the

power is more focussed in the lower frequency range for higher value of σ. This suggests

that from the observed power spectra of the same-width loops, the size of the perturbation

can be constrained.

The oscillations in the solar corona are often observed in response to a nearby big flare

(Aschwanden et al. 1999; Nakariakov et al. 1999). Thus, another driver that is worth

investigating in the context of the flare-induced oscillations is an impulsive driver. In Figure

6, we plot the normalised power for a perturbation function as the Dirac-delta function.

Note that the power is almost constant with frequency except for some fluctuations at very
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low frequencies for stratified atmosphere (i.e. δ > 0) or for longer loops (i.e. larger x̃0).

IV. CONCLUSION

In this paper, we have computed the frequency spectrum of Alfvén waves excited by a

Cosine-modulated Gaussian perturbation at the top of a set of solar coronal loops (see Tarr

(2017)). The loops were modelled as two-dimensional potential magnetic field embedded

in a stratified plasma atmosphere in the ideal MHD framework. The governing equation,

derived from the linearised momentum equation, was solved numerically for the line-tied

boundary conditions. The important stratification parameter, δ which measures the relative

strength of the magnetic and gas pressure scale heights was varied to study the eigenvalues

and the corresponding eigenfunctions.

An initial perturbation, a Cosine-modulated Gaussian wavefunction, was then projected

onto the even eigenfunctions to compute the power spectrum. The power spectrum suggests

that Alfven waves excited by a Gaussian perturbation at the coronal loop-top contain sub-

stantial power up to several Hz depending on the choice of parameters such as the arcade

width, length, Alfvén speed at the photosphere z = 0 and the distribution of plasma β in

the equilibrium atmosphere (through the value of δ).

The power spectra are completely different for an impulsive driver, with the low frequency

distribution affected more with the parameter δ. The normalised power are almost constant

for higher harmonic index but for an arcade seen from above as a single entity, the nature

of the power spectrum for the first two-three harmonics will be dominated by the widths

of the field lines in this entity. To distinguish the type of driver that excite Alfvén modes

in a solar coronal arcade, it would require observing many higher harmonics. Such high

frequency Alfvén spectra resulting from different drivers can only be observed in realistic

coronal conditions if the observational data can be obtained with a very high temporal

cadence and frequency resolution. For example, a temporal cadence of 3-4 second would be

useful which is around one third of what is currently available from Atmospheric Imaging

Assembly (AIA) on board the Solar Dynamics Observatory (SDO) (see Lemen et al. 2012).

The nature of the power spectra can, in principle, constrain the size and type of the driver.

We demonstrated that the oscillating modes are discrete for a given field line and depend-

ing on the eigenvalues for each field line in an arcade, a continuous spectrum of frequency
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FIG. 7. Normalised power as a function of x̃0
(

= x0

HB

)

for the fundamental mode. The asterisks

and diamonds are for the Gaussian and impulsive driver respectively. The value of σ is chosen to

be 0.1 and both the curves are for the δ = 1 case.

for Alfvén waves may be expected if observed from above (see also, Oliver et al. (1993)).

Thus, the discrete and continuous nature of frequency spectrum depends on the orientation

of the field lines in an arcade and the line-of-sight of the observations. The quantitative

behaviour also depends on the type of the driver. As an illustration, we plot in Figure 7

normalised power as a function of x̃0

(

= x0

HB

)

for the fundamental mode. The value of σ

chosen is 0.1. Both curves are for δ = 1 case. It is clear from the Figure that the frequency

power spectrum appears continuous for both drivers but with different magnitudes for the

same bundle of field lines.

It is worth noting that in this study, we neglected plasma pressure perturbation and

hence there are no slow waves. Kaneko et al. (2015) studied the interesting phenomenon of

superslow propagation of Alfvén and slow continuum waves. Using the model of Oliver et al.

(1993) they reported that Alfvén and slow wave continua can get phase-mixed with time and

the process gives an impression of fast wave propagation across the magnetic surface despite

the speed of propagation slower than the local Alfvén/sound speed. They also derived the

phase velocity which revealed that the phase speed decreases with height and the strong

change occurs for low height (i.e. for low-lying loops). One of the key findings of Kaneko
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et al. (2015) is that the apparent propagation is inversely proportional to time, thereby

suggesting that waves are fast soon after the excitation and a slow(fast) spatial change in

the local Alfvén frequency causes a rapid (slow) propagation. In our future study, we will

consider the effects of plasma pressure.

Availability of Data

The data that support the findings of this study are available from the corresponding author

upon request.
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