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Abstract. Autonomous Vehicles (AVs) must interact with other road users. They must under-

stand and adapt to complex pedestrian behaviour, especially during crossings where priority is

not clearly defined. This includes feedback effects such as modelling a pedestrian’s likely be-

haviours resulting from changes in the AVs behaviour. For example, whether a pedestrian will

yield if the AV accelerates, and vice versa. To enable such automated interactions, it is necessary

for the AV to possess a statistical model of the pedestrian’s responses to its own actions. A previ-

ous work demonstrated a proof-of-concept method to fit parameters to a simplified model based

on data from a highly artificial discrete laboratory task with human subjects. The method was

based on lidar-based person tracking, game theory, and Gaussian process analysis. The present

study extends this method to enable analysis of more realistic continuous human experimental

data. It shows for the first time how game-theoretic predictive parameters can be fit into pedes-

trians natural and continuous motion during road-crossings, and how predictions can be made

about their interactions with AV controllers in similar real-world settings.
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1 Introduction

Understanding pedestrian behaviour is now of upmost importance for Autonomous Ve-

hicles (AVs) [5]. The potential future deployment of AVs is currently creating much

enthusiasm [4][43], as such vehicles would make transportation more efficient [22].

Huge improvements have been made on robotic localisation and mapping problems us-

ing simultaneous localisation and mapping (SLAM) algorithms [6][38], together with

new, cheap sensors, computation technologies, free and open-source software imple-

mentations [20] [42]. ‘Self-driving’ cars can now localise themselves and navigate by

planning and controlling their routes on some roads, promising a future society with a

better mobility system with less accidents and traffic in cities [22].

But before any fully self-driving revolution happens, AVs must share space with and

will be challenged by human drivers and pedestrians, who are much harder to model and

act upon than passive environments. Full self-driving must include this ability as well

as the now-mature localisation, planning and routing technologies. Decades of research

on human interaction in Transport Psychology and Human Factors has not yet been

translated into robotic control systems, and many questions are still unanswered.
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In most current ‘self-driving’ systems, for safety and legal reasons, pedestrians are

considered as obstacles, such that the vehicle always stops for them. But recent real-

world AV studies have shown that pedestrians may then take advantage of this pre-

dictable behaviour [27] [25] [5], pushing in front of them for priority eventually in

every negotiation, so that the vehicles then make no progress. This has become known

as the Freezing Robot Problem (FRP)[39].

Real human driving is massively more complex than simply mapping, localising and

path planning. It is considered an art form by advanced practitioners such as members

of the Institute for Advanced Motorists and other advanced drivers such as high-speed

police and ambulance drivers [17]. In their training, these practitioners emphasise the

human psychological processes involved in reading and predicting the behaviours of

other road users as the most important skill of human drivers. Can you tell if a pedes-

trian is assertive enough to risk stepping out in front of you from their body language,

their facial expressions, even their clothes and demographics? Road users have differ-

ent utility functions, ranging from timid pedestrians likely to give way to all oncoming

traffic, though to business-people late for a meeting or patients for an urgent medical

appointment becoming much more assertive and risk-taking. Drivers must also consider

the psychological effects of their own actions. Speeding up and slowing down are not

just ways to control one’s own progress, but also send information about our own per-

sonality and risk preferences to pedestrians engaged in such negotiations for priority,

along with other possible signals including lateral road positing, and more conventional

signals such as flashing indicator lights and headlights, and driver face and arm expres-

sions.

Fig. 1. Two agents negotiating for priority at an intersection

To progress towards automation of such understandings, Fox et al. [18] proposed

and solved a simple game-theoretical mathematical model of the unsigned road-crossing

scenarios represented in Figs. 1 and 7. This model, based on the famous game of
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‘chicken’, is called ‘sequential chicken’. In this model, two agents – which may be

pedestrians and/or vehicles – compete for space at an unsigned intersection, using only

their positions to signal information to one another. Time, space and actions are discre-

tised and it is assumed that both players have equal utility functions and know this to

be the case. The model leaves open free parameters specifying the utility function for

human players. Camara et al. [11] then asked human subjects to play sequential chicken

as a board game, and developed a statistical method to fit parameters to the mathemat-

ical model to describe and predict their behaviours. In [9], the same authors extended

this experiment to the case of human subjects playing a physical version of the board

game, moving their bodies between discrete squares on and near the road at discrete

time turns, integrating their positions into the sequential chicken model via lidar sen-

sors, support vector machines, and Bayesian tracking.

Contributions: The present chapter is a methods study which presents a new, full stack

approach to measuring and modelling natural, continuous time and continuous space

pedestrian interactions. It shows how to infer pedestrian preferences for time delays and

collisions from their body motions as tracked by lidar. Inferred parameters could then be

used in AV controllers during pedestrian interactions. First, pedestrian tracking is used

to estimate the trajectories of the agents involved in semi-structured human–human in-

teractions while playing the sequential chicken model. Second, optimal strategies are

computed using the game theory model in [18]. Lastly, parameters of the interactions

are inferred by comparison to optimal strategies, using Gaussian process regression

over the parameter space. This study is intended to illustrate a proof-of-concept of this

full-stack method: more detailed and controlled experiments will be needed to obtain

robust parameters results and to learn about variations in parameters between different

classes of pedestrians. The demonstrated method could also be used to model and mea-

sure pedestrian/pedestrian, human–driver–vehicle/AV, and human–driver/human–driver

and AV/AV interactions as well as the primarily intended pedestrian/AV case.

This work is part of the EU H2020 interACT project1 with a consortium of European

partners investigating on the future deployment of AVs in mixed traffic environments

with human drivers, cyclists and pedestrians. The overall aims of the project are to

understand the behaviour of other road users, and how AVs could interact with them

in a safe and efficient manner, and to propose new external Human–Machine Interface

(eHMI) solutions that could facilitate the communication between AVs and people.

2 Related work

2.1 Pedestrian crossing behaviour

A review on different approaches for pedestrian behaviour modelling is provided in [8].

Methods of pedestrian behaviour analysis are often performed via video recording,

semi-structured interviews and VR recording. Previous studies on pedestrian crossing

behaviour can be found in [19][29][32]. For example, Gorrini et al. [19] analysed video

1 https://www.interact-roadautomation.eu/



4

data of interaction between pedestrians and vehicles at an unsignalized intersection us-

ing semi-automatic tracking. Their study showed that pedestrian crossing behaviour can

be divided into three phases: approaching (stable speed), appraising (deceleration due to

evaluation of speed and distance of oncoming vehicles) and crossing (acceleration). Pa-

padimitriou et al. [29] compared observed and declared behaviour of pedestrians at dif-

ferent crossing areas, as a method to assess pedestrian risk-taking while crossing. They

found that their observed behaviour is in accordance with their declared behaviours

from a questionnaire survey and they report that female and male participants have

similar crossing behaviour. Many studies such as [35] were focused on the evaluation

of speed, TTC (Time To Collision), gap acceptance and communication means (e.g.,

eye contact and motion pattern) of the road users. Some other studies (e.g., [15]) have

suggested that for autonomous vehicles, some apparently intuitive human communica-

tion styles might not be necessary for interactions with pedestrians. Dey and Terken [15]

showed that facial communication cues such as eye contact do not play a major role in

pedestrian crossing behaviour, and that the motion pattern and behaviour of vehicles are

more important. The field study in [34] showed similar results with an ‘unmanned’ ve-

hicle, suggesting that the same results could be found with autonomous vehicles. Risto

et al. [33] showed that vehicle movement is sufficient for indicating the intention of

drivers and presented some motion patterns of road users such as advancing, slowing

early and stopping short.

2.2 Game theory

Game theory offers a framework for modelling conflict and cooperation between ra-

tional decision-makers. It was developed in the 1940s by von Neumann and Morgen-

stern [28]. Its core concept is (Nash) equilibrium which is the pair of strategies (proba-

bility distributions over actions to be played) such that none of the players would change

their strategy if they knew the other’s strategy. Previous studies in Transport Studies and

highway design have applied game theory to several driver behaviour modelling tasks,

as reviewed in [16]. Kim et al. [21] developed a mixed-motive game theory model for

deciding the strategy chosen by two AVs equipped with adaptive cruise control (ACC).

Meng et al. [26] also used game theory for modelling AV lane changing maneuvers.

Rakha et al. [30] proposed a game theory approach for intersection conflicts manage-

ment with reactive agents (the automated vehicles) equipped with ACC systems and

a manager agent is used to decide the optimal strategy that increases the overall per-

formance of all the agents. This approach prevents crashes from occurring and it also

minimises the time delay in the intersection. Similar to our work, Ma et al. [?] com-

puted Nash equilibria using Fictitious Play. Their method differs from ours in that not

only their model takes into account pedestrians’ position from a single image but also

used some visual features from their appearance as part of the utility function to im-

prove trajectory prediction. Adkins [1] presented an algorithm for intersection manage-

ment involving up to four self-driving cars communicating with each other. Two motion

choices are available for each player (move forward or stop) and an optimised solution

using game theory to solve the discrete intersection problem is presented. Turnwald et

al. [40] proposed a non-cooperative game theoretic approach to human collision avoid-

ance. Their method differs from ours in that they used a motion capture system to record
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human motions, a Bootstrap algorithm to compute the confidence intervals and applied

a Dynamic Time Warping (DTW) algorithm to measure similarity between the trajec-

tories. Variants of the game of chicken were proposed in [13][27] [31] to solve conflicts

between agents at intersections. A cellular automata approach was implemented in [31]

and [13] for agents’ interactions while [27] focused on the interaction between an AV

and a pedestrian.

When multiple equilibria are present in games, standard game theory does not spec-

ify how the players should choose the best one. In the above studies, no method is

proposed for the players to select which equilibrium to use. Typically this is because

Transport Studies seeks to describe macroscopic flows of traffic rather than prescribe

actions for individual vehicles, and considers that any possible equilibrium is a good

description of observed data. For example in [27], the choice for the best solution de-

pends on ‘local social norms’ which assumes that drivers should have prior knowledge

of local customs. Unusually, [18] proposed a novel approach for optimal strategy pre-

scription, called meta-strategy convergence. This method begins by choosing an equal-

weighted mixture of strategies from all rational equilibria (after removing dominated

and asymmetric equilibria where possible). The resulting strategies do not in general

form an equilibrium themselves, but by applying fictitious play until convergence, a

single equilibrium is obtained upon which it is argued that two rational players should

agree without communication. Most of the game theory models reviewed in this section

outperform non-game theoretic predictive models [13][24][30][41].

2.3 Pedestrian tracking

Pedestrian tracking plays an important role in many commercial applications but it is

still a challenge for computer vision systems because of the multiple uncertainties (e.g.,

occlusions) due to complex environments [7]. Tracking of pedestrians requires the esti-

mation of non-linear, non-Gaussian problems due to human motion, pedestrian scales,

and posture changes. Monte Carlo methods such as particle filtered-based approaches

draw a set of samples assigned to a target and perform the data association for multiple

targets using probabilistic techniques such as Nearest Neighbor (NN), Multiple Hypoth-

esis Tracking (MHT), JPDAF and PHD-filter [2][7]. Pedestrian tracking is composed

of two steps: (i) a prediction step to determine the expected position and motion state

and (ii) an update step to refine the prediction using sensor observations. Tracking has

been previously combined with game theory for multi-robot system coordination prob-

lems. For instance, Skrzypczyk et al. [37] used non-cooperative games to control a team

of mobile robots for a target tracking. When multiple equilibria are present, an arbiter

based on the min-max method is used to fairly distribute costs among robots. Li et al.

[23] applied cooperative game theory to improve tracking performance for a group of

robots, allowing communication between the robots in order to minimise tracking costs

and maximise the interests of the overall system of robots. Yan et al. [46] proposed a

cooperative non-zero sum game approach for the problem of multi-target tracking for a

multi-robot system in dynamic environment.
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3 Methods

The present study demonstrates a method to fit parameters of the sequential chicken

model to continuous human behaviour collected from controlled laboratory pedestrian–

pedestrian interactions. The laboratory environment is designed to enable the simplest

possible mapping of continuous physical human motions onto the model. Studying

pedestrian–pedestrian interactions in place of pedestrian–AV interactions allows us to

collect twice as much pedestrian data, and not require us to bias the experiment by

involving an AV programmed with its own preferences.

3.1 Human experiment

Eighteen human volunteer subjects (University of Lincoln Computer Science staff and

students) were divided into nine pairs, one designated as player Y and the other as player

X . Each pair was asked to play a physical version of the sequential chicken game on a

plus-maze shaped playing area drawn on an indoor floor as shown in Fig. 2. Player Y

was starting from y = 6 m and player X from x = 6 m such that they were both starting

6 m away from the intersection. Players were instructed that their objective was to pass

the intersection as soon as possible, ‘as if they were trying to reach their office entrance

in a busy pedestrian area’, on hearing the command ‘go’ to begin, given to both players

at the same time. Each pair performed five interactions, i.e. ‘games’. If both players

walk at the same speed, then they collide with each other. Otherwise, one of them must

yield to allow the other to pass the intersection point before them. Sometimes, both

players try to yield at the same time, which does not break the symmetry, forcing them

to continue negotiating one or more times. Players’ motions were recorded using a

Velodyne 3D lidar. Figure 3 shows an example of the lidar output during the games.

Fig. 2. Two participants playing the game of chicken during the experiment

3.2 Pedestrian detection and tracking

Pedestrian positions and velocities are provided by a robust Bayesian multi-target track-

ing systems based on 3D lidar detections[47], suitable for real-time, long-range tracking

of multiple people in dynamic scenarios. Non-overlapping clusters of adjacent points

are extracted based on their 3D Euclidean distance. An adaptive threshold accounts for



7

Fig. 3. 3D LIDAR output

the variation in shape and size of the human body in 3D lidar point clouds, which is

a function of the person’s distance from the sensor. Finally, clusters too large or too

small to be humans are discarded by the detector, which outputs the distance and bear-

ing of the cluster’s centroid projected on the floor. The information from the detector is

processed by a multi-target tracker, including an efficient implementation of Unscented

Kalman Filter (UKF) and NN data association to deal with multiple detections simulta-

neously [3]. The tracker estimates the 2D coordinates and velocities of each pedestrian

using a standard prediction-update recursive algorithm. The prediction step is based on

the following constant velocity model,



















xk = xk−1 +∆ t ẋk−1

ẋk = ẋk−1

yk = yk−1 +∆ t ẏk−1

ẏk = ẏk−1

(1)

where xk and yk are the Cartesian coordinates of the target at time tk, ẋk and ẏk are the

respective velocities, and ∆ t = tk− tk−1. (The symbols x,y, t in this section are re-used

to name different things than in the game theory model sections.) The update step of

the estimation uses a 2D polar observation model to represent the position of a detected

cluster,
{

φk = tan−1(yk/xk)

γk =
√

x2
k + y2

k

(2)

where φk and γk are, respectively, the bearing and the distance of the cluster’s centroid

with respect to the sensor. More details can be found in [3,47].

Figures 4 to 6 show the filtering process for pedestrian tracks. Like all detection and

tracking methods, the system sometimes produces false positives and false negatives.

To remove false positives, tracks were filtered to exclude those including any locations
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outside the plus-maze area, as shown in Fig. 5. Due to occasional false positives with

tracks, and false negatives missing tracks, filtering resulted in a collection of 14 games,

from 6 different pairs of players, having good and complete tracks for both players

together, that are used in the rest of the analysis.

Fig. 4. Unfiltered tracks Fig. 5. Filtered tracks Fig. 6. Tracks assigned to players

3.3 Sequential chicken model

In sequential chicken, two agents called Y and X are driving straight towards each other

at right angles as in Fig. 1, such that they will collide unless one of them yields to the

other. The sequential chicken model operates on discrete space as in Fig. 7; discrete

times (‘turns’) during which the agents can adjust their discrete speeds, simultaneously

selecting between speeds of either 1 square per turn or 2 squares per turn, at each turn.

Both agents want to pass the intersection as soon as possible to avoid travel delays,

but if they collide, they are both bigger losers as they both receive a negative utility

Ucrash . Otherwise if the players pass the intersection, each receives a time delay penalty

−TUtime , where T is the time from the start of the game and Utime represents the value

of saving one turn of travel time. The model assumes that the two players choose their

actions (speeds) aY ,aX ∈ {1,2} simultaneously, then implement them simultaneously,

at each of several discrete-time turns. There is no lateral motion (positioning within the

lanes of the roads) or communication between the agents other than via their visible po-

sitions. The game is symmetric, as both players are assumed to know that they have the

same utility functions (Ucrash ,Utime ), hence they both have the same optimal strategies.

These optimal strategies are derivable from game theory together with meta-strategy

convergence, via recursion [18]. Sequential chicken can be viewed as a sequence of

one-shot sub-games, whose payoffs are the expected values of new games resulting

from the actions, and are solvable by standard game theory.
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Fig. 7. Sequential Chicken Game

Discretised locations of the players can be represented by (y,x, t) at discretised turn

t and their discretised actions aY ,aX ∈ {1,2} for speed selection. Similar to the ap-

proach used in [10], discretisations are obtained from the continuous data by quantiz-

ing continuous position into about 0.1 m locations every 0.09 s turn, by averaging over

all locations during that interval; and quantizing actions into SLOW or FAST between

each pair of quantised locations according to whether the location change is greater or

lower than a 1 m/s threshold.

The new state at turn t +1 is given by (y+aY ,x+aX , t +1). Define vy,x,t = (vY
y,x,t ,v

X
y,x,t)

as the value (expected utility, assuming all players play optimally) of the game for state

(y,x, t). As in standard game theory the value of each 2× 2 payoff matrix can then be

written as,

vy,x,t = v(

[

v(y−1,x−1, t +1) v(y−1,x−2, t +1)
v(y−2,x−1, t +1) v(y−2,x−2, t +1)

]

), (3)

which can be solved using dynamic programming assuming meta-strategy convergence

equilibrium selection. Under some approximations based on the temporal gauge invari-

ance described in [18], we may remove the dependencies on the time t in our imple-

mentation so that only the locations (y,x) are required in computation of vy,x and optimal

strategy selection.

In the sequential chicken model, if the two players play optimally, then there must

exist a non-zero probability for a collision to occur. Intuitively, if we consider an AV

to be one player that always yields, it will make no progress as the other player will

always take advantage over it, hence there must be some threats of collision [18].

3.4 Gaussian process parameter posterior analysis

We use Gaussian processes regression [45] to fit the posterior belief over the behavioural

parameters of interest, θ = (Ucrash ,Utime) from the observed data, D. Under the sequen-

tial chicken model, M, these are,

P(θ |M,D) =
P(D|θ ,M)P(θ |M)

∑θ ′ P(D|θ
′,M)P(θ ′|M)

. (4)
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We assume a flat prior over θ so that,

P(θ |M,D) ∝ P(D|θ ,M), (5)

which is the data likelihood, given by,

P(D|θ ,M) = ∏
game

∏
turn

P(d
game,turn

Y |y,x,θ ,M′)P(d
game,turn

X |y,x,θ ,M′), (6)

where d
game,turn

player are the observed action choices, and y and x are the observed player lo-

cations at each turn of each game. Here M′ is a noisy version of the optimal sequential

chicken model M, which plays actions from M with probability (1− s) and maximum

entropy random actions (0.5 probability of each speed) with probability s. This mod-

ification is necessary to allow the model to fit data where human players have made

deviations from optimal strategies which would otherwise occur in the data with prob-

ability zero. Real humans are unlikely to be perfectly optimal at anytime as they may

make mistakes of perception and decision-making. This is a common method to weaken

psychological models to allow non-zero probabilities for such mistakes if present.

For a given value of θ , we may compute the optimal strategy for the game by dy-

namic programming as in Algorithm 1. Optimal strategies are in general probabilistic,

and prescribe the P(d
game,turn

Y |y,x,θ ,M),P(d
game,turn

X |y,x,θ ,M) terms to compute the

above data likelihood. We then use a Gaussian process with a Radial Basis Function

(RBF) kernel to smooth the likelihood function over all values of θ beyond a sample

whose values are computed explicitly. In practice, this is performed in the log domain to

avoid numerical computation problems with small probabilities. The resulting Gaussian

process is then read as the (un-normalized, log) posterior belief over the behavioural pa-

rameters θ = {Utime ,Ucrash} of interest.

Algorithm 1 Optimal solution computation

for Ucrash in range(Ucrashmin
, Ucrashmax

) do

2: for Utime in range(Utimemin
, Utimemax

) do

S← strategy matrix(NY ×NX×2) for P(player X chooses speed 2|y,x)

4: loglik = 0

for each game in data do

6: for each turn in game do

loglik = ∏
game

∏
turn

(1− s)P(d
game,turn
Y |y,x,θ ,M)P(d

game,turn
X |y,x,θ ,M)+ s(

1

2
)

8: end for

end for

10: Store loglik(Ucrash, Utime)

end for

12: end for

maxloglik← max of loglik(Ucrash, Utime)
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4 Results

After applying Gaussian process regression and optimising s to maximise the likelihood

at the Maximum A Posteriori (MAP) point of θ , the posterior distribution over θ =
{Ucrash ,Utime} is shown in Fig. 8. The MAP estimate of the parameters is then around

Ucrash = −220, Utime = 465, at s = 0.11. The −44 : 93 ≃ 1 : 2 ratio in the utilities

means that assuming the noisy model M′ the subjects value about a 1/2 turn time delay

equally to a crash, and the s value means that the subjects make mistakes from optimal

behaviour in 11% of actions. Significance of the results can be seen by inspection of the

thin standard deviation widths of 1D slices through the 2D posterior as in Fig. 9. We

can only see a small deviation when Ucrash is too small or too large.

Fig. 8. Gaussian process log-posterior over behavioural parameters.
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Fig. 9. Slice through the Gaussian process showing standard deviation log-posterior confidence.

The behavioural parameter (θ ≃− 1
2
) shows that participants were having higher prefer-

ences for time saving rather than for collision avoidance, which is similar to the findings

in [9] [11]. As in these studies, the high ratio may be explained by the artificial labo-

ratory nature of the environment: subjects want to win the game and know there is no

significant negative utility for collisions as the laboratory environment is designed to

be safe. The method is now well developed enough to move to the real world for fu-

ture studies, and we expect to see lower ratios there, where the cost of collisions with

vehicles and other pedestrians is much higher.

5 Discussion

The results shown are from a small sample of data and are intended as a proof-of-

concept of the proposed method. This shows how a full stack of real-time detection and

tracking, and game theoretic modelling can work together to understand and predict

continuous pedestrian interactions with another road user. The data used here is from

pedestrian–pedestrian interactions and is only from a small sample of 14 interactions.

Previous work performed this on highly artificial discrete time, turn taking human ex-

periments. This is the first time that a method now exists for more natural continuous

data as would be found in real-world AV interactions. The key concept in moving from

discrete to continuous data is that we were able to discretise both players actions into

just two discrete categories, SLOW and FAST, which enables the sequential chicken

model to then operate with minimal changes.

Future work could now make use of this method, firstly to collect and analysis

much larger experimental pedestrian–pedestrian data sets; and secondly to deploy a

model trailed from this data as a controller in a real AV. It is possible that when trained

on larger data sets, the model might show different preferences for different types of

pedestrians. For example, real-time detectable features such as age [36], gender [48],

body pose [12], activity recognition [14], gait [44], and style of dress might give in-

formation about pedestrian intention and behavioural preferences, which if found from

training data could then be used to refine real-time AVs pedestrian predictions and ac-

tive speed controls. This method could then possibly enable new AV online-learning

algorithms that adapt to the environment or passenger’s preferences.
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