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Abstract Insect navigation arises from the coordinated action of concurrent guidance systems10

but the neural mechanisms through which each functions, and are then coordinated, remains11

unknown. We propose that insects require distinct strategies to retrace familiar routes12

(route-following) and directly return from novel to familiar terrain (homing) using different aspects13

of frequency encoded views that are processed in different neural pathways. We also demonstrate14

how the Central Complex and Mushroom Bodies regions of the insect brain may work in tandem to15

coordinate the directional output of different guidance cues through a contextually switched16

ring-attractor inspired by neural recordings. The resultant unified model of insect navigation17

reproduces behavioural data from a series of cue conflict experiments in realistic animal18

environments and offers testable hypotheses of where and how insects process visual cues, utilise19

the different information that they provide and coordinate their outputs to achieve the adaptive20

behaviours observed in the wild.21

22

Introduction23

Central-place foraging insects navigate using a ’toolkit’ of independent guidance systems (Wehner,24

2009) of which the most fundamental are path integration (PI), whereby foragers track the distance25

and direction to their nest by integrating the series of directions and distances travelled (for reviews26

see Heinze et al. (2018); Collett (2019)), and visual memory (VM), whereby foragers derive a homing27

signal by comparing the difference between current and stored views (for reviews see Zeil (2012);28

Collett et al. (2013)). Neurophysiological and computational modelling studies advocate the central29

complex neuropil (CX) as the PI centre (Heinze and Homberg, 2007; Seelig and Jayaraman, 2015;30

Stone et al., 2017), whereas the mushroom body neuropils (MB) appear well suited to assessing31

visual valence as needed for VM (Heisenberg, 2003; Ardin et al., 2016; Müller et al., 2018). Yet,32

two key gaps in our understanding remain. Firstly, although current VM models based on the33

MB architecture can replicate route following (RF) behaviours whereby insects visually recognise34

the direction previously travelled at the same position (Ardin et al., 2016;Müller et al., 2018), they35

cannot account for visual homing (VH) behaviours whereby insects return directly to their familiar36

surroundings from novel locations following a displacement (e.g. after being blown off course by37

a gust of wind) (Wystrach et al., 2012). Secondly, despite increasing neuroanatomical evidence38

suggesting that premotor regions of the CX coordinate navigation behaviour (Pfeiffer and Homberg,39

2014; Heinze and Pfeiffer, 2018; Honkanen et al., 2019), a theoretical hypothesis explaining how40
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this is achieved by the neural circuitry has yet to be developed. In this work we present a unified41

neural navigation model that extends the core guidance modules from two (PI and VM) to three (PI,42

RF, and VH) and by integrating their outputs optimally using a biologically realistic ring attractor43

network in the CX produces realistic homing behaviours.44

The foremost challenge in realising this goal is to ensure that the core guidance subsystems45

provide sufficient directional information across conditions. Contemporary VM models based on46

the MBs can replicate realistic RF behaviours in complex visual environments (ant environments:47

Kodzhabashev and Mangan (2015); Ardin et al. (2016), bee environments: Müller et al. (2018))48

but do not generalise to visual homing scenarios whereby the animal must return directly to49

familiar terrain from novel locations (ants: Narendra (2007), bees: Cartwright and Collett (1982),50

wasps: Stürzl et al. (2016)). Storing multiple nest-facing views before foraging, inspired by observed51

learning walks in ants (Müller and Wehner, 2010; Fleischmann et al., 2016) and flights in bees and52

wasps (Zeil et al., 1996; Zeil and Fleischmann, 2019), provides a potential solution (Graham et al.,53

2010;Wystrach et al., 2013), but simulation studies have found this approach to be brittle due to54

high probabilities of aligning with the wrong memory causing catastrophic errors (Dewar et al.,55

2014). Moreover, ants released perpendicularly to their familiar route do not generally align with56

their familiar visual direction as predicted by the above algorithms (Wystrach et al., 2012), but57

instead move directly back towards the route (Fukushi and Wehner, 2004; Kohler and Wehner,58

2005; Narendra, 2007; Mangan and Webb, 2012; Wystrach et al., 2012), which would require a59

multi-stage mental alignment of views for current models. New computational hypothesis are thus60

required that can guide insects directly back to their route (often moving perpendicularly to the61

habitual path), but also allow for the route direction to be recovered (now aligned with the habitual62

path) upon arrival at familiar surroundings (see Figure 1A “Zero Vector”).63

With the necessary elemental guidance systems defined, a unifying model must then convert64

the various directional recommendations into a single motor command appropriate to the context65

(Cruse and Wehner, 2011; Hoinville et al., 2012; Collett et al., 2013;Webb, 2019). Behavioural stud-66

ies show that when in unfamiliar visual surroundings (“Off-Route”) insects combine the outputs of67

their PI and VH systems (Collett, 1996; Bregy et al., 2008; Collett, 2012) relative to their respective68

certainties consistent with optimal integration theory (Legge et al., 2014; Wystrach et al., 2015)69

(Figure 1A “Full Vector”). Upon encountering their familiar route, insects readily recognise their70

surroundings, recover their previous bearing and retrace their familiar path home (Harrison et al.,71

1989; Kohler and Wehner, 2005;Wystrach et al., 2011;Mangan and Webb, 2012). Thus, the naviga-72

tion coordination model must posses two capabilities: (a) output a directional signal consistent73

with the optimal integration of PI and VH when Off-Route (b) switch from Off-Route (PI and VH) to74

On-Route (RF) strategies when familiar terrain is encountered. Mathematical models have been75

developed that reproduce aspects of cue integration in specific scenarios (Cruse and Wehner, 2011;76

Hoinville and Wehner, 2018), but to date no neurobiologically constrained network revealing how77

insects might realise these capabilities has been developed.78

To address these questions a functional modelling approach is followed that extends the current79

base model described by Webb (2019) to (a) account for the ability of ants to home from novel80

locations back to the familiar route before retracing their familiar path the rest of the journey home,81

and (b) propose a neurally-based model of the central complex neuropil that integrates compet-82

ing cues optimally and generates a simple steering command that can drive behaviour directly.83

Performance is bench-marked by direct comparison to behavioural data reported by Wystrach84

et al. (2012) (showing different navigation behaviours on and off the route), Legge et al. (2014);85

Wystrach et al. (2015) (demonstrating optimal integration of PI and VM), and through qualitative86

comparison to extended homing paths where insects switch between strategies according to the87

context (Narendra, 2007). Biological realism is enforced by constraining models to the known88

anatomy of specific brain areas, but where no data exists an exploratory approach is taken to89

investigate the mechanisms that insects may exploit. Figure 1A depicts the adaptive behaviours90

observed in animals that we wish to replicate accompanied by a functional overview of our unified91
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model of insect navigation (Figure 1B) mapped to specific neural sites (Figure 1C).92

Results93

Mushroom bodies as drivers of rotational invariant visual homing94

For ants to return directly to their familiar route after a sideways displacement (Figure 1A ”Zero Vec-95

tor”) without continuous mental or physical realignment they require access to rotational invariant96

visual cues. Stone et al. (2018) recently demonstrated that binary images of panoramic skylines97

converted into their frequency components can provide such a rotationally-invariant encoding of98

scenes in a compact form (see Image processing for an introduction to frequency transformations99

of images). Moreover, they demonstrated that the difference between the rotationally invariant100

features (the amplitudes of the frequency coefficients) between two locations increases monotoni-101

cally with distance producing an error surface reminiscent of the image difference surfaces reported102

by Zeil et al. (2003) which can guide an agent back to familiar terrain. Here we investigate whether103

the MB neuropils shown capable of assessing the visual valence of learned rotationally-varying104

panoramic skylines for RF (Ardin et al., 2016; Müller et al., 2018), might instead assess the visual105

valence of rotationally-invariant properties of views sampled along a familiar route supporting106

visual homing.107

To this end, the intensity sensitive input neurons of Ardin et al. (2016)’s MB model are replaced108

with input neurons encoding rotational invariant amplitudes (Figure 2A left, blue panel). The109

network is trained along an 11m curved route in a simulated world that mimics the training regime110

of ants in Wystrach et al. (2012) (see Methods and Materials and Reproduce visual navigation111

behaviour for details on simulated world, image processing, model architecture and training and112

test regime). After training, the firing rate of the MB output neuron (MBON) when placed at locations113

across the environment at random orientations reveals a gradient that increases monotonically114

with distance from the familiar route area, providing a homing signal sufficient for VH independent115

of the animal’s orientation (Figure 2C).116

Motor output is then generated by connecting the MBON to a steering network recently located117

in the fan-shaped body (FB/CBU) of the CX that functions by minimising the difference between118

the animal’s current and desired headings (Stone et al., 2017). Stone et al. (2017)’s key insight119

was that the anatomically observed shifts of activity in the columnar neurons that encode the120

desired heading in essence simulate 45° turns left and right, and thus by comparing the summed121

differences between the activity profiles of these predicted headings to the current heading then122

the appropriate turning command can be computed (see Figure 2B). We adopt this circuit as the123

basis for computing steering commands for all strategies as suggested by Honkanen et al. (2019).124

In the proposed VH model the current heading input to the steering circuit uses the same125

celestial global compass used in Stone et al. (2017)’s PI model. Insects track their orientation126

through head-direction cells (Seelig and Jayaraman, 2015) whose concurrent firing pattern forms127

a single bump of activity that shifts around the ring as the animal turns (measured through local128

visual (Green et al., 2017; Turner-Evans et al., 2017), global visual (Heinze and Homberg, 2007)129

and proprioceptive (Seelig and Jayaraman, 2015) cues). Neuroanatomical data (Kim et al., 2017;130

Turner-Evans et al., 2019; Pisokas et al., 2019) supports theoretical predictions (Cope et al., 2017;131

Kakaria and de Bivort, 2017) that the head-direction system of insects follows a ring attractor (RA)132

connectivity pattern characterised by local excitatory interconnections between direction selective133

neurons and global inhibition. In this work, the global compass RA network is not modelled directly134

but rather we simulate its sinusoidal activity profile in a ring of I-TB1 (locusts and Δ7 of flies) neurons135

found in the protocerebral bridge (PCB/PB) (Figure 2A green ring) (see Current headings).136

A desired heading is then generated by copying the current activity pattern of the global compass137

neurons to a new neural ring which we speculate could reside in either a distinct subset of I-TB1138

neurons (Beetz et al., 2015) or in the FB. Crucially, the copied activity profile also undergoes a139

leftward shift proportional to any increase in visual novelty (a similar shifting mechanisms has been140
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Figure 1. Overview of the unified navigation model and it’s homing capabilities. (A) The homing

behaviours to be produced by the model when displaced either from the nest and having no remaining PI home

vector (zero vector), or from the nest with a full home vector (full vector). Distinct elemental behaviours are

distinguished by coloured path segments, and stripped bands indicate periods where behavioural data

suggests that multiple strategies are combined. Note that this colour coding of behaviour is maintained

throughout the remaining figures to help the reader map function to brain region. (B) The proposed conceptual

model of the insect navigation toolkit from sensory input to motor output. Three elemental guidance systems

are modelled in this paper: path integration (PI), visual homing (VH) and route following (RF). Their outputs must

then be coordinated in an optimal manner appropriate to the context before finally outputting steering

command. (C) The unified navigation model maps the elemental guidance systems to distinct processing

pathways: RF: OL -> AOTU -> BU -> CX; VH: OL -> MB -> SMP -> CX; PI: OL -> AOTU -> BU -> CX. The outputs are

then optimally integrated in the proposed ring attractor networks of the FB in CX to generate a single motor

steering command. Connections are shown only for the left brain hemisphere for ease of visualisation but in

practice are mirrored on both hemispheres. Hypothesised or assumed pathways are indicated by dashed lines

whereas neuroanatomically supported pathways are shown by solid lines (a convention maintained throughout

all figures).

OL: optic lobe, AOTU: anterior optic tubercle, CX : central complex, PB: protocerebrum bridge, FB: fan-shape body

(or CBU: central body upper), EB: ellipsoid body (or CBL: central body lower), MB: mushroom body, SMP: superior

medial protocerebrum, BU: bulb.

Images of the brain regions are adapted from the insect brain database https://www.insectbraindb.org.
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Figure 2. Visual Homing in the Insect Brain. (A) Neural model of visual homing. Rotational-invariant amplitudes are input to the MB calyx

which are then projected to the Kenyon cells (KCs) before convergence onto the MB output neuron (MBON) which seeks to memorise the

presented data via reinforcement learning based plasticity (for more details see Visual homing) (MB circuit: left panels). SMP neurons measure

positive increases in visual novelty (through input from the MBON) which causes a shift between the current heading (green cells) and desired

headings (red cells) in the rings of the CX (SMP pathway between MB and CX: centre panel; CX circuit: right panels). The CX-based steering circuit

then computes the relevant turning angle. Example activity profiles are shown for an increase in visual novelty, causing a shift in desired heading

and a command to change direction. Each model component in all figures is labelled with a shaded star to indicate what aspects are new versus

those incorporated from previous models (see legend in upper left). (B) Schematic of the steering circuit function. First the summed differences

between the impact of 45 °left and right turns on the desired heading and the current heading are computed. By comparing the difference

between the resultant activity profiles allows an appropriate steering command to be generated. (C) Schematic of the visual homing model. When

visual novelty drops (t − 2 to t − 1) the desired heading is an unshifted copy of the current heading so the current path is maintained but when the

visual novelty increases (t − 1 to t) the desired heading is shifted from the current heading. (D) The firing rate of the MBON sampled across

locations at random orientations is depicted by the heat-map showing a clear gradient leading back to the route. The grey curve shows the habitual

route along which ants were trained. RP (release point) indicates the position where real ants inWystrach et al. (2012) were released after capture

at the nest (thus zero-vector) and from which simulations were started. The ability of the VH model to generate realistic homing data is shown by

the initial paths of simulated ants which closely match those of real ants (see inserted polar plot showing the mean direction and 95% confidential

interval), and also the extended exampled path shown (red line). Note that once the agent arrives in the vicinity of the route, it appears to meander

due the flattening of visual novelty gradient and the lack of directional information.

Figure 2–source data 1. The frequency information for the locations with random orientations across the world.

Figure 2–source data 2. The visual homing results of the model
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proposed for the head-direction system (Green et al., 2017; Turner-Evans et al., 2017)) which we141

propose is measured by neurons in the superior medial protocerebrum (SMP) (Aso et al., 2014;142

Plath et al., 2017) (see Figure 2A centre and activity of red rings). The result is a mechanism143

that recommends changing direction when the agent moves away from familiar terrain (visual144

novelty increases) but recommends little change to the current heading when the visual novelty is145

decreasing (see Figure 2C for a schematic of the VH mechanism). We note that there is a distinction146

between a ring network which describes a group of neurons whose pattern of activity forms a147

circular representation regardless of actual physical arrangement and RA networks which follow148

a specific connectivity pattern (all modelled RAs labelled in figures). Taken together the model149

iteratively refines it’s orientation to descend the visual novelty gradient and thus recover familiar150

terrain (see Figure 2A for full model).151

Figure 2D demonstrates that the proposed network accurately replicates both the directed152

initial paths as inWystrach et al. (2012) (see the inserted black arrow), and extended homing paths153

as in Narendra (2007) observed in ants displaced to novel locations perpendicular to their familiar154

routes. We note that upon encountering the route the model is unable to distinguish the direction155

in which to travel and thus meanders back and forth along the familiarity valley, unlike real ants,156

demonstrating the need for additional route recognition and recovery capabilities.157

Optimally integrating visual homing and path integration158

We have demonstrated how ants could use visual cues to return to the route in the absence of159

PI but in most natural scenarios (e.g. displacement by a gust of wind) ants will retain a home160

vector readout offering an alternative, and often conflicting, guidance cue to that provided by VH.161

In such scenarios desert ants strike a comprise by integrating their PI and VH outputs in a manner162

consistent with optimal integration theory by weighting VH relative to the familiarity of the current163

view (Legge et al., 2014) and PI relative to the home vector length (a proxy for directional certainty)164

(Wystrach et al., 2015).165

Various ring-like structures of the CX represent directional cues as bumps of activity with the166

peak defining the specific target direction, and the spread providing a mechanism to encode cue167

certainty as required for optimal integration (for an example see increased spread of HD cell activity168

when only proprioceptive cues are present (Seelig and Jayaraman, 2015)). Besides their excellent169

properties to encode the animal’s heading ring attractors also provide a biologically realistic means170

to optimally weight cues represented in this format (Touretzky, 2005; Sun et al., 2018) without the171

need for dedicated memory circuits to store means and uncertainties of each cue.172

Thus we introduce a pair of integrating ring-attractor networks to the CX model (Figure 3A grey173

neural rings: RA_L and RA_R) that take as input the desired headings from the above proposed174

VH model (red neural rings: VH_L and VH_R) and Stone et al. (2017)’s PI model (orange neural175

rings: PI_L and PI_R) and output combined Off Route desired heading signals that are sent to the176

steering circuits (blue neural rings: CPU_L and CPU_R). Stone et al. (2017) mapped the home vector177

computation to a population of neurons (CPU4) owing to their dual inputs from direction selective178

compass neurons (I_TB1) and motion sensitive speed neurons (TN2) as well as their recurrent179

connectivity patterns facilitating accumulation of activity as the animal moves in a given direction.180

Wystrach et al. (2015) showed that the certainty of PI automatically scales with the home-vector181

length owing to the accumulating effect of the memory neurons which correlates with directional182

uncertainty, and thus the output PI network is directly input to the ring attractor circuits. In our183

implementation the VH input has a fixed height and width profile and influences the integration184

through tuning neurons (TUN) (see the plotted activation function in Figure 3B and Optimal cue185

integration) that we suggest reside in the SMP and modulate the PI input to the integration network.186

Altering the weighting in this manner rather than by scaling the VH input independently allows VH187

to dominate the integrated output at sites with high visual familiarity even in the presence of a188

large home vector without having large stored activity. We note however, that both approaches189

remain feasible and further neuroanatomical data is required to clarify which, if either, mechanism190
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Figure 3. Optimal cue integration in the CX. (A) Proposed model for optimally integrating PI and VH guidance systems. In each hemisphere, ring

attractors (RAs) (grey neural rings) (speculatively located in FB/CBU) receive the corresponding inputs from PI (orange neural rings) and VH (red

neural rings) with the outputs sent to the corresponding steering circuits (blue neural rings). Integration is weighted by the visual novelty tracking

tuning neuron (TUN) whose activation function is shown in the leftmost panel. (B) Examples of optimal integration of PI and VH headings for two PI

states with the peak stable state (grey dotted activity profile in the integration neurons) shifting towards VH as the home vector length recedes. (C)

Replication of optimal integration studies ofWystrach et al. (2015) and Legge et al. (2014). Simulated ants are captured at various points (0.1m,

1m, 3m and 7m) along their familiar route (grey curve) and released at release point 1 (RP1) thus with the same visual certainty but with different PI

certainties as inWystrach et al. (2015) (see thick orange arrow). The left polar plot shows the initial headings of simulated ants increasingly weight

their PI system (270°) in favour of their VH system (135°) as the home vector length increases and PI directional uncertainty drops. Simulated ants

are also transferred from a single point 1m along their familiar route to ever distant release points (RP1, RP2, RP3) thus with the same PI certainty

but increasingly visual uncertainty as in Legge et al. (2014) (see thick red arrow). The right polar plot shows the initial headings of simulated ants

increasingly weight PI (270°) over VH (135°) as visual certainty drops. (see Reproduce the optimal cue integration behaviour for details) (D) Example

homing paths of the independent and combined guidance systems displaced from the familiar route (grey) to a fictive release point (RP)

Figure 3–Figure supplement 1. The extended homing paths and the PImemory in the simulations

Figure 3–source data 1. The results of tuning PI uncertainty.

Figure 3–source data 2. The results of tuning VH uncertainty.

Figure 3–source data 3. The extended homing path of PI, VH and combined PI and VH.

is employed by insects.191
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Figure 3C shows the initial headings produced by the model which replicates the trends reported192

in cue-conflict experiments by Legge et al. (2014) andWystrach et al. (2015) when the uncertainty193

of PI and VH cues were altered independently. Example extended paths of independent PI and194

VH models and the ring-attractor-based combined PI and VH model are plotted in Figure 3D with195

the combined model showing the most ant-like behaviour (Kohler and Wehner, 2005;Mangan and196

Webb, 2012) by initially following predominantly the home-vector direction before switching to197

visual homing when the home-vector length drops leading the simulated ant back to familiar terrain.198

Note that the PI-only and PI+VH models are drawn back towards their fictive nest sites indicated199

by their home vectors which if left to run would likely result in emergent search-like patterns as200

in Stone et al. (2017). Moreover, upon encountering the route the VH-based models (VH-only and201

PI+VH) are unable to distinguish the direction in which to travel and hence again (see meander202

around the valley of familiarity Figure 2D and Figure 3D) further demonstrating a need for a route203

recovery mechanism.204

Route following in the insect brain205

The model described above can guide insects back to their familiar route area, but lacks the means206

to recover the route direction upon arrival as observed in homing insects. This is not surprisingly207

as VH relies upon translationally-varying but rotational-invariant information whereas RF requires208

rotationally-varying cues. Thus we introduce a new elemental guidance system that makes use of209

the rotationally-varying phase coefficients of the frequency information derived from the panoramic210

skyline which tracks the orientation of specific features of the visual surroundings (see Methods211

and Materials). Here we ask whether by associating the rotationally invariant amplitudes (shown212

useful for place recognition) with the rotationally-varying phases experienced at those locations,213

insects might recover the familiar route direction.214

Neuroanatomical data with which to constrain a model remains sparse and therefore a standard215

artificial neural network (ANN) architecture is used to investigate the utility of phase-based route216

recovery with biological plausibility discussed in more detail below. A 3-layer ANN was trained to217

associate the same 81 rotational-invariant amplitudes as used in the VH model with the rotational218

varying phase value of single frequency coefficient experienced when travelling along the habitual219

route which we encode in an 8 neuron-ring (see Figure 4A and Route Following for detailed model220

description). Thus, when the route is revisited the network should output the orientation that the221

phase converged upon when at the same location previously, which we note is not necessarily222

aligned with the actual heading of the animal (e.g. it may track the orientation to vertical bar (Seelig223

and Jayaraman, 2015)). Realignment is possible using the same steering mechanism as described224

above but which seeks to reduce the offset between the current phase readout (e.g. a local compass225

locked onto visual features of the animals surroundings), and the recalled phase readout from the226

ANN.227

We speculate that the most likely neural pathways for the new desired and current headings are228

from Optic Lobe via Anterior Optic Tubercle (AOTU) and Bulb (BU) to EB (CBL) of the CX (Homberg229

et al., 2003; Omoto et al., 2017) (see Figure 4A) with the desired heading terminating in the EB230

whereas the current heading continues to the PB forming a local compass that sits beside the global231

compass used by PI and VH systems. This hypothesis is further supported by the recently identified232

parallel pathways from OL via AOTU to the CX in Drosophila (Timaeus et al., 2020). That’s to say that,233

firstly, there are two parallel pathways forming two compass systems- the global (here based on234

celestial cues) and the local (based on terrestrial cues) compasses modelled by the activation of I-TB1235

and II-TB1 neurons respectively. Four classes of CL1 neurons (or E-PG and P-EG neurons) Heinze236

and Homberg (2009); Xu et al. (2020) and three classes of independent TB1 neurons Beetz et al.237

(2015) have been identified that provide potential sites for the parallel recurrent loops encoding238

independent local and global compasses. Secondly, the desired heading, which is the recalled239

phase of a specific view, is generated through the neural plasticity from AOTU to BU and BU to EB,240

which is line with recent evidence of associative learning between the R-neurons transmitting visual241

8 of 30



Manuscript submitted to eLife

information from BU to EB and the compass neurons (CL1a or E-PG neurons) that receive input242

from EB (Kim et al., 2019; Fisher et al., 2019). This kind of learning endows the animal with the243

ability to flexibly adapt their local compass and also desired navigational orientation according to244

the changing visual surroundings. Hanesch et al. (1989) reported a direct pathway from EB to FB245

neurons which we model to allow comparison of the local compass activity (II-TB1) with the desired246

heading. However, we note that this connectivity has not been replicated in recent studies Heinze247

and Homberg (2008) and thus further investigation of potential pathways is required.248

The RF model accurately recovers the initial route heading in a similar manner to real ants249

returned to the start of their familiar route (Wystrach et al., 2012) (Figure 4B, insert), and then250

follows the remaining route in its entirety back to the nest again reflecting ant data (Kohler and251

Wehner, 2005;Mangan and Webb, 2012) (Figure 4B). The quiver plots displayed in the background252

of Figure 4B show the preferred homing direction output by the ANN when rotated on the spot253

across locations in the environment. The noise in the results are due to errors in the tracking254

performance (see examples Figure 4B right) yet as these errors are in largely confined to the255

magnitude, the steering circuit still drives the ant along the route. We note that this effect is256

primarily a function of the specific frequency transformation algorithm used which we borrow257

from computer graphics to investigate the utility of frequency encoding of visual information. The258

biological realism of such transforms and their potential implementation in the insect vision system259

are addressed in the Discussion. The displaced routes also highlight the danger of employing260

solely RF which often shadows rather than converges with the route when displaced sideways,261

further demonstrating the necessity for integration with the Off-Route strategies that promote262

route convergence.263

Route recovery through context-dependent modulation of guidance systems264

Homing insects readily recognise familiar route surroundings, recover their bearing, and retrace265

their habitual path home, irrespective of the status of other guidance system such as PI. Replicating266

such context-dependent behavioural switching under realistic conditions is the final task for the267

proposed model. The visual novelty measured by the MBON provides an ideal signal for context268

switching with low output when close to the route when RF should dominate versus high output269

further away from the route when PI and VH should be engaged (see Figure 2D). Also the fact that270

Off-route strategies (PI and VH) compute their turning angles with reference to the global compass271

whereas the On-route RF strategy is driven with reference to a local compass provides a means to272

modulate their inputs to the steering circuit independently. This is realised through a non-linear273

weighting of the On and Off-route strategies which we propose acts through the same SMP pathway274

as the VH model (see the SN1 and SN2 neurons in Figure 5A) (see Context-dependent switch for275

neuron details and Figure 7 for a force-directed graph representation of the final unified model).276

The activity of the proposed switching circuit and the paths that it generates in simulated zero277

vector and full vector displacement trials are shown in Figure 5 B & C respectively. In the full vector278

trial (Figure 5B (upper), Figure 5C (solid line)) as visual novelty is initially high (see high TUN activity279

until step 78) SN2 is activated which enables Off-Route strategies (PI and VH) while SN1 (always the280

inverse of SN2) is deactivated which disables On-Route strategies. Note that it is the integration of PI281

and VH that generates the direct path back to the route area in the FV trial: PI recommends moving282

at a 45° bearing but VH prevents ascension of the visual novelty gradient that this would cause with283

the compromise being a bearing closer to 90° i.e. toward the route. As the route is approached284

the visual novelty decreases (again see TUN activity), until at step 78 SN2 falls below threshold285

and deactivates the Off-Route strategies while conversely SN1 activates and engages On-Route286

strategies. After some initial flip-flopping while the agents converges on the route (steps 78-85) RF287

becomes dominant and drives the agent back to the nest via the familiar path. In the zero vector288

trial (Figure 5B (lower), (Figure 5B (dashed line)) Off-route strategies (here only VH) largely dominate289

(some false positive route recognition (e.g step 60)) until the route is recovered (step 93), at which290

point the same flip-flopping during route convergence occurs (steps 93-96) followed by RF alone291
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Figure 4. Phase-based route following. (A) Neural model. The visual pathway from the optic lobe via AOTU and Bulb to EB of the CX is modelled

by a fully connected artificial neural network (ANN) with one hidden layer. The input layer receives the amplitudes of the frequency encoded views

(as for the MB network) and the output layer is an 8-neuron ring whose population encoding represents the desired heading against to which the

agent should align. (B) Behaviours. Blue and red arrows in the inserted polar plot (top left) display the mean directions and 95% confidential

intervals of the initial headings of real (Wystrach et al., 2012) and simulated ants released at the start of the route (−7,−7) respectively. Dark blue

curves show the routes followed by the model when released at 5 locations close to the start of the learned path. The overlaid fan-plots indicate

the circular statistics (the mean direction and 95% confidential interval) of the homing directions recommended by the model when sampled

across heading directions (20 samples at 18°intervals). Data for entire rotations are shown on the right for specific locations with the upper plot,

sampled at (1.5,−3), demonstrating accurate phase-based tracking of orientation, whereas the lower plot sampled at (−2.5,−3.5) shows poor

tracking performance and hence produces a wide fan-plot.

Figure 4–source data 1. The frequency tracking performance across the world.

Figure 4–source data 2. The RF model results of the agents released on route.

Figure 4–source data 3. The RF model results of the agents released aside from the route.
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Figure 5. Unified model realising the full array of coordinated navigational behaviours. (A)

Context-dependent switching is realised using two switching neurons (SN1, SN2) that have mutually exclusive

firing states (one active while the other is in active) allowing coordination between On and Off-Route strategies

driven by the instantaneous visual novelty output by the MB. Connectivity and activation functions of the SMP

neurons are shown in the left side of panel. (B) Activation history of the SN1, SN2 and TUN (to demonstrate the

instantaneous visual novelty readout of the MB) neurons during the simulated displacement trials. (C) Paths

generated by the unified model under control of the context-dependent switch circuit during simulated FV (solid

line) and ZV (dashed line) displacement trials.

Figure 5–source data 1. The navigation results of the whole model.

which returns the agent to the nest via the familiar path. It should be noted that the data presented292

utilised different activation functions of the TUN neuron that weights PI and VH (see Table 2 for293

parameter settings across trials and Discussion for insights into model limitations and potential294

extensions), yet the results presented nevertheless provide a proof-of-principle demonstration that295

the proposed unified navigation model can fulfil all of the criteria defined for replication of key296

adaptive behaviour observed in insects (Figure 1A).297
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Discussion298

This work addresses two gaps in the current understanding of insect navigation: what are the core299

visual guidance systems required by the insect navigational toolkit? And how are they coordinated300

by the insect brain?301

We propose that the insect navigation toolkit (Wehner, 2009;Webb, 2019) should be extended to302

include independent visual homing (VH) and route following (RF) systems (see Figure 1B for updated303

Insect Navigation Toolkit). We show how VH and RF can be realised using frequency-encoding of304

panoramic skylines to separate information into rotationally-invariant amplitudes for VH and305

rotationally-varying phases for RF. The current model utilises frequency encoding schema from the306

computer graphics but behavioural studies support the use of spatial frequency by bees (Horridge,307

1997; Lehrer, 1999), with neurons in the lobula of dragonflies (O’Carroll, 1993) and locusts (James308

and Osorio, 1996) found to have receptive fields akin to basis functions, providing a mechanism by309

which to extract the frequency information necessary for the local compass system. Our model310

allows for this information extraction process to happen at multiple stages ahead of its usage in311

the central learning sites such as the MBs opening the possibility for its application in either the312

optic lobes or subsequent pathways through regions such as the AOTU. Further, neurophysiological313

data is required to pinpoint both the mechanisms and sites of this data processing in insects.314

Similarly, following Stone et al. (2017) the global compass signal directly mimics the firing pattern315

of compass neurons in the CX without reference to sensory input but Gkanias et al. (2019) recently316

presented a plausible neural model of the celestial compass processing pipeline that could be317

easily integrated into the current model to fill this gap. Follow-on neuroanatomically constrained318

modelling of the optic lobes presents the most obvious extension of this work allowing the neural319

pathway from sensory input to motor output signal to be mapped in detail. Conversely, modelling320

the conversion of direction signals into behaviour via motor generating mechanisms such as central321

pattern generators (see (Steinbeck et al., 2020)) will then allow closure of the sensory-motor loop.322

Visual homing is modelled on neural circuits found along the OL-MB-SMP pathway (Ehmer and323

Gronenberg, 2002; Gronenberg and López-Riquelme, 2004) before terminating in the CX steering324

circuit (Stone et al., 2017) and shown capable of producing realistic homing paths. In this schema325

the MBs do not measure rotationally-varying sensory valence as recently used to replicate RF (Ardin326

et al., 2016;Müller et al., 2018), but rather the spatially varying (but rotationally-invariant) sensory327

valence more suited to gradient descent strategies such as visual homing (Zeil et al., 2003; Stone328

et al., 2018) and other taxis behaviours (Wystrach et al., 2016). This is inline with the hypothesis329

forwarded by Collett and Collett (2018) that suggest that the MBs output "whether" the current330

sensory stimulus is positive or negative and the CX then adapts the animal heading, the "whither",331

accordingly.332

Route following is shown possible by learned associations between the amplitudes (i.e. the333

place) and the phase (the orientation) experienced along a route, allowing realignment when later at334

a proximal location. This kind of neural plasticity based correlation between the visual surroundings335

and the orientations fits with data recently observed in fruit flies (Kim et al., 2019; Fisher et al.,336

2019). These studies provide the neural explanation for the animal’s ability to make flexible use of337

visual information to navigate while the proposed model gives a detailed implementation of such338

ability in the context of insect’s route following schema. Neurophysiological evidence suggests that339

the layered visual pathway from OL via AOTU and BU to the EB of the CX (Barth and Heisenberg,340

1997; Homberg et al., 2003;Omoto et al., 2017) with its suggested neural plasticity properties (Barth341

and Heisenberg, 1997; Yilmaz et al., 2019) provides a possible neural pathway but further analysis342

is needed to identify the circuit structures that might underpin the generation of RF desired heading.343

In addition to the desired heading, the current heading of RF is derived from the local compass344

system anchored to animal’s immediate visual surroundings. This independent compass system345

may be realised parallel to the global compass system in an similar but independent circuit (Heinze346

and Homberg, 2009; Beetz et al., 2015; Xu et al., 2020). Our model therefore hypothesises that347
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insects possess different compass systems based on varied sensory information and further that348

insects possess the capability (via CX-based RAs) to coordinate their influence optimally according349

to the current context. Since the global compass, the local compass and the desired heading of RF350

share the same visual pathway (OL->AOTU->BU->CX), distinct input and output patterns along this351

pathway may be found by future neuroanatomical studies. In addition, in the proposed model, the352

activation of current heading and desired heading of RF overlap in the EB, and therefore separation353

of activation profiles representing each output (e.g. following methods in Seelig and Jayaraman354

(2015)) presents another meaningful topic for future neurophysiological research.355

Closed-loop behavioural studies during which the spatial frequency information of views is356

altered (similar to Paulk et al. (2015)) coincident with imaging of key brain areas (Seelig and Jayara-357

man, 2013, 2015) offers a means to investigate which neural structures make use of what visual358

information. Complimentary behavioural experiments could verify the distinct VH and RF systems359

by selectively blocking the proposed neural pathways with impacts on behaviour predicted by360

Figure 2C and Figure 4B respectively. Ofstad et al. (2011) report that visual homing abilities are lost361

for fruit flies with a blocked EB of the CX but not MB, which is predicted by our model if animals have362

learned target-facing views to which they can later align using their RF guidance system. Analysis of363

animal’s orientation during learning is thus vital to unpacking precisely how the above results arise.364

With the elemental guidance strategies defined, we propose that their outputs are coordinated365

through the combined action of the MBs and CX. Specifically, we demonstrate that a pair of366

ring attractor networks that have similar connectivity patterns of the CX-based head-direction367

system (Kim et al., 2017; Turner-Evans et al., 2019; Pisokas et al., 2019), are sufficient for optimally368

weighting multiple directional cues from the same frame of reference (e.g. VH and PI). The use of a369

pair of integrating RAs is inspired by the column structure of the FB which has 16 neural columns370

divided into two groups of 8 neural columns that each represent the entire 360°space. The optimal371

integration of PI and VH using a ring attractor closely matches the networks theorised to govern372

optimal directional integration in mammals (Jeffery et al., 2016) and supports hypothesis of their373

conserved use across animals (Sun et al., 2018). Optimality is secured either through adapting the374

shape of the activity profile of the input as is the case for PI which naturally scales with distance,375

or by using a standardised input activity profile with cross-inhibition of competing cues as is the376

case for VH in the model. The later schema avoids the need for ever increasing neural activity to377

maintain relevance.378

To replicate the suite of navigational behaviours described in Figure 1 our network includes379

three independent ring attractor networks: the global compass head direction system (Pisokas380

et al., 2019); the local compass head direction system (Seelig and Jayaraman, 2015; Kim et al.,381

2017; Turner-Evans et al., 2019); and an Off-route integration system (modelled here). We would382

speculate that it is likely that central place foraging insects also possess a similar integration network383

for "On-Route" cues (not modelled here) bringing the total number of RAs to four. The utility of384

RAs for head-direction tracking arises from their properties in converging activity to a signal bump385

that can easily be shifted by sensory input and is maintained in the absence of stimulation. In386

addition, RAs also possess the beneficial property that they spontaneously weight competing387

sensory information stored as bumps of activity in an optimal manner. Thus, there are excellent388

computational reasons for insects to invest in such neural structures. Yet, it should be clear that the389

model proposed here represents a proof-of-concept demonstrating that the underlying network390

architectures already mapped to the CX (directional cues encoded as bumps of activity (Seelig and391

Jayaraman, 2015; Heinze and Homberg, 2007); various lateral shifting mechanisms (Stone et al.,392

2017; Green et al., 2017; Turner-Evans et al., 2017); RAs (Kim et al., 2017; Turner-Evans et al., 2019;393

Pisokas et al., 2019)) are sufficient to generate adaptive navigation but further studies are required394

to critique and refine the biological realism of this hypothesis.395

While this assemblage recreates optimal integration of strategies that share a compass system,396

it does not easily extend to integration of directional cues from other frames of reference (e.g. VH397

and PI reference the global compass versus RF that references a local compass). Indeed as the398
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CX steering network seeks to minimise the difference between a current and a desired heading,399

calibrating input signals from different frames of reference would require a similar calibration of400

their respective compass systems. Rather, the proposed model incorporates a context-dependent401

non-linear switching mechanism driven by the output of the MB that alternates between strategies:402

global compass based PI and VH are triggered when the surroundings are unfamiliar, but when403

in familiar surroundings engage local compass based RF. In summary, the adaptive behaviour404

demonstrated is the result of distinct guidance systems that converge in the CX, with their relative405

weighting defined by the output of the MB. This distributed architecture is reminiscent of mecha-406

nisms found in the visual learning of honeybees (Plath et al., 2017), and supports the hypothesis407

that the CX is the navigation coordinator of insects (Heinze, 2017; Honkanen et al., 2019) but shows408

how the MB acts as a mediator allowing the CX to generate optimal behaviour according to the409

context.410

The resultant unified model of insect navigation Figure 1B and C represents a proof-of-principle411

framework as to how insects might co-ordinate core navigational behaviours (PI, VH and RF) under412

standard field manipulations Figure 1A. Neuroanatomical data has been drawn from across insect413

classes (see Table 1) to ensure neural realism where possible with performance compared to ant414

navigation behaviour in a single simulated desert ant habitat. The framework can be easily extended415

to new navigation behaviours observed in other insects from idiothetic PI (Kim and Dickinson, 2017)416

to straight line following (El Jundi et al., 2016) to migrations (Reppert et al., 2016) as well as more417

nuanced strategies that flexibly use directional cues from different sensory modalities (Wystrach418

et al., 2013; Schwarz et al., 2017; Dacke et al., 2019). A priority of future works should be the419

investigation of the differences and commonalities in sensory systems, neural structures and420

ecology of different insect navigators and how they impact behaviour allowing for extension and421

refinement of the framework for different animals. Complementary stress-testing of models across422

different environments in both simulation and robotic studies are also required to ensure that423

model performance generalises across species and habitats and to provide guidance to researchers424

seeking the sensory, processing and learning circuits underpinning these abilities.425

Methods and Materials426

All source code related to this publication is available for download at https://github.com/XuelongSun/427

InsectNavigationToolkitModelling. All simulations and network models are implemented by Python428

3.5 and make use of external libraries-numpy,matplotlib, scipy, PIL and cv2.429

Simulated 3D world430

The environment used in this study is that provided by Stone et al. (2018) which is itself adapted431

from Baddeley et al. (2012) (see Figure 6C). It is a virtual ant-like world consisting of randomly432

generated bushes, trees and tussocks based on triangular patches (for more details see Baddeley433

et al. (2012)). Therefore, the data of this simulated world is stored in a matrix with the size of434

NP × 3 × 3, defining the three dimensional coordinates (x,y,z) of the three vertices of NP (number of435

patches) triangle patches. Agent movement was constrained to a 20m × 20m training and test area436

allowing free movement without the requirement of an additional obstacle avoidance mechanism.437

Image reconstruction438

The agent’s visual input at location (x, y) with the heading direction �ℎ is simulated from a point439

1cm above from the ground plane with field of view 360◦ wide by 90◦ high (centred on the horizon).440

This panoramic image (300 × 104) is then wrapped onto a sky-centred disk as required by the441

Zernike Moments transformation algorithm used with the size of 208(104 × 2) × 208 ready for image442

processing (see Figure 6D upper).443
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Figure 6. Information provided by frequency encoding in cartoon and simulated ant environments. (A):

A cartoon depiction of a panoramic skyline, it’s decomposition into trigonometric functions, and reconstruction

through the summation of low frequency coefficients reflecting standard image compression techniques. (B):

Following a 90° rotation there is no change in the amplitudes of the frequency coefficients but the phases of

the frequency coefficients track the change in orientation providing a rotational invariant signal useful for visual

homing and rotationally-varying signal useful for route following respectively. (C): The simulated 3D world used

for all experiments. The pink area (size: 20m × 20m) is used for model training and testing zone for models

allowing obstacle-free movement. (D): The frequency encoding (Zernike Moment’s amplitudes and phase) of

the views sampled from the same location but with different headings (P1 and P2 in (C), with 90◦ heading

difference) in the simulated world. The first 81 amplitudes are identical while the phases have the difference of

about 90◦.

Figure 6–source data 1. The matrix of simulated 3D world.

Image processing444

Frequency encoding conceptual overview445

Image compression algorithms such as JPEG encoding (Hudson et al., 2018) have long utilised the446

fact that a complex signal can be decomposed into a series of trigonometric functions that oscillate447

at different frequencies. The original signal can then be reconstructed by summing all (for prefect448

reconstruction) or some (for approximate reconstruction) of the base trigonometric functions.449

Thus, compression algorithms seek a balance between using the fewest trigonometric functions to450

encode the scene (for example, by omitting high frequencies that humans struggle to perceive), and451

the accuracy of the reconstructed signal (often given as an option when converting to JPEG format).452
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Figure 6A provides a cartoon of the frequency decomposition process for a panoramic view.453

When such transforms are applied to fully panoramic images, or skylines, benefits beyond454

compression arise. Specifically, discrete transformation algorithms used to extract the frequency455

information generate a series of information triplets to describe the original function: frequency456

coefficients describe the frequency of the trigonometric function with associated amplitudes457

and phase values defining the vertical height versus the mean and the lateral position of the458

waveform respectively (Figure 6A). For panoramic views, regardless of the rotational angle of the459

image capturing device (eye or camera) the entire signal will always be visible and hence the460

amplitudes of the frequency coefficients do not alter with rotation (Figure 6B). This information461

has been used for successful place recognition in a series of robot studies (Pajdla and Hlaváč, 1999;462

Menegatti et al., 2004; Stone et al., 2016). Most recently (Stone et al., 2018) demonstrated that463

the difference between the amplitudes of the frequency coefficients recorded at two locations464

increases monotonically with distance producing an error surface suitable for visual homing. This465

feature of the frequency encoding underlies the visual homing results described in Mushroom466

bodies as drivers of rotational invariant visual homing.467

In addition, as the phase of each coefficient describes how to align the signal this will naturally468

track any rotation in the panoramic view (Figure 6B) providing a means to realign with previous469

headings. The phase components of panoramic images have been utilised previously to derive470

the home direction in a visual homing task (Stürzl and Mallot, 2006). This feature of the frequency471

encoding underlies the route following results described in Route following in the insect brain.472

The image processing field has created an array of algorithms for deriving the frequency473

content of continuous signals (Jiang et al., 1996; Gonzalez et al., 2004). To allow exploration of the474

usefulness of frequency information, and how it could be used by the known neural structures,475

we adopt the same Zernike Moment algorithm used by Stone et al. (2018), but the reader should476

be clear that there are many alternate and more biologically plausible processes by which insects477

could derive similar information. It is beyond the scope of this proof of concept study to define478

precisely how this process might happen in insects but future research possibilities are outlined in479

the Discussion.480

Zernike Moments encoding481

Zernike Moments (ZM) are defined as the projection of a function onto orthogonal basis polynomials482

called Zernike polynomials (Teague, 1980; Khotanzad and Hong, 1990). This set of functions are483

defined on the unit circle with polar coordinates (�, �) shown as:484

Vnm(�, �) = Rnm(�)e
jm� (1)

Where n ∈ N+ is the order and m is the repetition meeting the condition: m ∈ N , |m| ≤ n and485

n − |m| is even to ensure the rotational invariant property is met. Rnm(�) is the radial polynomial486

defined as:487

Rnm(�) =

n−|m|∕2∑
s=0

(−1)s
(n − s)!

s!(
n+|m|

2
− s)!(

n−|m|
2

− s)!
�n−2s (2)

For a continuous image function f (x, y), the ZM coefficient can be calculated by:488

Znm(�) =
n + 1

� ∫ ∫
x2+y2≤1

f (x, y)V ∗
nm
(�, �)dxdy (3)

For a digital image, summations can replace the integrals to give the ZM:489

Znm(�) =
n + 1

�

∑
x

∑
y

f (x, y)V ∗
nm
(�, �), x2 + y2 ≤ 1. (4)

ZM are extracted from the simulated insect views in wrapped format (Figure 6D) whose centre490

is taken to be the origin of the polar coordinates such that all valid pixels lie within the unit circle.491
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For a given image I (P1 in Figure 6D) and the rotated version of this image I�r (P2 in Figure 6D), the492

amplitude A = |Z| and phase Φ = ∠Z of ZM coefficients of these two images will satisfy:493

{
|Z�r

nm| = |Znme
−jm�r | = |Znm| i.e., A

�r
nm = Anm

Φ
�r
nm = Φnm − m�r

(5)

From which we can see that the amplitude of the ZM coefficient remains the same while the phase494

of ZM carries the information regarding the rotation (see Figure 6A and D). This property is the495

cornerstone of the visual navigation model where the amplitudes encode the features of the view496

while the phase defines the orientation.497

Amplitudes for ZM orders ranging from n = 0 to n = 16 were selected as they appeared to cover498

the majority of information within the image. From Equation 1 we know that Vn,m = Vn,−m, so we499

limited m ∈ N+ to reduce the computational cost, which sets the total number of ZM coefficients500

(NZM ) to (16 ÷ 2 + 1)2 = 81 which was input to the visual navigation networks. For training the ANN501

network for RF, in Equation 5, if we set m = 1, such that Φ
�r

n,1
= Φn,1 − �r which means that all ZM502

coefficients will provide the same information when the image is rotated. Further, the difference503

between the phase of ZM coefficients of the current view with those of the memorised view, will504

inherently provide the angle with which to turn to realign oneself, i.e. :505

Φcurrent

7,1
− Φ

memory

7,1
= �ℎ − �m (6)

Where the order n of this ZM is selected to be n = 7manually by comparing the performance506

with different orders in this specific virtual environment, �ℎ is the current heading of the agent while507

�m is the memorised heading direction (desired heading direction).508

Neural networks509

We use the simple firing rate to model the neurons in the proposed networks, where the output510

firing rate C is a sigmoid function of the input I if there is no special note. In the following511

descriptions and formulas, a subscript is used to represent the layers or name of the neuron while512

the superscript is used to represent the value at a specific time or with a specific index.513

Current headings514

In the proposed model, there are two independent compass systems based on the global and the515

local cues respectively so named global and local compass correspondingly. These two compass516

systems have similar neural pathways from OL via AOTU and BU to the CX but ended distinct517

groupings of TB1 neurons: I-TB1 and II-TB1 in the PB.518

Global compass519

The global compass neural network applied in this study is the same as that of Stone et al. (2017),520

which has three layers of neurons: TL neurons, CL1 neurons and I-TB1 neurons. The 16 TL neurons521

respond to simulated polarised light input and are directly modelled as:522

ITL = cos(�TL − �ℎ) (7)

Where �TL ∈ {0, �∕4, �∕2, 3�∕4, �, 5�∕4, 3�∕2, 7�∕4} is the angular preference of the 16 TL-neurons.523

The 16 CL1-neurons are inhibited by TL-neuron activity which invert the polarisation response:524

ICL1 = 1.0 − CTL (8)

The 8 I-TB1 neurons act as a ring attractor creating a sinusoidal encoding of the current heading.525

Each I-TB1 neuron receives excitation from the CL1 neuron sharing the same directional preference526

and inhibition from other I-TB1 neurons via mutual connections:527

W
ij

I−TB1
=

cos(�i
I−TB1

− �
j

I−TB1
) − 1

2
(9)
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I
t,j

I−TB1
= (1 − c)C

t,j

CL1
+ c

8∑
i=1

W
ij

I−TB1
C

t−1,j

I−TB1
(10)

Where c is a balance factor to modify the strength of the inhibition and the CL1 excitation. Finally,528

the population coding C
t,j

I−TB1
, j = 0, 1, ...7 represents the heading of global compass of the agent at529

time t.530

Local compass531

The local compass is derived from the terrestrial cues through a similar visual pathway as the global532

compass and also ends in a ring attractor network. As for the global compass, the local compass533

heading is directly modelled by the population encoding of II-TB1 neurons:534

C i

II−TB1
= cos(Φ7,1 − �i

II−TB1
) i = 0, 1, ...7 (11)

Where �II−TB1 is the angular preference of the II-TB1 neurons and Φ7,1 is the phase of ZM. Therefore,535

the firing rate of CII−TB1 encodes the heading of the local compass.536

Visual homing537

The neural network of visual homing is an associative network constrained by the anatomical538

structure of the mushroom body (MB) of the insects. In contrast to Ardin et al. (2016) where a539

spiking neural network is implemented to model the MB, we apply a simple version of MB where540

the average firing rates of neurons are used.541

The visual projection neurons (vPNs) directly receive the amplitudes of the ZM coefficients as542

their firing rates:543

C i

vPN
= Ai, i = 0, 1, 2...NvPN (12)

Where NvPN is the number of the vPN neurons which is the same as the total number of ZM544

amplitudes applied and in this study NvPN = NZM = 81. The Ai denotes the itℎ amplitudes of ZM545

coefficients.546

The vPNs project into Kenyon cells (KC) through randomly generated binary connectionsWvPN2KC ,547

which result in the scenario wherein one KC receives 10 randomly selected vPNs’ activation:548

I
j

KC
=

NvPN∑
i=0

W
ji

vPN2KC
C i

vPN
(13)

Where I
j

KC
denotes the total input current of jtℎ KC from the vPN and the KCs are modelled as549

binary neurons with the same threshold Tℎrkc :550

CKC =

{
0 if IKC ≤ TℎrKC

1 if IKC > TℎrKC

(14)

The MBON neuron sums all the activation of Kenyon cells via plastic connectionsWKC2EN :551

CMBON =

NKC∑
i=0

W i

KC2MBON
C i

KC
(15)

An anti-Hebbian learning rule is applied for the plasticity ofWKC2MBON in a simple way:552

W t

KC2MBON
= W t−1

KC2MBON
− �KC2MBON if C i

KC
≥ W i

KC2MBON
(16)

Where �KC2MBON is the learning rate. The learning process will happen only when the reward signal553

is turned on. The activation of EN CMBON represents the familiarity of the current view and the554

change of the CMBON is defined as:555

ΔCMBON = C t

MBON
− C t−1

MBON
(17)
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ΔCMBON is used to track the gradient of the familiarity to guide the agent to the more familiar556

locations by shifting the I-TB1 neurons’ activation CI−TB1.557

C i

V H
= C

j

I−TB1
, j =

{
i + offset if i + offset ≤ 7

i + offset − 7 otℎerwise
i = 0, 1, ...7 (18)

The relationship between the ΔCMBON and the offset is shown as following:558

offset =

{
0 if ΔCMBON < 0

min(⌊kV HΔCMBON⌋, 4) otℎerwise
(19)

Path integration559

The PI model implemented is that published by Stone et al. (2017). The core functionality arises560

from the CPU4 neurons that integrate the activation of TN2 neurons that encode the speed of561

the agent and the inverted activation of direction-sensitive I-TB1 neurons. The result is that the562

population of CPU4 neurons iteratively track the distance and orientation to the nest (a home563

vector) in a format akin to a series of directionally-locked odometers.564

The firing rate of the CPU4 neurons are updated by:565

I t

CPU4
= I t−1

CPU4
+ r(C t

TN2
− C t

I−TB1
− k) (20)

Where the rate of the memory accumulation r = 0.0025; the memory loss k = 0.1; the initial memory566

charge of CPU4 neurons I0
CPU4

= 0.1.567

The input of the TN2 neurons encoding the speed is calculated by:568

{
ITN2L

= [sin(�ℎ + �TN2) cos(�ℎ + �TN2)]v

ITN2R
= [sin(�ℎ − �TN2) cos(�ℎ − �TN2)]v

(21)

where v is the velocity (see Equation 39) of the agent and �TN2 is the preference angle of the TN2569

neurons. In this study �TN2 = �∕4. The activation function applied to TN2 neurons is the rectified570

linear function given by:571

CTN2 = max(0, 2ITN2) (22)

As CPU4 neurons integrate the speed and direction of the agent, the desired heading of PI can be572

represented by the population encoding of these neurons, thus:573

CPI = CCPU4 (23)

Route Following574

The route following model is based on a simple artificial neural network (ANN) with just one hidden575

layer. The input layer directly takes the amplitudes of the ZM coefficients as the activation in the576

same way as that of visual projection neurons in MB network. This is a fully connected neural577

network with the sigmoid activation function, so the forward propagation is ruled by:578

⎧
⎪⎨⎪⎩

Z i
l
=
∑N

i=0
W jiY

j

l−1

Y l
i
= sigmoid(Z i

l
) =

1

1+e
−Zi

l

i = 0, 1, ...7 and l = 0, 1, 2 (24)

Where Z i
l
and Y i

l
denote the input and output of the itℎ neuron in ltℎ layer, thus the input is the579

same as the MB network Z i

0
= Ai, i = 0, 1, ...NZM and the output of the ANN is consequently the580

population coding of the RF desired heading, i.e.:581

C i

RF
= Y 2

i
i = 0, 1, ...7 (25)

For a fast and efficient implementation, the learning method applied here is back propagation582

with gradient descend. Training data is derived from the amplitudes and the population encoded583

phases of the ZM coefficients of the images reconstructed along a habitual route. As shown in584
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Equation 11 the II-TB1 neurons encode the heading of local compass, therefore, the training pair585

for the RF network can be defined as {A,CII−TB1}. After training, this network will correlate the586

desired ZM phase with the specific ZM amplitudes, and when RF is running, the output of this587

neural network CRF will represent the desired heading with respect to the current heading of the588

local compass represented by the population encoding of II-TB1 neurons.589

Coordination of elemental guidance strategies590

The coordination of the three main navigation strategies PI, VH and RF are realised in distinct591

stages. Firstly, Off-route strategies (PI and VH) are optimally integrated by weighing according to592

the certainly of each before a context-dependent switch activates either On-route (RF) or Off-route593

strategies depending on the current visual novelty.594

Optimal cue integration595

A ring attractor neural network is used to integrate the cues from the VH and PI guidance systems.596

As reported in Hoinville and Wehner (2018) summation of directional cues represented in vector597

format leads to optimal angular cue integration which is the same case as real insects. Sun et al.598

(2018) gave a biology plausible way to do this kind of computation based on a simple ring attractor599

neural network. There are two populations of neurons in this network, the first is the integration600

neurons (IN) which is the output population of the network. Constrained by the number of columns601

in each hemisphere of the insects CX, we set the number of the IN to be 8, and its firing rate is602

updated by:603

�
dCIN

dt
= −CIN + g

(
n∑

j=1

W
ji

E2E
C

j

IN
+Xi

1
+Xi

2
+WI2ECUI

)
i = 0, 1, ...7. (26)

WhereW ji

E2E
is the recurrent connections from jtℎ neuron to itℎ neuron, g(x) is the activation function604

that provides the non-linear property of the neuron:605

g(c) = max(0, � + c) (27)

Where � denotes the offset of the function.606

In Equation 26, X1 and X2 generally denote the cues that should be integrated. In this study,607

X1 and X2 represent the desired heading of path integration (CPI ) and visual homing (CV H ). The608

desired heading of PI is also tuned by the tuning neuron (TUN) in SMP which is stimulated by the609

MBON of MB (see Figure 3A) and its activation function is defined by a rectified linear function, i.e.:610

CTUN = min(kTUNCEN , 1) (28)

Where kTUN is the scaling factor.611

Thus, the X1 and X2 for this ring attractor network can be calculated by:612

{
Xi

1
= CTUNC

i
P I

Xi

2
= C i

V H

i = 0, 1, ...7 (29)

The second population of the ring attractor is called the uniform inhibition (UI) neuronsmodelled613

by:614

�
dCUI

dt
= −u + g

(
WI2ICUI +WE2I

n∑
k=1

Ck

IN

)
i = 0, 1, ...7. (30)

After arriving at a stable state, the firing rate of the integration neurons in this ring attractor615

network provides the population encoding of the optimal integrated output COI :616

COI = CCN (31)
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Context-dependent switch617

The model generates two current/desired headings pairs: the current heading of global compass618

decoded by CI−TB1 with the desired heading optimally integrated by the integration neurons of the619

ring attractor network COI and the current heading of local compass decoded by II-TB1 neurons620

CII−TB2 with the desired heading decoded by the output of the RF network CRF . These two pairs of621

signal both are connected to the steering circuit (see Figure 5A and Steering circuit) but are turned622

on/off by two switching neurons (SN1 and SN2) in the SMP (Figure 5A). SN2 neuron receives the623

activation from MBON neuron and is modelled as:624

SN2 =

{
0 if CMBON < TℎrSN2

1 otℎerwise
(32)

While SN1 will always fire unless SN2 fires:625

SN1 =

{
0 if CSN2 = 1

1 otℎerwise
(33)

Therefore, the context-depend switch is achieved according to the current visual novelty represented626

by the activation of MBON.627

Steering circuit628

The steering neurons, i.e., CPU1 neurons (C i

CPU1
, i = 0, 1, 2...15) receive excitatory input from the de-629

sired heading (C i
DH

, i = 0, 1, 2...15) and inhibitory input from the current heading (CCH , i = 0, 1, 2...15)630

to generate the turning signal:631

C i

ST
= C i

DH
− C i

CH
i = 0, 1, ...15 (34)

The turning angle is determined by the difference of the activation summations between left632

(i = 0, 1, 2...7) and right (i = 8, 9, 10...15) set of CPU1 neurons:633

�M = kmotor(

7∑
i=0

CCPU1 −

15∑
i=8

CCPU1) (35)

which corresponds to the difference of the length of the subtracted left and right vectors in634

Figure 2A. In addition, as it is illustrated in Figure 2A, another key part of steering circuit is the635

left/right shifted desired heading, in this paper, this is achieved by the offset connectivity pattern636

(WDH2CPU1L andWDH2CPU1R) from the desired heading to the steering neurons (Heinze and Homberg,637

2008; Stone et al., 2017):638 {
C0−7

DH
= CSN1CRFWDH2CPU1L + CSN2COIWDH2CPU1L

C8−15
DH

= CSN1CRFWDH2CPU1R + CSN2COIWDH2CPU1R

(36)

Where theWDH2CPU1L andWDH2CPU1R are:639

WDH2CPU1L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

WDH2CPU1R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

which defines the connection pattern realising the left/right shifting of the desired headings640

used throughout our model ((Figure 2A, Figure 3A, Figure 4A, Figure 5A and Figure 7A).641

The current heading input to the steering circuit is also switched between global and local642

compass input via the SN1 and SN2 neuron:643 {
C0−7

CH
= CSN1CII−TB1 + CSN2CI−TB1

C8−15
CH

= CSN1CII−TB1 + CSN2CI−TB1

(38)
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Detailed neural connectivity of unified model644

Figure 7A shows a complete picture of the proposed model. Specifically, it highlights the final645

coordination system showing that CX computing the optimal navigation output with the modulation646

from the MB and SMP. In addition, offset connectivity pattern from the desired heading to the647

steering circuit that underpin the left/right shifting is clearly shown. Figure 7BC shows the network648

generating the desired heading of RF and VH respectively.649

In addition, Table 1 provides details of all modelled neural circuits with their function and naming650

conventions with links to biological evidence for these neural circuits where it exists and the animal651

that they were observed in.652

Simulations653

Equation 35 gives the turning angle of the agent, thus the instantaneous "velocity" (v) at every step654

can be computed by:655

v
t = SL[cos �

t

M
, sin �t

M
] (39)

Where SL is the step length with the unit of centimetres. Note that we haven’t defined the time656

accuracy for every step of the simulations, thus the unit of the velocity in this implementation is657

cm∕step rather than cm∕s. Then the position of agent P t+1 in the Cartesian coordinates for the is658

updated by:659

P
t+1 = P

t + v
t (40)

The main parameter settings for all the simulations in this paper can be found in Table 2.660

Reproduce visual navigation behaviour661

Inspired by the benchmark study of real ants inWystrach et al. (2012), we test our model of VH and662

RF by reproducing the homing behaviours in that study. This is achieved by constructing a habitual663

route with a similar shape (arc or banana shape) in our simulated 3D world. The position P R−Arc664

and heading �R−Arc along that route is manually generated by:665

{
�i
R−Arc

=
�

2
− i

�

2NM

P
i

R−Arc
= [−R sin �i

R−Arc
,−7 + R cos �i

R−Arc
]

i = 0, 1..NM (41)

Where the R = 7m is the radius of the arc and NM = 20 in this case is the number of the sampling666

points where view images are reconstructed along the route. The reconstructed views then be667

wrapped and decomposed by ZM into amplitudes and phases are used to train the ANN network668

of RF and MB network of VH.669

Visual homing670

After training, 12 agents with different initial headings that were evenly distributed in [0, 360) were671

released at the sideways release point (P = [0,−7]) for the simulation of VH (Figure 2D). The672

headings of the agents at radius 2.5m from the release point (manually selected to ensure that the673

all the agents have completed any large initial loop) are taken as the initial headings.674

Route following675

After training, 2 agents with 0◦ and 180◦ are released at the different release points (P = [−9,−7],676

[−8,−7], [−7,−7], [−6,−7], [−5,−7]) for the simulation of RF (see Figure 4B) to generate the homing677

path. And then, we release 12 agents on the route (P = [−7,−7]) with different initial headings678

that is evenly distributed in [0, 360) to compare the results with the real ant data inWystrach et al.679

(2012). The heading of each agent at the position that is 0.6m from the release point is taken as the680

initial heading.681
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Table 1. The details of the main neurons used in the proposed model

Name Function Num Network Brain region Neuron in Species(e.g.) Reference

I-TB1
Global compass

current heading
8

Ring

attractor

CX

TB1 in Schistocerca gregaria

and Megalopta genalis

Δ7 in Drosophila

Heinze and Homberg (2007)

Stone et al. (2017)

Franconville et al. (2018)II-TB1
Local compass

current heading
8

Ring

attractor

S I-TB1
Copy of shifted

global heading
8 Ring No data

/

VH-L
VH desired

heading left
8 Ring No data

VH-R
VH desired

heading right
8 Ring No data

PI-L
PI desired

heading left
8 Ring CPU4 in Schistocerca gregaria

and Megalopta genalis

P-F3N2v in Drosophila

Heinze and Homberg (2008)

Stone et al. (2017)

Franconville et al. (2018)PI-R
PI desired

heading right
8 Ring

RF-L
RF desired

heading left
8 Ring No data

/
RF-R

RF desired

heading right
8 Ring No data

RA-L
Cue integration

left
8

Ring

attractor
No data

RA-R
Cue integration

right
8

Ring

attractor
No data

CPU1

Comparing the

current and

desired heading

16
Steering

circuit

CPU1 in Schistocerca gregaria

and Megalopta genalis

PF-LCre in Drosophila

Heinze and Homberg (2008)

Stone et al. (2017)

Franconville et al. (2018)

vPN visual projection 81
Associative

learning
MB

MB neurons in Drosophila

Camponotus

Apis mellifera

Aso et al. (2014)

Ehmer and Gronenberg (2004)

Rybak and Menzel (1993)

KCs Kenyon cells 4000

MBON visual novelty 1

TUN
Tuning weights

from PI to RA
1 /

SMP

No data

/

SN1
Turn on/off the

RF output to CPU1
1

Switch

circuit
No data

SN2
Turn on/off the

RA output to CPU1
1

Switch

circuit
No data
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Figure 7. The detailed neural connections of the proposed model. (A): The detailed neural connections of the navigation coordination system.

(B): The neural connection of the route following network. The input layer to the hidden layer is fully connected, so does the hidden layer to the

output layer. (C): The network generating the visual homing memory. (D): The detailed neural connection of the ring attractor network for optimal

cue integration.

Reproduce the optimal cue integration behaviour682

We evaluated the cue integration model by reproducing the results ofWystrach et al. (2015) and683

Legge et al. (2014). The ants’ outbound routes inWystrach et al. (2015) is bounded by the corridor,684
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Table 2. The detailed parameters settings for the simulations

Para.
Visual

Homing

Optimal Integration

tuning PI

Optimal Integration

tuning VH

Route

Following

Whole model

ZV

Whole model

FV

TℎrKC (14) 0.04 0.04 0.04 0.04 0.04 0.04

�KC2MBON (16) 0.1 0.1 0.1 0.1 0.1 0.1

kV H (19) 2.0 2.0 2.0 / 0.5 0.5

kTUN (28) / 0.1 0.1 / 0.025 0.0125

TℎrSN2 (32) / / / / 2.0 3.0

kmotor (35) 0.125 0.125 0.125 0.125 0.375 0.375

SL (cm/step) (39) 4 4 4 4 8 8

initial heading (deg) 0∼360 0∼360 0∼360 0 / 180 90 0

so here we simulate the velocity of the agent by:685

v
t

out
= [rand(0, 2V0) − V0, V0], t = 0, 1...Tout (42)

Where the function rand(0, x) generates a random value from the uniform distribution of [0, x], thus686

the speed of x-axis will be in [−V0, V0] and will cancel each other during the forging. The speed of687

y-axis is constant so it will accumulated and be recorded by the PImodel. And V0 = 1cm∕step is the688

basic speed of the agent and Tout is the total time for outbound phase determining the length of689

the outbound route. As for the simulated homing route, we duplicate the outbound route when690

Tout = 300 but with a inverted heading direction. And then the visual navigation network was trained691

with images sampled along a simulated route (grey curve in Figure 3B).692

Tuning PI uncertainty693

The agent in this simulation was allowed to forage to different distances of 0.1m, 1m, 3m or 7m694

from the nest to accrue different PI states and directional certainties before being translated to a695

never-before-experienced test site 1.5m from the nest. (RP1 in Figure 3B). For each trial, we release696

20 agents with different initial headings that is evenly distributed in [0, 360). The headings of every697

agent at the position that is 0.6m from the start point is taken as the initial headings, and the mean698

direction and the 95% confidential intervals are calculated. As in the biological experiment, the699

angle between the directions recommended by the PI and visual navigation systems differed by700

approximately 130◦.701

As the length of the home vector increase (0.1m -> 7m) the activation of PImemory becomes702

higher (Figure Supplement 1B), and increasingly determines the output of the ring attractor inte-703

gration. Since the length of the home vector is also encoded in the activation of the PI memory704

neurons, the ring attractor can extract this information as the strength of the cue. As the visual705

familiarity is nearly the same in the vicinity of the release point, the strength of visual homing circuit706

remains constant and has more of an influence as the PI length drops.707

Tuning visual uncertainty708

The agent in this simulation was allowed to forage up to 1m from the nest to accrue its PI state and709

directional certainty before being translated to three different release points (RP1, RP2 and RP3 in710

Figure 3B). As the distance from nest increases (RP1->RP2->RP3) so does the visual uncertainty. For711

each trial, we release 12 agents with different initial headings that is evenly distributed in [0, 360).712

The headings of each agent at the position that is 0.3m from the start point is taken as the initial713

headings, and the mean direction and the 95% confidential intervals are calculated.714

Whole model715

The simulated habitual route remains the same as in the simulation of visual navigation (Reproduce716

visual navigation behaviour) as is the learning procedure. The zero- and full- vector agents are both717
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released at [−2,−7] with the heading 0◦ and 90◦ respectively. The full-vector agent’s PI memory is718

generated by letting the agent forage along the route from nest to feeder.719
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Figure 3–Figure supplement 1. The extended homing paths and the PI memory in the simu-

lations. (A) The extended homing path of 20 agents released at RP1 in Figure 3B with different

home vector length. (B) The activation of CPU4 neurons (PI memory) encoding home vectors with

different lengths from 0 to 7.0m. (C) The extended homing paths of 20 agents released at RP2 and

RP3 in Figure 3B.
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