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Pedestrian Models for Autonomous Driving

Part II: High-Level Models of Human Behaviour

Fanta Camara1,2, Nicola Bellotto2, Serhan Cosar3, Florian Weber4, Dimitris Nathanael5, Matthias Althoff6,

Jingyuan Wu7, Johannes Ruenz7, André Dietrich8, Gustav Markkula1, Anna Schieben9, Fabio Tango10,

Natasha Merat1 and Charles Fox1,2,11

Abstract—Autonomous vehicles (AVs) must share space with
pedestrians, both in carriageway cases such as cars at pedestrian
crossings and off-carriageway cases such as delivery vehicles
navigating through crowds on pedestrianized high-streets. Unlike
static obstacles, pedestrians are active agents with complex, inter-
active motions. Planning AV actions in the presence of pedestrians
thus requires modelling of their probable future behaviour as
well as detecting and tracking them. This narrative review article
is Part II of a pair, together surveying the current technology
stack involved in this process, organising recent research into
a hierarchical taxonomy ranging from low-level image detection
to high-level psychological models, from the perspective of an
AV designer. This self-contained Part II covers the higher levels
of this stack, consisting of models of pedestrian behaviour, from
prediction of individual pedestrians’ likely destinations and paths,
to game-theoretic models of interactions between pedestrians and
autonomous vehicles. This survey clearly shows that, although
there are good models for optimal walking behaviour, high-level
psychological and social modelling of pedestrian behaviour still
remains an open research question that requires many conceptual
issues to be clarified. Early work has been done on descriptive and
qualitative models of behaviour, but much work is still needed
to translate them into quantitative algorithms for practical AV
control.

Index Terms—Review, survey, pedestrians, autonomous vehi-
cles, sensing, detection, tracking, trajectory prediction, pedestrian
interaction, microscopic and macroscopic behaviour models,
game-theoretic models, signalling models, eHMI, datasets.

I. INTRODUCTION

To operate successfully in the presence of pedestrians,

autonomous vehicles require input from a huge variety of

models that have to work seamlessly together. These models

range from simple visual models for detection of pedestrians,

to predicting their future movements using psychological and

sociological methods. Part I of this two-part survey [33] cov-

ered models for sensing, detection, recognition, and tracking

of pedestrians. Part II here reviews models for pedestrian
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Fig. 1. Main structure of the review.

trajectory prediction, interaction of pedestrians, and behavioral

modelling of pedestrians, and also experimental resources to

validate all the types of models. Interacting with pedestrians

is a particular type of social intelligence. Autonomous vehi-

cles will need to utilize many different levels of models of

pedestrians, each addressing different aspects of perception

and action. Each of these models can be based on empirical

science results or obtained via machine learning. In contrast to

the models of Part I, Part II requires models from higher levels

of the technology stack, as researched by psychologists and

taught in advanced driver training programmes. For instance,

drivers often try to infer the personality of other humans,

predict their likely behaviours, and interact with them to

communicate mutual intentions [102]. Between the high level

surveyed in this Part II and the low levels of Part I, researchers

infer psychological information from perceptual information.

As an example, researchers build systems to recognize the

body language, gestures, and demographics information of

pedestrians to better predict their likely goals and behaviours.

Despite the importance of bridging the research between the

higher and lower levels, their connection is still thin, both

conceptually and in terms of actual implementations.

While prediction of likely future pedestrian trajectories is

becoming increasingly well understood, models for actively

controlling pedestrian interactions – including game-theoretic

models – are still in their infancy. Active control here means

that the vehicle’s own future actions are taken into account

in predicting how the pedestrian will respond, and vice versa.

One reason is that sufficient data to rigorously study interac-

tion between pedestrians has only recently become available
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TABLE I
PROPOSED MAPPING FROM SAE LEVELS TO PEDESTRIAN MODEL REQUIREMENTS.

SAE LEVEL DESCRIPTION MODEL REQUIREMENTS SECTION

0 No Automation. Automated system issues warnings and may mo-
mentarily intervene, but has no sustained vehicle control.

Sensing Part I [33] Sec. II

1 Hands on. The driver and the automated system share control of
the vehicle. For example, adaptive cruise control (ACC), where the
driver controls steering and the automated system controls speed.
The driver must be ready to resume full control when needed.

+Detection Part I [33] Sec. III

2 Hands off. The automated system takes full control of the vehicle
(steering and speed). The driver must monitor and be prepared to
intervene immediately. Occasional contact between hand and wheel
is often mandatory to confirm that the driver is ready to intervene.

+Recognition
+Tracking

Part I [33] Sec. IV
Part I [33] Sec. V

3 Eyes off. Driver can safely turn attention away from the driving
tasks, e.g. use a phone or watch a movie. Vehicle will handle
situations that call for an immediate response, like emergency
braking. The driver must still be prepared to intervene within some
limited time.

+Unobstructed Walking Models, Known Goals
+Behaviour Prediction, Known Goals
+Behaviour Prediction, Unknown Goals

Sec. II-A
Sec. II-B
Sec. II-C

4 Mind off. No driver attention is required for safety, except in limited
spatial areas (geofenced) or under special circumstances, like traffic
jams.Outside of these areas or circumstances, the vehicle must be
able to safely abort or transfer control to the human.

+Event/Activity Models
+Effects of Pedestrian Class on Trajectory
+Pedestrian Interaction Models
+Game Theoretic and Signalling Models

Sec. II-D
Sec. II-E
Sec. III
Sec. IV

5 Full automation. No human intervention is required at all, fully
automated driving.

+Extreme Robustness and Reliability

Note: ‘+X’ means that ‘X’ is required in addition to the requirements of the previous level.

as presented in Sec. V on experimental resources. Another

reason is that one first has to be able to reliably sense, detect,

recognize, and track pedestrians in order to gather enough data

for modelling interaction and game-theoretic models. A third

reason is that interaction and game-theoretic models are only

relevant in crowded environments, while many situations do

not require much interaction. However, crowded environments

are those that are typically most relevant for autonomous

driving. Fig. 1 shows the review structure.

To assess the maturity of the methods presented, the level

of autonomy is used, as defined by the Society of Automotive

Engineers (SAE) – the same measure has already been used in

Part I [33]. For the convenience of the reader, the five SAE lev-

els are briefly presented, ranging from simple driver assistance

tools to full self-driving [183]. Requirements for pedestrian

modelling increase with each level, with lower levels typically

requiring lower and more mature levels of pedestrian models,

such as detection and tracking, while higher levels require

models for psychological and social understanding to fully

interact with pedestrians in a human-like way [30]. Table I

gives an overview of SAE levels and requirements mappings.

While many papers propose pedestrian models at various

levels, no unifying theory has yet been produced which would

make it possible to easily transfer results across all levels

from detection to prediction. This review uncovers bottlenecks

in transferring results to facilitate closing existing research

gaps. Also, many existing studies only consider results from

empirical science or those obtained via machine learning. This

survey provides an overview considering both possibilities.

While machine learning results work particularly well for

detection and recognition, they are not yet performing so

well for prediction. Some reasons are that prediction is a

more high-dimensional problem, with dimensions including

goals, obstacles, various state variables of pedestrians, and

road geometry. A further reason is that less labelled data is

available for training prediction models. A promising future

direction is to combine empirical science results with machine

learning to better safeguard techniques using machine learning

and to avoid over-fitting.

While similar concepts apply to modelling human drivers

and their vehicles for interactions with AVs, this article

presents a review of the state of the art specifically in

modelling human pedestrians for social decision-making. In

some cases it goes beyond modelling aspects to also cover

more conceptual aspects or empirical psychological findings,

when the studies in question are judged to have very direct

applicability to mathematical models. Results from human

driving cannot be directly translated to pedestrians due to the

variability in locomotion, the differences in shape, the changes

in postures and the less-structured environment.

Pedestrians are defined as humans moving on and near

public highways including roads and pedestrianised areas, who

walk using their own locomotive power. This excludes, for

example, humans moving on cycles, wheelchairs and other

mobility devices, skates and skateboards, or those transported

by other humans. This review does not cover interactions of

traffic participants without pedestrians: a survey on trajectory

prediction of on-road vehicles is provided in [123] and a

survey on vision-based trajectory learning is provided in [146].

This Part II is organized as shown in Fig. 2. In Sec. II,

methods for predicting the movements of pedestrians are

reviewed. In particular, we consider models and methods for

unstructured environments, for prediction around obstacles, to

estimate destinations, and for the prediction of events such as
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Fig. 2. Structure of the paper.

crossing the road. These methods are enhanced in Sec. III

for groups of pedestrians interacting with each other. This

section considers the complete variety of researched models

from macroscopic models only considering flow of people

to microscopic models that consider individual pedestrians.

In many situations, interaction models do not require game

theory, because pedestrians often have different goals. How-

ever, there are also many situations, where pedestrians have

competing goals, e.g., when several pedestrians have to pass a

narrow passage. In such situations, the game theoretic models

presented in Sec. IV can be very useful. Finally, Sec. V

surveys available resources: datasets and simulators, both for

pedestrians and vehicles.

II. BEHAVIOUR MODELS WITHOUT INTERACTION

The tracking models reviewed in Part I are kinematic in

that they assume that pedestrians move in physical and/or pose

space in motion described by kinematic models. This is a very

basic assumption – human drivers typically have much more

complex understandings and hence predictions of pedestrian

behavior which they use to drive safely in their presence

[102]. These range from slightly more advanced kinematic

understandings such as edestrians tend to walk in straight lines

to models of how they are likely to interact with static objects

in their environment, and predictions of pedestrians’ likely

destinations from reading the street scene.

This section reviews such models starting from simple

unobstructed path models to uncertain destination models and

more advanced event/activity models. These models do not yet

consider interaction with other agents. Figure 3 summarizes

the classes of models presented in this section. A previous

review was proposed by Ridel et al. [172], which mainly con-

sidered pedestrian crossing intent and offered a restricted view

of the different models developed for trajectory prediction.

A. Unobstructed Walking Models with Known Goals

Given a start location and orientation, and a goal location,

humans do not typically turn towards the goal on the spot

(which would waste time) and then walk in a straight line,

but rather set off walking in their initial heading and adjust

their orientation gradually as they walk, resulting in smooth,

curved trajectories from origin to destination [72]. Models

from optimal control theory as also used in robotics [50] define

cost functions for travel time, speed, and accelerations, to

reproduce these characteristic curved trajectories. The model

in [72] instead achieves curved trajectories by modelling the

rate of turning of the pedestrian as a function of the visual

angle and distance to the goal. A simple kinematic model

Trajectory

&

Interaction

Models

Signalling Interaction Models

Game Theoretic Models

Macroscopic Models: Crowd Interactions

Microscopic Models: Group Interactions

Microscopic Models: Two Agents’ Interactions

Event/Activity Models

Behaviour Prediction with Unknown Goals

Behaviour Prediction with Known Goals

Unobstructed Walking Models with Known Goals

Fig. 3. Pedestrian behaviour prediction and interaction models.

consists in considering human locomotion as a nonholonomic

motion [161], using the unicycle model (1) where the pedes-

trian walking trajectory is represented by the trajectory of their

center of gravity, 2D coordinates (x, y) and by the angle θ,

ẋ = u1 cos θ
ẏ = u1 sin θ

θ̇ = u2

(1)

where u1 is the forward velocity and u2 is the angular velocity.

Assuming known origin and destination with inverse optimal

control, one can reliably predict human walking paths using

this model [9] [155].

B. Behaviour Prediction with Known Goals

Here, the likely behaviour of a pedestrian in a static en-

vironment is considered, given a map. Pedestrians are likely

to route around obstacles, and to stop at the edges of roads

before crossing. This section does not consider social effects

of other agents – this is presented later in Sec. III.

1) Dynamic Graphical Models: Dynamic Graphical Mod-

els (DGM) are Graphical Models of a particular topology,

containing some Markovian sequence of variables over time.

DGMs include simple Markov and Hidden Markov Models

and also more complex models. The method in [145] used

tracking in a DGM based on particle filter approximation to

infer beliefs over future pedestrian trajectories and combined

this with a GNSS (Global Navigation Satellite System) mod-

ule that provides information about the hazardous areas and

people.

2) Gaussian Process Methods: Habibi et al. [88] proposed

a context-based approach to pedestrian trajectory prediction

using Gaussian Processes [166]. This model incorporates

context features such as the pedestrian’s distance to the traffic
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light, the distance to the curbside, and the curbside orientation

in the transition learning phase to improve the prediction.

A context-based augmented semi non-negative sparse coding

(CASNSC) algorithm is used to predict pedestrian trajectories.

3) Deep Learning Methods: Bock et al. [24] developed a

Recurrent Neural Network (LSTM) model to learn pedestrian

behaviour patterns at intelligent intersections using camera

data from the onboard vehicle and the infrastructure. The

model can predict trajectories for a horizon of 5s.

4) Other Methods: Kruse et al. [121] was one of the first

attempts to statistically infer human motion patterns from data

and incorporate them in a robot motion planner for obstacle

avoidance. Garzón et al. [77] presented a pedestrian trajectory

prediction model based on two path planning algorithms that

require a set of possible goals, a map and the initial position. It

then computes similarities between the obtained and observed

trajectories into probabilities. This model is run along with a

pedestrian detector and tracker. Tamura et al. [198] proposed

a pedestrian behaviour model that is based on social forces

and takes into account the intention of the pedestrian in the

trajectory prediction by defining a set of subgoals. In [170]

the uncertain goals are used as latent variables to guide the

motion prediction of pedestrians. Their positions are predicted

by combining forward propagation of a physical model with

local a priori information (e.g., obstacles and different road

types) from the start position, and by planning the trajectory

from a goal position. The distribution over the destinations is

modeled with a particle filter.

In [209], Vasishta et al. presented a model based on the

principle of natural vision that incorporates contextual in-

formation extracted from the environment to the pedestrian

behavior and it especially tries to predict hazardous behavior

such as crossing in non authorized areas. The aforementioned

model in [72] considers goals and obstacles as distance-

dependent attractors and repellers in heading angle space. The

contributions from the goal and obstacles are linearly com-

bined, yielding a momentary rate of acceleration of heading,

which results in human-like trajectories for simultaneous goal-

seeking and obstacle avoidance. In [57], Dias et al. developed

a model simulating pedestrian behaviour around corners, using

minimum jerk theory and one-thirds power law concept. Their

model uses Monte Carlo simulation to generate pedestrian

trajectories with turning maneuvers, which were comparable

to empirical trajectories.

C. Behaviour Prediction with Unknown Goals

Many of the above models assume known probable des-

tinations for pedestrians, which enable routing to act not

just around local obstacles, but to predict entire long-term

trajectories, such as for pedestrians intending to cross the road.

However, in reality a pedestrian’s destination is rarely given.

1) Dynamic Graphical Models: Ziebart et al. [233] pre-

sented a pedestrian trajectory prediction model that takes into

account hindrance due to robot motion, as is required in off-

carriageway interactions such as last mile AVs in pedestri-

anized areas. A maximum entropy inverse optimal control

technique, introduced in [232], is used and is equivalent to

a soft-maximum version of Markov decision process (MDP)

that accounts for decision uncertainty into the trajectories

distribution. The cost function is a linear combination of the

features (e.g obstacles) in the environment. People’s motion

can be modeled by an MDP and by choosing a certain path,

there is an immediate reward. The model is conditioned on

a known destination location but the model reasons about all

possible destinations and the real destination is not known at

the prediction time. The destination is inferred in a Bayesian

way, by computing the prior distributions over destinations

using previous observed trajectories. When there is no previous

data, features (door, chair etc.) in the environment are used

to model the destination. In [113], Kitani et al. extended

[232], [233] by incorporating visual features to forecast future

activities and destinations. The observations provided by the

vision system (e.g. tracking algorithm) are assumed to be noisy

and uncertain therefore they used a hidden variable Markov de-

cision process (hMDP) where the agent knows its own states,

action and reward but observes only noisy measurements.

Negative Log-Loss (NLL) is used as a probabilistic metric and

Modified Hausdorff Distance (MHD) as a physical measure of

the distance between two trajectories. Vasquez [210] extends

the work of Ziebart [233] and Kitani [113] while reducing

computational costs.

Bennewitz et al. [18], [17] proposed a learning method for

human motion recognition using the expectation maximization

(EM) and a hidden Markov model (HMM) for clustering and

predicting human trajectories and incorporating them into a

robot path planner. In [221], Wu et al. presented a model that

uses Markov chains for pedestrian motion prediction (able to

deal with non-Gaussian distribution and several constraints).

A heuristic method is proposed to automatically infer the

positions of several potential goals on a generic semantic map.

It also incorporates policies to predict the pedestrian motion

direction and takes into account other traffic participants by

incorporating a collision checking approach. Borgers et al.

[29] presented a model that predicts pedestrians’ route choice

based on Markov chains. Similarly, Bai et al. [11] presented a

real-time approximate POMDP (Partially Observable Markov

Decision Process) controller, DESPOT, for use in high-street

type environments. The method is intention-aware in the sense

of inferring pedestrian destinations and route plans from their

observed motion over time, and accounting for the value of

this information against the value of making progress while

planning a robot’s own route around them. Karasev et al.

[110] presented a long-term prediction model that incorporates

environmental constraints with the intent modeled by a policy

in a MDP framework. The pedestrian state is estimated using

a Rao-Blackwellized filter and pedestrian intent by planning

according to a stochastic policy. This model assumes that

pedestrians behave rationally.

2) Deep Learning Methods: Hug et al. [98] proposed a

LSTM-MDL model combined with a particle filter method

for multi-modal trajectory prediction, and tested on Stanford

Drone Dataset (SDD) [176]. Rehder et al. [171] proposed

a method to infer pedestrian destinations. The trajectory

prediction is computed as a goal-oriented motion planning.

The whole system is based on deep-learning and trained



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

via inverse reinforcement learning. A general introduction on

reinforcement learning in robotics can be found in [115]. Deo

et al. [56] presented a framework for multi-modal pedestrian

trajectory forecasting in structured environments. They used

a convolutional neural network to compute both the reward

maps of the path states and the possible goal states for MDPs.

The derived policy information is then fed into a recurrent

neural network, combined with track history, to generate pos-

sible future trajectories. Goldhammer et al. [81] developed a

Multilayer Perceptron (MLP) neural network with polynomial

least square approximation to predict pedestrian trajectories

based on camera data. A long-term prediction model using

RNNs is proposed in [22].

3) Other Methods: Cosgun et al. [52] presented a person-

following service robot with a task dependent motion planner.

The robot can track and predict the future trajectory of the

person by maximizing its reward at future steps while avoiding

entering into the human’s personal space. Koschi et al. [117]

proposed a set-based method to predict all possible behaviours

of pedestrians using reachability analysis [5] for pedestrian

occupancy. Pedestrians are described as point mass with a

certain maximum velocity and maximum acceleration. A rule-

based occupancy is applied that does not allow a pedestrian to

obstruct traffic, e.g. pedestrians are given priority at crosswalks

and their trajectory is assumed to be evasive.

D. Event/Activity Models

Pedestrian event models consider stereotypical sequences

of behaviours of individual pedestrians. These may give addi-

tional information about route choice, beyond that available

from static classification of the pedestrian. For example, a

commuter, or class of commuters, who engage in similar

actions every day, such as road crossing in a certain way

then checking their phone, may reveal information about their

identity to enable re-identification1 which is in turn predictive

of their future destinations. These models look for features

predictive of route choice in static environments and do not

consider social factors.

1) Dynamic Graphical Methods: Duckworth et al. [65]

[64] developed on a mobile robot an unsupervised qualita-

tive spatio-temporal relations (QSR) model to learn motion

patterns using a graph representation and is able to predict

people’s future behaviour. Dondrup et al. [63] presented a

ROS-based real-time human perception framework for mobile

robots using laser and RGB-D data and tracking people with

a Kalman filter approach. Human trajectories are converted

into QSR (Qualitative Spatial Relations) and used for a Hid-

den Markov Model (HMM) to classify the behaviour of the

different people encountered [62]. In [187], Schneider and

Gavrila presented a comparative study on Bayesian filters

(EKF and IMM) for short-term (<2s) pedestrian trajectory

prediction, in particular they used stereo camera images to

apply these methods to four different types of behaviour:

crossing, stopping, bending in and starting.

1Identity here is distinct from personal information as defined by privacy
laws such as the EU General Data Protection Regulation (GDPR).

Body heading is used above in basic path planning models,

but head-turning events are distinct from body heading, and

are discrete events which occur when a pedestrian turns

their head to look around rather than to orient their body.

Such an activity model is used in [116] to enhance path

prediction of pedestrians while intending to cross a street. For

low-level occupancy prediction, a dynamic Bayesian network

(DFBN) is used on top of a switching linear dynamic system

(SLDS) anticipating the changes of pedestrian dynamics. As

in [116], studies [189], [190] also model head orientation by

an event/activity model to enhance the underlying prediction

approach.

2) Gaussian Process Methods: Quintero et al. [162] [163]

proposed a pedestrian path prediction method up to 1s ahead

based on balanced Gaussian Process dynamical models (B-

GPDMs) and naı̈ve Bayes classifiers. GPDM is used to

transform a sequence of timed feature vectors into a low

dimensional latent space and it can predict the next position

based on the current one. The naı̈ve Bayes classifiers are used

to classify pedestrian actions based on 3D joint positions.

3) Feature Selection Methods: Bonnin et al. [27] proposed

a generic context-based model to predict pedestrians behavior

according to features describing their local urban environment.

To learn about interactions between autonomous vehicles and

pedestrian interactions, in [39], Camara et al. collected data

from real-world pedestrian-vehicle interactions at an unsignal-

ized intersection. The actions of pedestrians and vehicles

were ordered into sequences of events comprising descriptive

features and the study revealed the most predictive features in

a crossing scenario such as the head direction, the position on

the pavement, hand gestures etc. In [38], these features were

filtered over time to predict whether the pedestrian would first

cross the intersection or not. Völz et al. [213] [214] proposed

a model that can predict whether or not a pedestrian will cross

the street with a set of features learnt from a database of

LIDAR pedestrian trajectories that are used as inputs for a

support vector machine (SVM).

E. Effects of Pedestrian Class on Trajectory

The models reviewed so far consider all pedestrians to

be alike, but human drivers interacting with pedestrians may

consider their attributes as members of stereotypical classes.

Membership of various demographic and psychological state

classes may be predictive of their behaviour. This section first

reviews findings from the psychological literature suggesting

what such classes could be usefully predictive of behaviour,

if it was possible to classify them automatically from au-

tonomous vehicles. Rasouli and Tsotsos reviewed pedestrian

demographics for interactions with autonomous vehicles and

argued that knowing such information could help AVs, cf. Sec.

III. 1. in [169]. Figure 4 presents a set of pedestrian attributes

used for behaviour modelling.

a) Effects of Age and Gender: Wilson et al. [219]

performed a large-scale study on adult pedestrian crossing

behavior and concluded that elderly people take more time

and have more head movements during the crossing. Evans

et al. [71] used the Theory of Planned Behavior (TPB) [1]
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Pedestrian Attributes
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Fig. 4. Pedestrian behaviour attributes.

via a questionnaire to predict adolescents’ intentions during a

hazardous road-crossing scenario. Their results show that older

and male adolescents had stronger intentions to cross and that

moral norms do not have any influence on crossing decisions.

Pedestrians who considered themselves as safe pedestrians

were less likely to cross and the anticipated affective reactions

were important. Bernhoft and Carstensen [21] compared the

crossing preferences and behaviour of elderly pedestrians and

cyclists (age 70+) to younger people aged 40-49. It was

found that elderly people have a preference for road facilities

that they consider to be safer such as pavements, pedestrian

crossings, signalized intersections, cycle paths. The differences

between the two groups are said to be related to health and

physical abilities of the people rather than their differences in

age and gender.

Several studies have shown that older pedestrians have a

larger accident rate than younger people [219]. Gorrini et

al. [83] also found differences in adults and elderly people

crossing behaviour. The study of Oxley et al [153] showed

that older pedestrians have more risky crossing behavior in

complex traffic environments than younger people. Not sur-

prisingly, many authors have found decreasing crossing speeds

with age [10] [130], [202], compensated for by requiring larger

time gaps in traffic before commencing crossing [130]. In

addition, Avineri et al. [10] found lower crossing speeds for

female than male pedestrians, and that the fear of falling in

elderly pedestrians has an effect on the number of downward

head pitches during crossing. Holland and Hill [95] used the

TPB for pedestrians’ intention analysis while crossing the

road. The results showed that women perceived more risk and

were less likely to cross than men. In [96], they also studied the

effect of gender on pedestrian crossing behaviour and showed

that men with a driving experience make safer crossings than

non-drivers and that older women were found to make more

unsafe crossing decisions than younger women.

b) Distraction: Distraction of pedestrians from traffic

environments would ideally be defined via their mental state

i.e., thinking about a problem unrelated to their environment;

or approximated in practice via observable proxies. While it

is possible that mental distraction might be measurable via

hard-to-observe proxies such as gaze direction or high-level

body language, it may be more practical to look instead for

known causes of distraction. Schwebel et al. [191] performed

a study in a semi-immersive virtual pedestrian street with

college students, finding an impact of talking on mobile phones

on crossing behaviour. Walker et al. [215] showed that male

pedestrians using a personal music device were more cautious

in crossing than those who were not distracted. In [200],

the effects of personal electronic device usage on crossing

behavior is studied. The results show a third of the observed

pedestrians were distracted by their mobile phone and that

distracted pedestrians are more likely to have unsafe crossing

behaviour and walk much faster than undistracted pedestrians.

c) Social Group Membership: Group membership can

affect road crossing. Three strangers in a group are less likely

to assert in a crossing than three friends. In particular, group

size influences a lot crossing behavior [169]. Zeedyk et al.

[226] performed a study with adult-child pairs while crossing

the road at a pedestrian crossing. They found that adults were

more likely to hold girls’ hands than boys.

d) Cultural Membership: In contrast to the above mem-

bership of short-term, physically present groups, it is also

possible to consider ‘cultural membership’ of a pedestrian

to any long-term, non-physically present group that may be

usefully predictive of behaviour. For example, it might be

possible for a human driver or autonomous vehicle to classify

pedestrians as members of religious, sporting, or musical

(sub)cultures as a probabilistic function of features of their

clothing such as shape and colour of garments or symbols

displayed on them; and that members of such groups show

statistically significant differences in assertiveness, politeness,

and other road interaction behaviours (cf. [169]). In Sociol-

ogy, classifications of individuals into cultures is notoriously

problematic and politicised. But for the purpose of predicting

road interactions, any classification derived from observable

features may be usefully considered if it improves predictions.

e) Road Safety Adaptation: Related to the possible pre-

dictiveness of cultural clothing is the effect of road safety

clothing on behaviour. Human drivers are more likely to yield

to pedestrians wearing high-visibility clothing [92], so it is also

possible that knowing this fact will make a pedestrian wearing

such clothing more likely to behave assertively. This is an

example of risk compensation adaptation, a well-known effect

in road safety in which the owners of safety improvements

make economic decisions whether to use them to reduce

accidents or alternatively to gain some other advantage at the

cost of retaining the original accident rates [180].

F. Discussion

Single pedestrian unobstructed walking path and behaviour

prediction around obstacles for known origins and destinations

has well-established solutions. Their main strength lies in their

simplicity and ease of implementation but their applicability

to solve real AV problems is very limited due to the strong

assumptions (e.g static obstacles, known origin-destination of

pedestrians) which are not easily verified in the real world.

But when – as is usual in real-time systems – the destinations

of pedestrians are not known in advance, trajectory prediction

is harder and remains an open research area.

Uncertain destination models may use known destination

models as a subcomponent and average over them weighted

by predictions about what the destination is. To predict what

a pedestrian’s destination will be, many medium and high-

level sources of information may be relevant and useful, if

suitable models can be found. These models split roughly

into short-term models for prediction horizons around 1-2s
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and long-term models predicting for a horizon of around 5-

6s. Event-based models of activity assume that behaviour often

contains repeated stereotypical chunks of behavior, which once

recognised in early stages can predict their later stages. The

major emerging long-term prediction methods rely on neural

network (‘deep learning) methods. There is a need to verify

how the data-driven methods such as [6] can be actually

applied online for real-time systems. These models can help

AVs to more accurately predict single pedestrian behaviour for

shorter or longer time horizons, e.g. to know precisely whether

a pedestrians trajectory would interfere with the AV’s own

path. But their main challenges lie in their computational cost,

which increases significantly with the number of destination

guesses, with longer time horizons and the amount of data

needed for learning pedestrian motion patterns. Moreover,

deep learning models are sometimes referred to as ‘black-

box models, in the sense that AI developers cannot fully

explain some decisions (e.g. feature selection) made by the

neural networks, rendering them potentially problematic for

investigating the causes of incidents involving AVs and for

determining their liabilities [43][84].

Single pedestrians destinations and behaviours may be in-

formed by their class memberships, including their demo-

graphics and other visible features, such as clothing types.

There are many recent sociological studies giving evidence

of these effects, but they have not yet been translated into

algorithms suitable for autonomous vehicle use, which would

be a promising new research area. It is conjectured that

additional information about pedestrians’ emotion states would

be similarly informative (e.g. angry pedestrians more likely

to assert themselves in competitions for road space), but no

studies were found in this area. Traditionally, emotional state

has been difficult to capture and record, so that manually

annotation of data sets are too small for machine learning

to use. But as machine vision for face and body language

recognition continues to improve (cf. Part I [33] Sect. IV),

they are expected to produce big data sets which will enable

machine learning to operate and inform destination and be-

haviour predictions.

III. PEDESTRIAN INTERACTION MODELS

So far, only path prediction models for single pedestrians in

static environments ignoring interactions with other pedestri-

ans have been reviewed. This section will consider models of

interaction between pedestrians. In Social Science, pedestrian

behavior models have been studied for a long time: a survey

is provided in [42] [201]. These models can be classified in

two categories, namely microscopic models and macroscopic

models, as reviewed in [211]. Microscopic models model

only each pedestrian individually. Macroscopic models do not

model individual pedestrians and instead model the behaviour

of a single aggregate entity such as a crowd or a flow.

Papadimitriou et al. [154] presented a review on pedestrian

behavior models and a study on pedestrian and crowd dynam-

ics was proposed by Vizzari and Bandini in [212]. Bellomo

et al. [15] reviewed mathematical models of vehicular traffic

and crowds while Duives et al. [66] surveyed pedestrian crowd

Pedestrian

Micro & Macro

Models

Microscopic

Models

Macroscopic

Models

Proxemics

Physical Models

Cellular-based Models

Queuing Networks

Fig. 5. Pedestrian microscopic and macroscopic models.

simulation models. Figure 5 presents a summary of pedestrian

microscopic and macroscopic models.

A. Microscopic Models

This section first describes pedestrian behaviour models at

the microscopic level. It then presents pedestrian interaction

models using these behaviour models for two agents’ interac-

tions and group behaviour modelling.

1) Behaviour Models: Microscopic models are divided into

three main groups: physical models, cellular-based models and

queuing network models. Each model is generally structured

by two terms: one term that represents the attractive effects

of pedestrians toward their goal and the other repulsive ef-

fects among and between pedestrians and the obstacles [42].

Proxemics is first described in this section.

a) Proxemics: The Psychology theory of Proxemics [91]

studies human preferences (utilities) for having other humans

in their proximity. Proxemics typically identifies four radial

comfort zones, whose radii differ between cultures, for inti-

mate, personal, social, and public space. These zones can be

described by eight dimensions [91]:

1) postural-sex identifiers

2) sociofugal-sociopetal orientation (SFP axis)

3) kinesthetic factors

4) touch code

5) retinal combinations

6) thermal code

7) olfaction code

8) voice loudness scale

This model has been empirically tested with participants

[217]. The theory is of great interest to pedestrian interaction

models because it provides a possibly hard-wired negative

utility not just for actual collisions with pedestrians but also

for simply feeling too close to them. In particular, this provides

a method for an AV to inflict a real negative utility on a

pedestrian without touching them or risking their physical

harm. Binary proxemics is the simplest case used in simple

models, in which a negative utility is assigned to actually

hitting someone, and zero utility is assigned to not hitting

anyone. Zonal proxemics is more subtle, it relies on the eight

proxemic dimensions defined above. It assigns different utili-

ties to the presence of a person in four different zones around

an individual which are defined as the intimate distance, the

personal distance, social distance and the public distance [90].

Gorrini et al. [82] studied the proxemics behaviour of groups

of pedestrians in interaction and showed that it has negative

effects in walking speed for evacuation scenarios. Manenti et

al. [139] presented an agent-based pedestrian behaviour model
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that takes into account proxemics and group behaviour. Their

model was tested with groups of people and in a simulated

environment. A detailed review on proxemics models for robot

navigation among humans is proposed in [173].

b) Physical Models: These are splitted into three sub-

categories. The utility maximization model, as used in [114],

assumes that pedestrian behaves such as to maximize their

utility, for example their speed of motion and approach or

avoidance of some objects or persons. In the magnetic force

model proposed by [151], the pedestrian behavior is deter-

mined by the equation of motion of the magnetic field. Pedes-

trians are positive poles and their destinations are negative

poles. In the social force model, introduced by Helbing [93],

each pedestrian has a desired velocity, a target time and a

target destination which are affected by social forces such as

the interaction with other pedestrians and the effects of the

environment. In [133] social forces are described as individual

forces (fidelity, constancy) and group forces (attraction, repul-

sion, coherence). Most of the time, social forces are modeled

such that to minimize an energy objective which include terms

for individual and group forces.

c) Cellular-based Models: These represent a cost model

such as Blue and Adler’s cellular automata model [23] and

used for motion prediction. Cellular Automata (CA) is a

discrete, time based modelling formalism on a regular cell

grid. It describes the walk of a pedestrian according to rules

of a cell occupancy, e.g. a cell can be occupied only if it is free

and a pedestrian can have three possible movements: lateral,

longitudinal or mitigation of the conflicts. The benefit cost

model, developed by Gipps and Marksjo [79], is a discrete

and deterministic model where the space is divided into a

grid of cells and each agent is described as a particle in a

cell. A benefit value, equivalent to the pedestrian utility, is

arbitrarily assigned to each cell. In [60] a cellular automata

model simulates multi-agent interactions.

d) Queuing Network Models: They have been developed

for studies of evacuation dynamics [134]. These are evaluated

by Monte Carlo simulation methods for discrete events. Each

pedestrian is represented as an individual flow entity inter-

acting with other objects, facilities are modeled as a network

of arches for openings and of nodes for rooms. In [13], a

queuing network model is compared to a social force model

for pedestrian crossing movement prediction.

2) Two Agents’ Interaction: These models are those involv-

ing only two agents with mutually influencing behaviours,

rather than larger groups of agents. They may be simpler

than larger group models but sometimes provide a foundation

for extension to larger group models, hence they are here

presented first.

a) Dynamic Graphical Models: The method in [31] uses

POMDPs (Partially Observable Markov Decision Processes)

with a time-indexed state space to model interactions and they

used the example of an elevator-riding task to test the model.

In [179], Rudenko et al. proposed a method that uses MDPs

with a joint random walk stochastic policy sampling algorithm

to predict motion and social forces to model interactions. The

model in [120] learns features from observed pedestrian be-

haviors using a Markov Chain Monte Carlo (MCMC) sampling

and performs a Turing test with human participants to validate

the human-like behavior of the model. Chen et al. [48] used an

extended Kalman filter to predict future motions of pedestrians

and estimate the time-to-collision range (TTCR) for collision

risk level identification.

b) Gaussian Process Methods: Kawamoto et al. [112]

proposed a method to learn pedestrian dynamics with krig-

ing, the most traditional form of Gaussian Processes. Their

work can predict pedestrian movement using spatial kriging

and spatio-temporal kriging. Social interaction is modeled

by spatio-temporal correlation of pedestrian dynamics and

correlation is estimated by kriging.

c) Deep Learning Methods: Alahi et al. [2] predicted

pedestrian trajectories in crowded spaces using a social LSTM,

a variant of recurrent neural network model that can learn

human movement (velocity, acceleration, gait...) taking into

account social human motion conventions and predict their fu-

ture trajectories. This technique is opposed to traditional social

forces methods and outperforms most the state-of-art methods

on public datasets (ETH and UCY). Long Short-Term Memory

(LSTM) can learn and reproduce long sequences, it is a data-

driven technique. One LSTM is used for each person and the

interaction among people is modeled by a social pooling layer

which allows the share of states between neighboring LSTMs.

Although group behavior is not modeled, the social LSTM can

predict it very well. Similarly to the previous method, Chen

et al. [49] developed a long-term pedestrian prediction model

using RNNs for pedestrian trajectory prediction.

d) Road Crossing Models: This section extends the

event-activity models from section II-D by adding interaction

between pedestrians and vehicles. When microscopic models

of pedestrian movement are included in larger-scale traffic

simulations together with vehicles, they are typically extended

with specific provisions to account for pedestrian’s decisions

on where and when to initiate road crossing, when this is

needed for the pedestrians to reach their goals. Other, so called

gap acceptance models, have instead described probabilities of

pedestrians crossing in a certain gap between vehicles, using

generalised linear models, with predictors including both the

available gap itself, as well as other factors such as age and

gender of the pedestrians, number of pedestrians waiting to

cross, and time spent waiting [195], [188].

Markkula et al. [140] proposed another type of model for

pedestrians road crossing decision, modelled as the result of a

number of perceptual decisions concerning the available gap,

but also car yielding, explicit communicative signals from the

car, and eye contact with the driver. These decisions were

described as several interconnected evidence accumulation

processes, and it was shown that empirically observed bimodal

distributions of pedestrian waiting time were qualitatively

reproduced by the model. In [40], Camara et al. proposed

a heuristic model for pedestrian crossing intention estimation.

Their method is based on a distance ratio model that computes

the pedestrian crossing probability over time until the curbside.

Their results showed that this heuristic model is sufficient for

most of the crossing scenarios present in the dataset used and

that the remaining scenarios would require higher level models

such as game theory.
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e) Other Methods: Discrete choice models [8], [28] offer

a framework to model pedestrian walking along link levels,

where their paths are composed of a sequence of straight

lines in absence of obstacles. For example, the model in [28]

predicts pedestrian behaviour in the presence of other people

in shopping street areas.

3) Group Interaction: A group is here considered to be a

collection of more than two pedestrians, but smaller and more

cohesive than a crowd. These models are developed primarily

for use by non-carriageway autonomous vehicles, such as

delivery robots, navigating through crowded pedestrianized

areas, needing to cut their way between groups.

a) Dynamic Graphical Models: In [19] a real-time

pedestrian path prediction is performed in cluttered environ-

ments without making any assumption on pedestrian motion or

pedestrian density. Pedestrian motion and movements patterns

are learnt from 2D trajectories. Bera et al. used sparse and

noisy trajectories data from indoor and outdoor crowd videos.

By combining local movements (microscopic and macroscopic

motion models) and global movements (movement flow), the

patterns help improve the accuracy of the long-term prediction.

An ensemble Kalman filter (EnKF) was used to predict the

next state based on current observation and EM algorithm to

maximize the likelihood of the state. Pedestrian clusters are

computed based on their positions, velocities, inter-pedestrian-

distances, orientations etc. Global movement patterns are the

past movement and intended velocity of pedestrians. Local

movement patterns are obtained by fitting the best motion

model to pedestrian clusters and individual motions. In [20],

the same authors implemented a tracking algorithm built on

top of [19]. Deo et al. in [55] uses VGMMs to model

pedestrian trajectory using pedestrian origins and destinations.

Their model is tested on a dataset of a crowded unsignalized

intersection in a university campus. Pellegrini et al. [156]

introduced a linear trajectory avoidance (LTA) model which

has similarities with the social force model. In [157], the

same authors extended the LTA model with a stochastic

version taking into account group behavior and allows mul-

tiple hypotheses about the pedestrian position. Zhou et al.

[231] proposed a mixture model of dynamic pedestrian-agents

(MDA) for pedestrian trajectory prediction in crowds.

b) Gaussian Process Methods: Henry et al. [94] used

inverse reinforcement learning (IRL) to learn human-like navi-

gation behavior in crowds. The model estimates environmental

features using Gaussian Processes and extends Maximum

Entropy Inverse Reinforcement Learning (MaxEnt IRL) of

[232] by assuming that features in the environment are par-

tially observable and dynamic. The proposed approach was

developed for mobile robot motion planning, but it could be

used for human motion prediction. In [203], Trautman and

Krause proposed to solve the freezing robot problem, where

a robot motion planner gets stuck and cannot find any proper

move to perform, by a model based on Gaussian Processes, a

statistical model that is able to estimate crowd interaction.

c) Deep Learning Methods: The subsequent models may

not explicitly consider interaction, but they learn interaction

implicitly through machine learning techniques. The model

in [196] implemented a real-time Temporal 3DOF-Pose Long-

Short-Term Memory using 3D lidar data from a mobile robot.

Shi et al. [193] developed a long-term pedestrian trajectory

prediction model for crowded environments using LSTM.

In [224], Yi et al. proposed a deep neural network model called

behavior-CNN that is trained with crowded scenes video data.

A pedestrian behavior model is encoded from the previous

frames and used as an input for the CNN model to predict their

future walking path and destination as well as a predictor for a

tracking system. Radwan et al. [164] presented an interaction-

aware TCNN, a convolutional neural network model that can

predict interactive motion of multiple pedestrians in urban

areas.

Amirian et al. [6] predicted the motion of pedestrians over

a few seconds, given a set of observations of their own past

motion and of those of the pedestrians sharing the same

space, using a Generative Adversarial Network (GAN)-based

trajectory sampler. The reason for this choice is that such a

method naturally encompasses the uncertainty and the poten-

tial multi-modality of the pedestrian steering decision, which

is of great importance when using this predictive distribution

as a belief in higher level decision-making processes. Lee et

al. [122] developed DESIRE a trajectory prediction framework

for multiple interacting agents based on deep neural networks.

A conditional variational auto-encoder is used to generate

hypothetical future trajectories. An RNN is then used to

score and rank those features in an inverse optimal control

manner and taking into account the scene context. Gupta et

al. [85] proposed a socially-aware GAN with RNNs for pedes-

trian motion sequence prediction in dynamic environments.

However, their model assumes that people influence each

other uniformly. A detailed analysis and improvement of this

GAN method is proposed in [118]. With a similar method,

called SoPhie, Sadeghian et al. [181] developed a GAN-based

trajectory prediction model that focuses on the most important

agents for each interacting agent.
d) Other Methods: Moussaid et al. [148] presented

a heuristics-based model to predict pedestrian behavior in

crowded environments. Based on the idea that visual informa-

tion is very important for pedestrians [12], [204], they found

that two simple heuristics can model the interaction among

people: the desired walking direction and speed of pedestrians

are sufficient. Bonneaud and Warren [26] proposed a related

type of model, extending the behavioral dynamics model by

[72] to goal-seeking and obstacle avoidance in crowds, and

found that the model was able to reproduce qualitative crowd

phenomena like lane formation. The model in [101] learns

behavioral patterns from pedestrian trajectories in a mall. It

assumes that a robot can model interactions using social forces

and segment pedestrian trajectories into sub-goals to estimate

their future positions.

B. Macroscopic Models

In macroscopic models, the crowd is modeled as a single

ontological object, replacing and simplifying the representa-

tion of multiple microscopic pedestrians. The crowd behaves

as a continuous fluid with a flow average speed [199].

The first macroscopic models of pedestrians are due to

Hughes and Henderson [99]. The fluid dynamic model classi-
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fies pedestrians into groups which are characterized by average

features, their position, speed and intended velocity. In [14],

pedestrian flows are modeled in simulations for crowded en-

vironments. Crowd modelling has also an established commu-

nity focused on models for evacuation, as reviewed in [184].

In [4] Ali et al. used Lagrangian Particle Dynamics to segment

high density crowd flows. This method, based on Lagrangian

Coherent Structures (LCS) from fluid dynamics and particle

advection, is capable of detecting instabilities in the crowd.

Smooth Particle Hydrodynamics (SPH) is a hybrid of mi-

croscopic and macroscopic models. Pedestrians are considered

individually, but at each time they are aggregated into a density

where each particle is moved according to the macroscopic

velocity. Etikyala et al. [70] reviewed smooth particle hydrody-

namics pedestrian flow models while [225] proposed a generic

SPH framework for modeling pedestrian flow.

C. Discussion

The theory of proxemics has been well studied in psychol-

ogy and now being more and more used for VR experiments

[152] [58] and computer scientists are just beginning to apply

it to make more detailed models of the utility of pedestrian’s

personal space than simply collisions and non-collisions. In

general, microscopic models are preferred to macroscopic

models, in particular the social force model is very popular for

pedestrian interaction modelling, while macroscopic models

are more suited for crowd behaviour modeling, especially in

the specialised domain of emergency evacuation modeling.

Physical models bring interesting results when there are a

lot of interactions, e.g. modelling pedestrian movement in

cities [177]. Cellular-based models are useful for modelling

pedestrians with minimal movement choices and when rep-

resenting their collisions is not required. Two agents’ and

group interaction models offer more precise pedestrian models

but they require more computational resources, in particu-

lar dynamic graphical, Gaussian Process and deep learning

models. More computational research is needed in interaction

modelling: psychology/human factors studies and theories are

more mature, but their results have not yet been quantified to

the extent of enabling translation into algorithms for AVs.

IV. GAME THEORETIC AND SIGNALLING MODELS

A. Game Theory Interaction Models

The models in section II predict the behavior of a single

pedestrian X from the point of view of an external observer O

(i.e. the experimenter), when no other pedestrians are present.

We call this a first-order model of pedestrian behaviour.

The models in section III all further allow O to also model

Xs own first-order model of another pedestrian Y s behaviour,

which X can use to plan to avoid Y . We call this a second-

order model of behaviour.

We could then imagine third and higher order models. For

example, O might model X’s belief about Y ’s belief about

X’s belief about Y ’s belief, as both agents try to ‘out-think

each other during their planning. This would lead to an infinite

computational regress.

Game theory provides an alternative and stronger framework

which can compute the infinite limit of these higher order

models directly, via analytic solutions.

Isaacs [106] introduced vehicle-pedestrian interactions as

the famous ‘homicidal taxi driver problem which considered

the inverse of the modern AV interaction problem: how an

AV controller should act in order to hit a pedestrian 2he

application to pedestrians was accidental as the taxi scenario

was used initially as a declassification technique to publish

missile-defence algorithms, requiring control of one missile to

hit another. Game theory is in common use in descriptive road

user modelling as reviewed in [67], where applications include

modelling of lane changes and merging onto motorways, route

selection and departure time in congested networks, and socio-

economic choices such as purchasing large vehicles or using

conventions such as headlight dipping. It has been applied to

AV-vehicle interactions in [165] though here only pedestrian

models are considered.

The use of game theory for active control of AVs is less

common. Descriptive models may be incomplete as active con-

trollers, in particular by allowing for multiple Nash Equilibria

to exist without selecting between them. A Nash equilibrium

is a set of probabilistic strategies to be played by each of the

players, such that no player would change their strategy if

they knew the strategies of the other players. It is generally

agreed in Game Theory that it is not optimal for players to

employ strategies which are not Nash equilibria, though there

is still philosophical debate over what strategy is optimal when

multiple equilibria exist.

1) Two Agents’ Game Theory Interactions: Hoogendoorn

and Bovy [97] give a purely theoretic construction (left as an

exercise to the reader) for a continuous (‘differential) game

theory solution to pedestrian interactions, based on similar

control theory models to those reviewed in Sec. II-A. They

also provide an implementation of a second-order truncation of

this model which is found to be sufficient to produce flows of

pedestrians in crowded environments similar to those observed

in some Japanese crossings.

The methods in [141] and [206] predict selection of pedes-

trian trajectories from a finite set as a higher-order model.

For a small set of known origins and destinations, optimal

free space trajectories are computed from control theory, and

actual trajectories from a video set are compared to them

and assigned costs according to their deviations from them.

These models assume that the choice of the entire continuous

trajectory is drawn from a finite set of previously observed

and costed trajectories as a single decision at the start of

the interaction and does not model responses to the other

agent during the interaction. They are used only as descriptive

models rather than as real-time control because they require

each pedestrian’s final goal location to be known in advance

to form the cost matrix – which is only obtainable by looking

ahead in the data to see what happened post hoc. The authors

state that (in the context of AV control), ‘few researchers

have considered interaction between (pedestrian) objects, thus

neglecting that humans give way to each other’. Turnwald et

2T
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al. [205] adds an alternative model where one player chooses

their trajectory first then the second chooses theirs in response

to seeing their initial motion.

Ma et al. [135] proposed a long-term game-theoretic pre-

diction of interacting pedestrian trajectories from a single

starting image. For each future time in the prediction sequence,

fictitious play is used to converge the probabilities of each

pedestrian’s actions to one (of possibly many) Nash equi-

librium. The fictitious play assumes that each pedestrian has

a known destination goal, some known visual features (age,

gender, initial body heading etc) and a known utility function.

The utility function scores vectors of word-state features which

contain all of (1) the pedestrian’s own future trajectory (which

may include control theory style costs); (2) probabilistic

beliefs about the other agents’ trajectories; (3) the pedestrian’s

own visual features (age, heading etc); (4) proximity to static

obstacles; (5) the pedestrian’s distance to their goal. Unusually,

the utility functions are learned entirely automatically from

video data of actualized trajectories, rather than set by theories.

Where theory-like behaviours such as proxemics and social

forces are observed in simulations, they arise entirely from this

learning process. The functions are assumed to be a weighted

linear function of the features and a reinforcement-learning-

style model is used to obtain per-state values from the full

trajectories during learning. A (deep learning) classifier is used

to obtain the visual demographic and heading features from

annotated training examples. Performance is degraded when

the pedestrian’s goal locations are not known and are set to

be completely uncertain in the feature vectors.

In [75], Fox et al. presented a version of the game-

theoretic ‘game of chicken’ for autonomous vehicle-pedestrian

interactions at unsignalized intersections. The obtained dis-

crete model called the ‘sequential chicken’ model allows two

players to choose a set of two speeds: decelerate or continue.

A new method to compute Nash equilibria is presented, called

‘meta-strategy convergence, used for equilibrium selection.

Camara et al. [41], [34] evaluated the model [75] by fitting

one parameter θ to controlled laboratory experiments where

pedestrians were asked to play sequential chicken. This be-

havioural parameter θ was found to be a ratio between the

utility of avoiding a collision and the utility of saving time. A

summary of the work using the sequential chicken model is

provided in [37].

2) Small Group Game Theory Models: Vascon et al. [208]

proposed a game theory model for detecting conversational

groups of pedestrians from video data, based on the socio-

psychological concept of an F -formation and the empirical

geometries of these formations. Johora and Müller [109]

proposed a three-layer trajectory prediction model composed

of a trajectory planner, a force-based (social force) model and

a game theoretic decision model. The game theory model

is based on Stackelberg games, a sequential leader-follower

game where pedestrians have three different possible actions:

continue, decelerate and deviate and the car has two possible

actions: continue and decelerate. This model is able to handle

several interactions at the same time.

3) Crowd Game Theory Models: Mesmer et al. [143]

modelled pedestrians’ decision-making and interactions during

evacuations with game theory. In [192] a model of pedestrian

behavior in an evacuation used game theory and showed that

pedestrians get greater benefits by cooperating.

B. Signalling Interaction Models

Signalling models extend interaction models by allowing

both the pedestrian and the AV to model and predict each

other’s actions of giving and receiving pure information, rather

than communicating only through their physical poses.

Nathanael et al. [149] has proposed a stratified model of

mutual awareness between pedestrians and vehicles including

AVs. The actor’s awareness is divided into three levels, i.e.,

(1) unaware of the others, (2) factually aware of the other,

or (3) aware and actively attending to the other. When one

of the two agents is unaware of the other, the interaction

may be as simple as collision avoidance by the one aware,

relying only on bodily and kinematic cues. When both agents

are aware of each other, the interaction takes the form of

mutual coordination through implicit cues, whereas when both

agents are attentive to each other (as evidenced through eye

contact between human actors), the interaction may involve

direct communication through explicit signals, such as ges-

tures, nodding etc. In addition attentiveness, as opposed to

mere awareness, designates that any physical action from an

attentive agent is a response explicitly addressed to the agent

at the focus of attention (i.e. it also has a signalling function).

This line of research raises an epistemological question

about signalling-based interaction. Some of the models above

involve the concepts not just of an agent (1) knowing that the

other agent is there, and (2) acting to show the other agent that

they are present; but also higher-order knowing and showing

these facts. This includes (3) knowing that the other knows

they are there and (4) showing the other that they know that

the other knows they are there. But also includes arbitrarily

higher orders, such as ‘knowing that the other has showed that

they know that they know that the other knows and so on.

There appears to be a potentially infinite regress here, though

intuitively most humans find it difficult to comprehend many

more levels than the four mentioned here. But it is difficult

to argue for why any cut-off should occur at this or other

specific level. Intuitively: when two agents make eye contact,

they assume that they both then come to know the infinite

stack of such statements about each other.

1) Signals from Pedestrian to Vehicle: The need for precise

eye contact as opposed to simple head direction or gaze

towards the vehicle is controversial. Considering gaze or head

orientation towards vehicles, there is evidence that pedestrians

who initiate crossings without looking at the oncoming vehicle

tend to make drivers more attentive to them by keeping larger

safety margins [111]. On the other hand, eye contact between

pedestrian and driver tends to increase the probability of the

vehicle yielding for pedestrians [87]. The apparent controversy

between these findings may be attributed to profound differ-

ences in the function of these two behavioural traits. While

head orientation towards vehicles typically signifies pedestrian

situational awareness to drivers, eye contact most probably

signifies driver awareness of the pedestrian to the latter [168].
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In addition, eye contact is reported to play a non-trivial role

in the social dynamics between the two. Nathanael et al.

[149] in a naturalistic study of driver pedestrian interaction

reported that pedestrian head turning towards a vehicle was

sufficient for drivers to confidently infer pedestrians intent

in 52% of interaction cases observed. In retrospective think-

aloud sessions of their interaction with pedestrians, drivers

mentioned pedestrian active head movement and orientation

as an important indication of pedestrian awareness of their

vehicle. Mutual eye contact between driver and pedestrian

was observed only in 13% of interaction cases, accompanied

by explicit signalling in 2% of total cases. This is consistent

with recent research [167] that reported head orientation/gaze

towards vehicles as the most prominent cues for predicting

pedestrian intent. In addition, computational models have

shown that head direction is a useful trait for pedestrian path

prediction and state of situation awareness such as in [39]

which argued that if a pedestrian looks at the vehicle, they are

less likely to cross the road.

Matthews et al. [142] studied pedestrians’ behavior with an

autonomous goal car equipped with an Intent Communication

System (ICS) based on Decentralized MDP to model the

uncertainty associated with pedestrian’s behavior. Another

important factor to take into account is the poor pedestrian

signal settings. It has been proven that signal indication and

timing affect significantly pedestrian behavior and their cross-

ing decisions [3] [103] [104]. Pedestrians can have sudden

speed change while crossing, and such sudden behavioral

changes may not be expected by conflicting vehicles, which

may lead to hazardous situations. In [104], Iryo-Asano and

Alhajyaseen proposed a discrete choice model and Monte

Carlo simulation for generating pedestrian speed profiles at

crosswalks. In [105], the same authors modelled pedestrian

behaviour after the onset of pedestrian flashing green (PFG)

via a Monte Carlo simulation. Their results showed a higher

probability of pedestrian stopping at longer crosswalks and a

significant difference in pedestrian speeds.

Some early steps have however been taken towards mod-

elling at least some levels of explicit knowing and showing of

beliefs about each other via signalling behaviour.

2) Signals from Vehicle to Pedestrian: Beyond understand-

ing pedestrians signalling behavior, game theoretic models

may also enable the AV to give signals to the pedestrians,

creating a higher level information game with both players

communicating through both their physical actions and also

their signals. The full game theory of such interactions has not

yet been worked out, and will form part of a complex socio-

technical system [175], but there has been notable activity –

especially via company patents – in researching displays and

other mechanisms for the signalling itself.

Lundgren et al. [132] showed that the lack of two-way

communication between driver and pedestrian may reduce

pedestrians’ confidence to cross the street and their perceived

feeling of safety, when crossing. Lichtenthäler et al. [129] re-

viewed robot trajectories among humans, including identifying

needs for additional gestures or motion information such as

gaze to communicate intention, which is relevant for last mile

delivery. Researchers are currently conducting studies to better

understand exactly which information needs to be transferred

when interacting with an AV. Schieben et al. [185] propose the

following information to be considered by the design team.

• Information about the vehicle automation status

• Information about next manoeuvres

• Information about perception of environment

• Information about cooperation capabilities

To transfer the relevant information, two means of com-

munications can be used for shaping the communication

language of an AV. First, pedestrians might benefit from direct

communication through the means of external human machine

interfaces (eHMIs) [132], [178]. Secondly, also careful design

of vehicle movement can be used to explicitly communicate.

Risto et al. introduced the term ‘movement gestures and found

‘advancing’, ‘slowing early and ‘stopping short as commonly

used gestures [175]. Consistent with this, Portouli et al. [160]

in the context of driver-driver interaction have shown that

‘edging was explicitly used by drivers trying to enter a two-

way street as a sign of their intent to inform oncoming

cars. Studies of human robot interaction have shown that

allowing humans to anticipate robot movements by explicit

communication through movements of the robots head raises

perceived intelligence of the robot even if it did not succeed

completing its intended tasks [197], thus overcoming potential

machine error through the means of explicit communication.

These studies might suggest similar devices such as head-like

and eye-like displays for AVs.

While Clamann et al. [51] found mixed influences of explicit

communication through novel eHMI on crossing behavior in

dynamic traffic situations and argued that pedestrians will

largely rely on legacy behavior and not on eHMIs, Habibovic

et al. [89] found that traffic participants feel calmer, more

in control and safer when an eHMI was present on an AV.

Petzoldt, Schleinitz, and Banse [158] found that an eHMI can

help to convey the intention of a vehicle to give priority to a

pedestrian. They also observed that pedestrians needed more

time to understand the intention of a vehicle without eHMI

in mixed traffic situations [158]. Communicating the intent

and awareness of automated vehicles has been considered in a

positive way [137] [138]. Habibovic et al [89], [7] argued that,

for safety reasons, communication should never be command-

based. The vehicle should communicate solely its intentions.

Communication can be directed or undirected. Pedestrians

usually assume that any AVs communication is referring to

themselves, hence using eHMIs with multiple pedestrians

present has to be carried out in a way that minimizes mis-

communication (i.e. either letting all pedestrians pass or not

displaying a signal at all). Directed signalling minimizes this

risk as other road users do not visually perceive the signal

of the eHMI. Dietrich et al. [59] found that pedestrians were

not able to distinguish whether an undirected light signal was

addressed to themselves or other traffic participants.Therefore,

AVs should either use directed communication in ambiguous

situations involving multiple pedestrians or no communication

at all, as pedestrians will base their crossing decision on the

approaching vehicles kinematics if no eHMI is present. The

color of the visual eHMI stimulus may be of importance [218].
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The most common eHMI display types are projection, high

resolution displays and direct light. Semantics used include

animations, concrete iconography, or text. For instance, Habi-

bovic et al. developed a communication concept based on

external light signals on the top of the windshield [89]. Using

various light animations, the intention of the AV as well as

the current driving mode such as ‘I’m about to yield’, ‘I’m

resting, and ‘I’m about to start are displayed on the LED

light bar. Clamann et al. [51] empirically examines similar

models efficacy for giving signals to pedestrians. Further

eHMI concepts include mimicking eye contacts by adding

visible ‘eyes to AVs – based on the well-known tendency

for humans to perceive and design faces in cars– which can

communicate detection and awareness of pedestrians through

eye contact [44], as well as a virtual driver’s mimicking

furthermore facial expressions or hand signals. In addition to

the pure visual-based communication between AVs and other

TPs, some concepts also consider a combination of light and

audio signals, as in the Google, Uber concepts and Mercedes-

Benz concept car F015.

C. Discussions

Game Theory has a long history of use in V2V (vehicle

to vehicle) interactions in classical transport studies, as mi-

croscopic models underlying simulations of traffic flows and

infrastructure design. Also multi-robot game theory systems

are quite mature in robotics. These two streams have not

generally been unified or applied to AV-pedestrian modelling,

though this is beginning to emerge as an early research area.

Like other sophisticated methods, game theoretic models can

be computationally expensive and it remains unclear which of

their theoretical solutions will have computationally tractable

algorithms.

Signalling models remain a distant research frontier. Phys-

ical actuators for eHMI signalling are currently being in-

vestigated by car manufacturers and recent years have seen

much patent activity in the area. But how to best use them

to transmit information is not understood. There are currently

no game-theoretic models using knowing and showing with

explicit signalling but this would appear to be a fruitful area for

future research. Eye contact is a particular form of signalling,

but even in high level psychology research there remains an

ongoing and lively debate about whether it is relevant or

useful. The signalling methods reviewed here are mainly from

qualitative studies, some work is still needed to implement

their findings in algorithms for AVs.

Most of the eHMI concepts presented here do not yet

include detailed user studies and thus there remains a need for

thorough evaluation including the behavioral and emotional

responses of pedestrians in realistic environments. Different

findings might be due to different eHMI concepts, diverse

traffic scenarios, as well as different communication strategies.

While research is still lacking in full understanding of the

effects of eHMI on traffic, a large number of conceptual

solutions have been proposed. Their influence on pedestrians,

regarding their safety, experience and acceptance remains

unclear. Most of these conceptual solutions are proposed by

industry and involve some form of visual communication

as the visual channel is the currently most used channel

of communication in traffic as well as the best suited for

communication at larger distances in busy environments.

V. EXPERIMENTAL RESOURCES

A. Pedestrian Datasets

Large data sets are important resources for training and

testing models at all levels, especially when they are annotated

with ‘ground truth information by humans. Their use has been

common for low-level models such as detection and tracking,

though there is currently a shortage of high quality annotated

data for the higher-level models such as social interactions.

Major visual pedestrian datasets include the Caltech Pedes-

trian Benchmark [61], ETH [69], TUD-Brussels [220], Daim-

ler [68], Stanford Drone Dataset [176], UCY Zara pedestrian

dataset [125] and INRIA [53]. CityPersons [228] is a large

dataset for pedestrian detection. Town Center Dataset [16] is

a video dataset composed of 71.5k annotations.

Datasets used for pedestrian re-identification, i.e. having

many images of the same people with identifiers include

for example CUHK01 [127], CUHK02 [126] and CUHK03

[128], collected at a university campus and composed of

thousands of bounding boxes of unique people. DUKEMTMC

[174] and DUKEMTMC-reID [230] datasets have been de-

veloped in the Duke university campus and are used for

tracking and re-identifying multiple people with multi-camera

systems. MARKET-1501 [229] dataset provides 35k images

of 1500 individuals but also comes with a 500k dataset of

non-pedestrian street window distractors for training classi-

fiers. Multi-Object Tracking Benchmark [144] collects diverse

datasets and publishes new data. Several releases have already

appeared: MOT15, MOT16 and MOT17.

PETA benchmark [54] is a mixture of several public

datasets (e.g VIPER, SARC3D, PRID, MIT, I-LID, GRID,

CAVIAR4REID, 3DPES), which has been used to recognize

pedestrian attributes at far distance. The benchmark has been

tested with an SVM method. Social ground truth annotations

are much rarer. [38] and [39] collected high quality human

annotations of physical and social events during pedestrian-

vehicle interactions, including the presence and timings of

the agents communicating with each other via eye contact,

hand gestures, positions and speeds, and the final ‘winners’ of

interactions which compete for road space during crossings.

Yang et al. [223] pointed out that in mixed urban scenarios,

intelligent vehicles (IVs) have to cope with a certain number

of surrounding pedestrians. Therefore, it is necessary to under-

stand how vehicles and pedestrians interact with each other.

They proposed a novel pedestrian trajectory dataset composed

of CITR dataset and DUT dataset, so that the pedestrian mo-

tion models can be further calibrated and verified, especially

when the vehicle’s influence on pedestrians plays an important

role. In particular, the final trajectories of pedestrians and

vehicles were refined by Kalman filters with linear point-mass

model and nonlinear bicycle model, respectively, in which xy-

velocity of pedestrians and longitudinal speed and orientation

of vehicles were estimated.
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Zhan et al. proposed INTERACTION dataset [227] which

contains naturalistic motions of various traffic participants in a

variety of highly interactive driving scenarios. Trajectory data

was collected using drones and traffic cameras, containing data

from multiple countries (USA, China, Germany and Bulgaria).

There are four different driving scenarios, with their seman-

tic maps provided: roundabouts, un-signalized intersection,

signalized intersection, merging and lane changing. Chang

et al. proposed Argoverse [45] containing two datasets and

HD maps recorded from a self-driving car. Argoverse 3D

Tracking is for 3D object annotations, it contains a collection

of 11,052 tracks, and Argoverse Motion Forecasting is a

curated collection of 324,557 scenarios, each 5 seconds long,

for trajectory prediction. Each scenario contains the 2D, birds-

eye-view centroid of each tracked object. ApolloScape dataset

[216] was recorded in urban areas in China using various

sensors. The dataset contains different road road users (ve-

hicles, pedestrians, bicycles). The ApolloScape LeaderBoard

shows the ranking and performance of the models tested

on the dataset for different tasks, such as scene parsing,

detection/tracking, trajectory prediction, self-localisation. The

Intersection Drone (InD) dataset [25] contains naturalistic

vehicle trajectories recorded using a drone at four German

intersections. It provides the trajectories for thousands of road

users and their types (e.g car, pedestrian, bicycle, truck), and

can be used for example for road user prediction.

Person detection in off-road agricultural vehicle environ-

ments has become popular in recent years. Results from these

studies are not well known in transport research but may

transfer to on-carriageway and on-pavement AVs as they deal

with similar types of pedestrian interactions. The National

Robotics Engineering Center (NREC) Agricultural Person

Detection Dataset [159] consists of labeled stereo video of

people in orange and apple orchards taken from a tractor

and a pickup truck, along with vehicle position data. The

dataset combines a total of 76k labeled person images and

19k sampled person-free images. Gabriel et al. [76] present a

dataset that focuses on action/intention recognition problems

for human interactions with small robots in agriculture, in-

cluding ten actors performing nine gestures and four activities.

Stereo camera images, thermal camera images and Lidar point

cloud data are recorded on grassland, under varying lighting

conditions and distances. Kragh et al. [119] presents a multi-

modal dataset for obstacle detection in agriculture containing

2h of raw sensor data from a tractor-mounted sensor system in

a grass mowing scenario, including moving humans scattered

in the field.

A summary of pedestrian datasets is given in the supple-

mentary material Sect. III Table II.

B. Vehicle Datasets

To train and test models of pedestrians interacting with

vehicles, it is most likely useful to provide similar big data

about vehicles as well as about pedestrians. This may include

ground truth information on vehicle location and motion,

but also high level social annotations to use in studies of

interaction with pedestrians. Visual data available includes the

Berkeley DeepDrive Video (BDDV) dataset [222], currently

the largest vehicle dataset publicly available with 10k hours of

driving videos around the world. KITTI dataset [78] provides

a one hour video of a vehicle driving in an urban environ-

ment. Caesar et al. [32] presented nuScenes a dataset for

autonomous driving composed of multiple sensor data (RGB,

LIDAR, RADAR) from two cities and containing 1k scenes.

A summary of vehicle datasets is given in the supplementary

material Sec. III Table III.

C. Pedestrian and Driving Simulators

Three types of relevant simulation research work exist:

pedestrian, vehicle, and combined pedestrian-vehicle. Hard-

ware designs and source code for commonly used simulators

are often not made public, making it difficult for others

researchers to investigate and replicate experiments. So there

remains a clear need for more open-source simulators. The

open source Godot game and VR engine3 has recently matured

so may soon be used for this purpose. A summary of the

simulators is included in the supplementary material Sec. III

Table IV.

a) Pedestrian Simulators: Pedestrian simulators are VR

(Virtual Reality) based environments where pedestrian partic-

ipants encounter virtual vehicles in order to study pedestrian

perception and decision making subject to various oncoming

vehicle behaviors [186]. For example, Camara et al. [35], [36]

used a HTC Vive VR headset for pedestrians interacting with

a game theoretic autonomous vehicle. Results showed that

VR is a reliable setup for measuring human behaviour for

the development and testing of AV technology. Mahadevan

et al. [136] presented OnFoot, a VR pedestrian simulator

that studies pedestrian interactions with autonomous vehicles

in a mixed traffic environment. The Technical University of

Munich also developed a pedestrian simulator [73] composed

of a head-mounted display, a motion capture system and a

driving simulator software. This setup could be connected to a

driving simulator enabling multi-agent studies while extracting

the participants gait during the crossing process. The current

setup utilizes Unity (with a VIVE HMD) and is sometimes

coupled with VIVE Trackers for a virtual self-representation

to create an immersive virtual environment enabling fast im-

plementations and evaluation of eHMI concepts [59]. PedSim

[80] is a free crowd simulation software.

b) Vehicle Simulators: Vehicle simulators are physical

platforms where drivers encounter virtual pedestrians (dum-

mies) in order to study driver yielding behaviors in specific

interaction scenarios. Simulators such as [150] studied driver-

pedestrian interactions in mixed traffic environments using a

driving simulator (DriveSafetys DS-600c Research Simulator).

JARI-ARV (Augmented Reality Vehicles) [108] is a road

running driving simulator and JARI-OVDS (Omnidirectional

View Driving Simulator is a driving simulator with 360-degree

spherical screen and a rocking device. The University of Iowa

[207] has developed a driving simulator. A previous review on

driving simulators is presented in [194].

3www.godotengine.org
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c) Pedestrian-Vehicle Simulators: Micro or macro sim-

ulations model both pedestrian and vehicle behavior. Most

of these simulations rely on sets of behavioral rules for

both agents. These simulators are primarily used for road

design purposes and for policy decisions such as the cellular

automata-based simulators proposed in [74] and [131] where

vehicle-pedestrian crossing behaviour is studied at crosswalks.

Feliciani et al. [74] further evaluated the necessity of intro-

ducing a new crosswalk and/or switching to a traffic light.

Chao et al. [46] developed a microscopic-based traffic simu-

lator based on a force model to represent the behaviour and

interactions between the road users, and aimed for autonomous

vehicle development and testing. Chen et al. [47] proposed a

simulation platform composed of several behaviour models at

crosswalks for vehicle-pedestrian conflicts assessment. Gupta

et al. [86] developed a simulation model, using Matlab and

the open-source SUMO (Simulation of Urban Mobility), for

autonomous vehicle-pedestrian negotiations at unmarked in-

tersections, considering different pedestrian behaviours. Com-

mercial products include STEPS [147] software for and Legion

[124] simulating pedestrian dynamics. VirtuoCity is an exam-

ple of physical vehicle-pedestrian simulators. It is composed of

a pedestrian simulator, HIKER [182], which is a virtual reality

‘CAVE-based’ environment for pedestrian behavior analysis,

a driving simulator [107] and a truck simulator for driver

behaviour understanding. IFSTTAR [100] also possesses a

pedestrian simulator and developed a driving simulator for

driver behavior analysis and human-machine interactions, an

immersive simulator for cars, motorcycles and pedestrians

behavior simulation, a driving simulator with human assistive

devices and a bicycle simulator.

VI. CONCLUSIONS

Pedestrian sensing, detection and kinematic tracking are

now well understood and have mature models as reviewed

in Part I [33]. Moving from simple kinematic tracking and

prediction of pedestrian motions can however depend on

extremely high-level models of the state transition required

by tracking and prediction. Going far beyond simple random

velocity walk models, the present review has shown that there

is much scope here to integrate models of pedestrians as

intelligent, goal-based, psychological, active, and interactive

agents at several levels.

Unlike the more mature methods reviewed in Part I, this

review does not recommend particular software implementa-

tions for algorithms at these levels, because they remain active

research areas rather than completed and standardizable tools.

This review finds that many conceptual issues first need to be

cleared, before mathematical interfaces – such as probabilities

– can be created to link models at these layers, and only

then standardized software development can become a reality.

(The only exception to this would be for entirely end-to-end

machine learning systems, which are not generally considered

to be safe or practical due to their lack of transparency.)

At the level of single pedestrian modelling, there now exist

good control theoretic models of optimal walking behaviour

from known origin to known destination. Here, pedestrians do

not usually walk in straight lines, but optimise gradual turning

during walking to move in smooth curves. There has been

some recent research success in inferring likely destinations

from historical data and partial trajectories.

When interaction with other agents is included, models of

pedestrians rapidly become more complex and much less well

understood. Suboptimal models include only finite orders of

epistemological models of pedestrians beliefs, raising the open

question of how to handle higher order beliefs about beliefs.

Recent game theory approaches have just begun to find optimal

behaviours in these higher-order belief cases but only under

various simplifying assumptions.

There has been a general shift away from psychology-

informed models, using empirical findings such as demograph-

ics predicting behaviours, to purely big-data-driven models

which learn aspects of such theories internally as black boxes,

usually aiming only to predict the behaviour rather than give

theoretical explanations of it.

The role of signalling between pedestrians and vehicles

during interactions has been studied qualitatively, but is not

yet understood at the algorithmic level. Psychologists and

road safety designers have evaluated and commercialised many

signalling mechanisms, such as flashing of headlights, use of

horns, and custom communication light signals. Finding algo-

rithmic strategies to make optimal use of them, and to process

information from receiving signals from others, suitable for

real-time AV control, remains an open and important question.
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[14] D. Bauer, S. Seer, and N. Brändle. Macroscopic pedestrian flow
simulation for designing crowd control measures in public transport
after special events. In Proc. of the Summer Computer Simulation

Conference, pages 1035–1042, 2007.

[15] N. Bellomo and C. Dogbe. On the modeling of traffic and crowds:
A survey of models, speculations, and perspectives. SIAM review,
53(3):409–463, 2011.

[16] B. Benfold and I. Reid. Stable multi-target tracking in real-time
surveillance video. In Proc. of IEEE CVPR, pages 3457–3464, 2011.

[17] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun. Learning motion
patterns of people for compliant robot motion. International Journal

of Robotics Research, 24(1):31–48, 2005.

[18] M. Bennewitz, W. Burgard, and S. Thrun. Learning motion patterns of
persons for mobile service robots. In Proc. of IEEE ICRA, volume 4,
pages 3601–3606, 2002.

[19] A. Bera, S. Kim, T. Randhavane, S. Pratapa, and D. Manocha. GLMP
- realtime pedestrian path prediction using global and local movement
patterns. In Proc. of IEEE ICRA, pages 5528–5535, 2016.

[20] A. Bera and D. Manocha. Pedlearn: Realtime pedestrian tracking,
behavior learning, and navigation for autonomous vehicles. In Proc.

of IROS 9th International workshop on Planning, Perception and

Navigation for Intelligent Vehicles, 2017.

[21] I. M. Bernhoft and G. Carstensen. Preferences and behaviour of
pedestrians and cyclists by age and gender. Transportation Research

Part F: Traffic Psychology and Behaviour, 11(2):83 – 95, 2008.

[22] A. Bhattacharyya, M. Fritz, and B. Schiele. Long-term on-board
prediction of pedestrians in traffic scenes. In Proc. of 1st Conference

on Robot Learning, 2017.

[23] V. J. Blue and J. L. Adler. Cellular automata microsimulation for
modeling bi-directional pedestrian walkways. Transportation Research

Part B: Methodological, 35(3):293 – 312, 2001.

[24] J. Bock, T. Beemelmanns, M. Klösges, and J. Kotte. Self-learning
trajectory prediction with recurrent neural networks at intelligent inter-
sections. In Proc. of VEHITS, 2017.

[25] J. Bock, R. Krajewski, T. Moers, L. Vater, S. Runde, and L. Eckstein.
The ind dataset: A drone dataset of naturalistic vehicle trajectories at
german intersections. arXiv preprint arXiv:1911.07602, 2019.

[26] S. Bonneaud and W. H. Warren. A behavioral dynamics approach to
modeling realistic pedestrian behavior. In Proc. of 6th International

Conference on Pedestrian and Evacuation Dynamics, pages 1–14,
2012.

[27] S. Bonnin, T. H. Weisswange, F. Kummert, and J. Schmuedderich.
Pedestrian crossing prediction using multiple context-based models. In
Proc. of IEEE ITSC, pages 378–385, 2014.

[28] A. Borgers, A. Kemperman, and H. Timmermans. Modeling Pedestrian

Movement in Shopping Street Segments, chapter Chapter 5, pages 87–
111. 2009.

[29] A. Borgers and H. Timmermans. A model of pedestrian route
choice and demand for retail facilities within innercity shopping areas.
Geographical Analysis, 18(2):115–128, 2010.

[30] R. Brooks. The big problem with self-driving cars is people and we’ll
go out of our way to make the problem worse. IEEE Spectrum, 2017.

[31] F. Broz, I. Nourbakhsh, and R. Simmons. Planning for human-robot
interaction using time-state aggregated pomdps. In Proc. of the 23rd

National Conference on Artificial Intelligence, volume 3, pages 1339–
1344, 2008.

[32] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom. nuScenes: A multimodal
dataset for autonomous driving. arXiv preprint arXiv:1903.11027,
2019.

[33] F. Camara, N. Bellotto, S. Cosar, D. Nathanael, M. Althoff, J. Wu,
J. Ruenz, A. Dietrich, and C. W. Fox. Pedestrian models for au-
tonomous driving Part I: low-level models, from sensing to tracking.
IEEE Transactions on Intelligent Transportation Systems, 2020.

[34] F. Camara, S. Cosar, N. Bellotto, N. Merat, and C. W. Fox. Towards
pedestrian-AV interaction: method for elucidating pedestrian prefer-
ences. In Proc. of IEEE/RSJ IROS Workshops, 2018.

[35] F. Camara, P. Dickinson, N. Merat, and C. W. Fox. Towards game
theoretic AV controllers: measuring pedestrian behaviour in virtual
reality. In Proc. of IEEE/RSJ IROS Workshops, 2019.

[36] F. Camara, P. Dickinson, N. Merat, and C. W. Fox. Examining
pedestrian behaviour in virtual reality. In Transport Research Arena

(TRA) (Conference canceled), 2020.

[37] F. Camara and C. W. Fox. Game theory for self-driving cars. In
UK-RAS Conference, 2020.

[38] F. Camara, O. Giles, R. Madigan, M. Rothmüller, P. Holm Rasmussen,
S. A. Vendelbo-Larsen, G. Markkula, Y. M. Lee, L. Garach, N. Merat,
and C. W. Fox. Filtration analysis of pedestrian-vehicle interactions for
autonomous vehicles control. In Proc. of the International Conference

on Intelligent Autonomous Systems (IAS-15) Workshops, 2018.
[39] F. Camara, O. Giles, R. Madigan, M. Rothmller, P. H. Rasmussen,

S. A. Vendelbo-Larsen, G. Markkula, Y. M. Lee, L. Garach, N. Merat,
and C. W. Fox. Predicting pedestrian road-crossing assertiveness for
autonomous vehicle control. In Proc. of IEEE ITSC, pages 2098–2103,
2018.

[40] F. Camara, N. Merat, and C. W. Fox. A heuristic model for pedestrian
intention estimation. In Proc. of IEEE ITSC, pages 3708–3713, 2019.

[41] F. Camara, R. Romano, G. Markkula, R. Madigan, N. Merat, and
C. Fox. Empirical game theory of pedestrian interaction for au-
tonomous vehicles. In Proc. of Measuring Behavior, 2018.

[42] C. Caramuta, G. Collodel, C. Giacomini, C. Gruden, G. Longo, and
P. Piccolotto. Survey of detection techniques, mathematical models and
simulation software in pedestrian dynamics. Transportation Research

Procedia, 25(Supplement C):551 – 567, 2017.
[43] D. Castelvecchi. Can we open the black box of AI? Nature News,

538(7623):20, 2016.
[44] C.-M. Chang, K. Toda, D. Sakamoto, and T. Igarashi. Eyes on a Car:

An Interface Design for Communication Between an Autonomous Car
and a Pedestrian. In Proc. of ACM AutomotiveUI, pages 65–73, 2017.

[45] M.-F. Chang, J. W. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays. Argoverse: 3d
tracking and forecasting with rich maps. In Proc. of IEEE CVPR, 2019.

[46] Q. Chao, X. Jin, H.-W. Huang, S. Foong, L.-F. Yu, and S.-K. Yeung.
Force-based heterogeneous traffic simulation for autonomous vehicle
testing. In Proc. of ICRA, pages 8298–8304. IEEE, 2019.

[47] P. Chen, W. Zeng, and G. Yu. Assessing right-turning vehicle-
pedestrian conflicts at intersections using an integrated microscopic
simulation model. Accident Analysis & Prevention, 129:211–224, 2019.

[48] Z. Chen, C. Wu, N. Lyu, G. Liu, and Y. He. Pedestrian-vehicular
collision avoidance based on vision system. In Proc. of IEEE ITSC,
pages 11–15, 2014.

[49] B. Cheng, X. Xu, Y. Zeng, J. Ren, and S. Jung. Pedestrian trajectory
prediction via the social-grid LSTM model. The Journal of Engineer-

ing, 2018(16):1468–1474, 2018.
[50] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,

L. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,

Algorithms, and Implementations. MIT Press, 2005.
[51] M. Clamann, M. Aubert, and M. L. Cummings. Evaluation of vehicle-

to-pedestrian communication displays for autonomous vehicles. In
Proc. of TRB, 2017.

[52] A. Cosgun, D. A. Florencio, and H. I. Christensen. Autonomous person
following for telepresence robots. In Proc. of IEEE ICRA, pages 4335–
4342, 2013.

[53] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In IEEE CVPR, volume 1, pages 886–893 vol. 1, 2005.

[54] Y. Deng, P. Luo, C. C. Loy, and X. Tang. Pedestrian attribute
recognition at far distance. In Proc. of the 22nd ACM international

Conference on Multimedia, pages 789–792. ACM, 2014.
[55] N. Deo and M. M. Trivedi. Learning and predicting on-road pedestrian

behavior around vehicles. In Proc. of IEEE ITSC, pages 1–6, 2017.
[56] N. Deo and M. M. Trivedi. Trajectory forecasts in unknown

environments conditioned on grid-based plans. arXiv preprint

arXiv:2001.00735, 2020.
[57] C. Dias, M. Abdullah, M. Sarvi, R. Lovreglio, and W. Alhajyaseen.

Modeling and simulation of pedestrian movement planning around
corners. Sustainability, 11(19):5501, 2019.

[58] P. Dickinson, K. Gerling, K. Hicks, J. Murray, J. Shearer, and J. Green-
wood. Virtual reality crowd simulation: effects of agent density on user
experience and behaviour. Virtual Reality, 2018.

[59] A. Dietrich, J.-H. Willrodt, K. Wagner, and K. Bengler. Projection-
based external human machine interfaces enabling interaction between
automated vehicles and pedestrians. In Driving Simulation Conference,
2018.

[60] J. Dijkstra, H. J. Timmermans, and A. Jessurun. A multi-agent cellular
automata system for visualising simulated pedestrian activity. In Theory

and Practical Issues on Cellular Automata, pages 29–36. Springer,
2001.

[61] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection:
A benchmark. In Proc. of CVPR, 2009.

[62] C. Dondrup, N. Bellotto, M. Hanheide, K. Eder, and U. Leonards. A
computational model of human-robot spatial interactions based on a
qualitative trajectory calculus. Robotics, 4(1):63–102, 2015.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 17

[63] C. Dondrup, N. Bellotto, F. Jovan, and M. Hanheide. Real-time
multisensor people tracking for human-robot spatial interaction. In
Proc. of ICRA Workshop on Machine Learning for Social Robotics,
2015.

[64] P. Duckworth, M. Al-Omari, J. Charles, D. C. Hogg, and A. G. Cohn.
Latent dirichlet allocation for unsupervised activity analysis on an
autonomous mobile robot. In Proc. of AAAI, 2017.

[65] P. Duckworth, Y. Gatsoulis, F. Jovan, N. Hawes, D. C. Hogg, and
A. G. Cohn. Unsupervised learning of qualitative motion behaviours
by a mobile robot. In Proc. of AAMAS, pages 1043–1051, 2016.

[66] D. C. Duives, W. Daamen, and S. P. Hoogendoorn. State-of-the-art
crowd motion simulation models. Transportation Research Part C:

Emerging Technologies, 37:193–209, 2013.

[67] R. Elvik. A review of game-theoretic models of road user behaviour.
Accident Analysis & Prevention, 62:388 – 396, 2014.

[68] M. Enzweiler and D. M. Gavrila. Monocular pedestrian detection:
Survey and experiments. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 31(12):2179–2195, 2008.

[69] A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for mobile
scene analysis. In Proc. of IEEE ICCV, pages 1–8, 2007.
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