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Abstract

For any undirected graph G = (V, E) and a set EW of candidate edges with E ∩ EW = ∅, the

(k, γ)-spectral augmentability problem is to find a set F of k edges from EW with appropriate

weighting, such that the algebraic connectivity of the resulting graph H = (V, E ∪ F ) is least γ.

Because of a tight connection between the algebraic connectivity and many other graph parameters,

including the graph’s conductance and the mixing time of random walks in a graph, maximising the

resulting graph’s algebraic connectivity by adding a small number of edges has been studied over

the past 15 years, and has many practical applications in network optimisation.

In this work we present an approximate and efficient algorithm for the (k, γ)-spectral augment-

ability problem, and our algorithm runs in almost-linear time under a wide regime of parameters.

Our main algorithm is based on the following two novel techniques developed in the paper, which

might have applications beyond the (k, γ)-spectral augmentability problem:

We present a fast algorithm for solving a feasibility version of an SDP for the algebraic connectivity

maximisation problem from [16]. Our algorithm is based on the classic primal-dual framework

for solving SDP, which in turn uses the multiplicative weight update algorithm. We present a

novel approach of unifying SDP constraints of different matrix and vector variables and give a

good separation oracle accordingly.

We present an efficient algorithm for the subgraph sparsification problem, and for a wide range

of parameters our algorithm runs in almost-linear time, in contrast to the previously best known

algorithm running in at least Ω(n2mk) time [22]. Our analysis shows how the randomised BSS

framework can be generalised in the setting of subgraph sparsification, and how the potential

functions can be applied to approximately keep track of different subspaces.
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1 Introduction

Graph expansion is the metric quantifying how well vertices are connected in a graph, and has

applications in many important problems of computer science: in complexity theory, graphs

with good expansion are used to construct error-correcting codes [38, 42] and pseudorandom

generators [18]; in network design, expander graphs have been applied in constructing super

concentrators [40]; in probability theory, graph expansion is closely related to the behaviours

of random walks in a graph [29, 37]. On the other side, as most graphs occurring in practice

might not be expander graphs and a subset of vertices of low expansion is usually viewed as the
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bottleneck of a graph, finding the set of vertices with minimum expansion has many practical

applications including image segmentation [27], community detection [31, 36], ranking web

pages, among many others. Because of these, both the approximation algorithms for the

graph expansion problem and the computational complexity of the problem itself have been

extensively studied over the past three decades.

In this paper we study the following graph expansion optimisation problem: given an

undirected and weighted graph G = (V, E, w), a set EW of candidate edges, and a parameter

k ∈ N as input, we are interested in (i) finding a set F ⊆ EW of k edges and their weights

such that the resulting graph H = (V, E ∪ F, w′) with weight function1 w′ : E ∪ F → R≥0

has good expansion, or (ii) showing that it’s impossible to significantly improve the graph’s

expansion by adding k edges from EW . Despite sharing many similarities with the sparest

cut problem, our proposed problem has many of its own applications: for example, assume

that the underlying graph G is a practical traffic or communication network and, due to

physical constraints, only certain links can be used to improve the network’s connectivity.

For any given k and a set of feasible links, finding the best k links to optimise the network’s

connectivity is exactly the objective of our graph expansion optimisation problem.

To formalise the problem, we follow the work of [15, 16, 22] and define the algebraic

connectivity of G by the second smallest eigenvalue λ2(LG) of the Laplacian matrix LG of

G defined by LG , DG − AG, where DG is the diagonal matrix consisting of the degrees

of the vertices and AG is the adjacency matrix of G. Given an undirected and weighted

graph G = (V, E, w) with n vertices, O(n) edges2, a set EW of candidate edges defined on

V satisfying EW ∩ E = ∅ and a parameter k, we say that G is (k, γ)-spectrally-augmentable

with respect to W = (V, EW ), if there is F ⊆ EW with |F | = k together with edge weights

{we}e∈F such that H = (V, E ∪ F, w) satisfies λ2(LH) ≥ γ. The main result of our work

is an almost-linear time3 algorithm that either (i) finds a set of O(k) edges from EW if

G is (k, γ)-spectrally augmentable for some γ ≥ ∆ · n−1/q, or (ii) returns “no” if G is

not (O(kq), O(∆ · n−2/q))-spectrally augmentable, where ∆ is an upper bound of both the

maximum degree of G and W , and q ≥ 10 is an arbitrary integer. The formal description of

our result is as follows:

◮ Theorem 1. Let G = (V, E, w) be a base graph with n vertices, O(n) edges, and weight

function w : E → R≥0, and let W = (V, EW ) be the candidate graph of m edges such that

the maximum degrees of G and W is at most ∆. Then, there is an algorithm such that for

any integer k ≥ 1 and q ≥ 10, the following statements hold:

if G is
(
k, ∆ · n−1/q

)
-spectrally-augmentable with respect to W , then the algorithm finds

a set F ⊆ EW of edges and a set of edge weights {w(e) : e ∈ F} such that |F | = O(qk),∑
e∈F w(e) ≤ O(k), and the resulting graph H = (V, E∪F ) satisfies that λ2(LH) ≥ cλ2

⋆∆,

for some constant c > 0, where λ⋆ ·∆ is the optimum solution4.

1 We remark that the weight function w′ needs to satisfy that w′(e) = w(e) for any edge e ∈ E.
2 Since a spectral sparsifier of G with O(n) edges preserves the eigenvalues of the Laplacian matrix of G,

we assume that G has O(n) edges throughout the paper. Otherwise one can always run the algorithm
in [25] to get a linear-sized spectral sparsifier of G and use this sparsifier as the input of our problem.
Therefore, the number of edges in G will not be mentioned in our paper to simplify the notation.

3 We say that a graph algorithm runs in almost-linear time if the algorithm’s runtime is O((m + n)1+c)
for an arbitrary small constant c, where n and m are the number of vertices and edges of G, respectively.
Similarly, we say that a graph algorithm runs in nearly-linear time if the algorithm’s runtine is
O((m + n) · logc(n)) for some constant c.

4 Note that since G is (k, n−1/q · ∆)-spectrally-augmentable with respect to W , it always holds that

λ⋆ ≥ n−1/q.
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if G is not
(
O(kq), O(∆ · n−2/q)

)
-spectrally-augmentable with respect to W , then the

algorithm rejects the input G, W .

Moreover, the algorithm runs in Õ
(
min

{
qnω+O(1/q), q(m + n)nO(1/q)k2

})
time. Here, the

Õ(.) notation hides poly log n factors, and ω is the constant for matrix multiplication.

We remark that the most typical application of our problem is the scenario in which only

a low number of edges are needed such that the resulting graph enjoys good expansion, and

these correspond to the regime of k = no(1) and λ⋆ ∈ (n−1/q, O(1)) [34], under which our

algorithm runs in almost-linear time and achieves an Ω(λ⋆)-approximation. In particular,

when it is possible to augment G to be an expander graph, i.e. λ⋆ = Θ(1), our algorithm

achieves a constant-factor approximation. Our algorithm runs much faster than the previously

best-known algorithm for a similar problem that runs in at least Ω
(
n2mk

)
time [22], though

their algorithm solves the more general problem: for any instance G, W, k, if the optimum

solution is λ⋆∆, i.e., G is (k, λ⋆∆)-spectrally-augmentable with respect to W , for any

λ⋆ ∈ [0, 1), then their algorithm finds a graph H = (V, E ∪ F ) with λ2(LH) ≥ cλ2
⋆∆ such

that |F | = O(k) and the total sum of weights of edges in F is at most k. Our algorithm can

only find a graph H when λ⋆ ∈ (n−1/q, 1).

To give an overview of the proof technique for Theorem 1, notice that our problem is

closely linked to the algebraic connectivity maximisation problem studied in [16], which looks

for k edges from the candidate set to maximise λ2(LH) of the resulting graph H. It is

known that the algebraic connectivity maximisation problem is NP-hard [30], and Ghosh

and Boyd [16] show that this problem can be formulated as an SDP, which we call the

GB-SDP. Inspired by this, we study the following P-SDP, which is the feasibility version of

the GB-SDP parameterised by some γ. Here, P⊥ is the projection on the space orthogonal to

1 , (1, . . . , 1)⊺, i.e., P⊥ = I − 1
n 11⊺.

P-SDP(G, W, k, γ)

λ ≥ γ

LG +
∑

e∈EW

weLe � λ∆P⊥

k −
∑

e∈EW

we ≥ 0

1− we ≥ 0, ∀e ∈ EW

we ≥ 0, ∀e ∈ EW

γ ≥ 0.
Notice that, if G is (k, γ∆)-spectrally-augmentable with respect to W , then there is a

set F of k edges such that, by setting we = 1 if e ∈ F and we = 0 otherwise, it holds that

LG +
∑

e∈EW
Le � γ∆P⊥. Therefore, there is a feasible solution of P-SDP(G, W, k, γ). Our

algorithmic result for solving the P-SDP is summarised as follows:

◮ Theorem 2. Let δ′ > 0 be any constant. There exists an algorithm running in Õ((m+n)/γ2)

time that either finds a solution to P-SDP(G, W, k, (1 − δ′)γ) or certifies that there is no

feasible solutions for P-SDP(G, W, k, γ).

Since the solution to the P-SDP only guarantees that the total weights of the selected

edges are at most k if G is (k, γ∆)-spectrally augmentable, following [22] we use a subgraph

sparsification algorithm to round our SDP solution, such that there are only O(k) edges

selected in the end. To give a high-level overview of this rounding step, we redefine the

set EW of candidate edges, and assume that EW consists of the edges whose weight from

the P-SDP solution is non-zero. Therefore, our objective is to find O(k) edges from EW

and new weights, which form an edge set F , such that the Laplacian matrix LH of the

ESA 2020
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resulting graph H = (V, E ∪ F ) is close to LG+W . That is, the subgraph sparsification

problem asks for a sparse representation of G + W while keeping the entire base graph G

in the resulting representation. Our improved algorithm shows that, as long as k = no(1),

a subgraph sparsifier can be computed in almost-linear time5. Our result on subgraph

sparsification will be formally described in Theorem 9.

1.1 Our techniques

In this section we will explain the techniques used to design the fast algorithm for the P-SDP,

and an almost-linear time algorithm for subgraph sparsification.

Faster algorithm for solving the P-SDP. Our efficient SDP solver is based on the primal-

dual framework developed in [5], which has been used in many other works [19, 33]. In this

primal-dual framework, we will work on both the original SDP P-SDP(G, W, k, γ) and its

dual D-SDP(G, W, k, γ) that is defined as follows:

D-SDP(G, W, k, γ)

Z • LG + kv +
∑

e∈EW

βe < γ

Z •∆P⊥ = 1

Z • Le ≤ v + βe, ∀e ∈ EW

Z � 0

βe ≥ 0, ∀e ∈ EW

v ≥ 0.

We then apply the matrix multiplicative weight update (MWU) algorithm. Formally

speaking, starting with some initial embedding X(1), for each t ≥ 1 our algorithm iteratively

uses a carefully constructed oracle Oracle for D-SDP(G, W, k, γ) to check whether the

current embedding X(t) is good or not:

If X(t) satisfies some condition, denoted by C
(
X(t)

)
, then the oracle fails and this implies

that we can find a feasible solution from X(t) to D-SDP(G, W, k, γ). This implies that

the primal SDP P-SDP(G, W, k, γ) has no feasible solution, which certifies that G is not

(k, γ)-spectrally-augmentable with respect to W .

If X(t) does not satisfy the condition C
(
X(t)

)
, then the oracle does not fail, which certifies

that the current solution from X(t) is not feasible for D-SDP(G, W, k, γ), and will output

a set of numbers
(
λ(t), w(t)

)
for updating the embedding.

The procedure above will be iterated for T times, for some T depending on the oracle and the

approximate parameter δ′ > 0: if the oracle fails in any iteration, then P-SDP is infeasible;

otherwise, the oracle does not fail for all T iterations and we find a feasible solution to

P-SDP(G, W, k, (1− δ′)γ).

The main challenge for applying the above framework in our setting is to construct

the Oracle and deal with the complicated constraints in our SDPs, which include both

matrix inequality constraint and vector inequality constraints of different variables. To work

with these constraints, our strategy is to unify them through a diagonal block matrix X,

and through this we turn all individual constraints into a single matrix constraint. The

embedding in each iteration is constructed in nearly-linear time in n + m by the definition

5 We remark that, when k = Θ(n), our problem can be solved directly by using a spectral sparsifier W̃ of
the graph W with O(n) edges, which can be computed in nearly-linear time. This will imply that the
two Laplacians L

G+W̃
= LG + L

W̃
and LG+W = LG + LW are close.
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of the embedding. To construct the Oracle, we carefully design the condition C(X) with

the intuition that if the candidate solution corresponding to X has a relatively small dual

objective value, then a re-scaling of X gives a feasible solution to D-SDP. Then we use a case

analysis to show that if C(X) is not satisfied, we can very efficiently find updating numbers

(λ(t), w(t)) by distinguishing edges satisfying one constraint (in D-SDP) from those that do

not satisfy it and assigning different weights w(t) to them accordingly.

Faster algorithm for subgraph sparsification. The second component behind proving our

main result is an efficient algorithm for the subgraph sparsification problem. Our algorithm

is inspired by the the original deterministic algorithm for subgraph sparsification [22] and

the almost-linear time algorithm for constructing linear-sized spectral sparsifiers [26]. In

particular, both algorithms follow the BSS framework, and proceed in iterations: it is shown

that, with the careful choice of barrier values uj and ℓj in each iteration j and the associated

potential functions, one or more vectors can be selected in each iteration and the final barrier

values can be used to bound the approximation ratio of the constructed sparsifier.

However, in contrast to most algorithms for linear-sized spectral sparsifiers [4, 25, 26],

both the barrier values and the potential functions in [22] are employed for a slightly different

purpose. In particular, instead of expecting the final constructed ellipsoid to be close to

a sphere, the final constructed ellipsoid for subgraph sparsification could be still very far

from being a sphere, since the total number of added edges is O(k). Because of this, the two

potential functions in [22] are used to quantify the contribution of the added vectors towards

two different subspaces: one fixed k-dimensional subspace denoted by S, and one variable

space defined with respect to the currently constructed matrix. Based on analysing two

different subspaces for every added vector, which is computationally expensive, the algorithm

in [22] ensures that the added vectors will significantly benefit the “worst subspace”, the

subspace in R
n that limits the approximation ratio of the final constructed sparsifier.

Because of these different roles of the potential functions in [22] and [6, 26], when applying

the randomised BSS framework [26] for the subgraph sparsification problem, more technical

issues need to take into account: (1) Since [22] crucially depends on some projection matrix

denoted by PS , of which the exact computation is expensive, to obtain an efficient algorithm

for subgraph sparsification one needs to obtain some projection matrix close to PS and such

a projection matrix can be computed efficiently. (2) Since the upper and lower potential

functions keep track of different subspaces whose dimensions are of different orders in most

regimes, analysing the impact of multiple added vectors to the potential functions are

significantly more challenging than [26].

To address the first issue, we show that the problem of computing an approximate

projection close to PS while preserving relevant proprieties can be reduced to the generalised

eigenvalue problem, which in turn can be efficiently approximated by a recent algorithm [2].

For the second issue, we meticulously bound the intrinsic dimension of the matrix corres-

ponding to the multiple added vectors, and by a more refined matrix analysis than [26]

we show that the potential functions and the relative effective resistances decease in each

iteration. We highlight that developing a fast procedure to computing all the quantities that

involve a fixed projection matrix and analysing the impact of multiple added vectors with

respect to two different subspaces constitute the most challenging part of the design of our

algorithm.

Finally, we remark that, although the almost-linear time algorithm [26] has been improved

by the subsequent paper [25], it looks more challenging to adapt the technique developed in

[25] for the setting of subgraph sparsification. In particular, since the two potential functions

ESA 2020
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in [25] are used to analyse the same space R
n, it is shown in [25] that it suffices to analyse

the one-sided case through a one-sided oracle. However, the two potential functions defined

in our paper are used to analyse two different subspaces, and it remains unclear whether we

can reduce our problem to the one-sided case. We will leave this for future work.

1.2 Other related work

Spielman and Teng [39] present the first algorithm for constructing spectral sparsifiers: for

any parameter ε ∈ (0, 1), and any undirected graph G of n vertices and m edges, they prove

that a spectral sparsifier of G with Õ
(
n/ε2

)
edges exists, and can be constructed in Õ

(
m/ε2

)

time. Since then, there has been extensive studies on different variants of spectral sparsifiers

and their efficient constructions in various settings. In addition to several results on several

constructions of linear-sized spectral sparsifiers mentioned above, there are many studies on

constructing spectral sparsifiers in streaming and dynamic settings [1, 20, 21]. The subgraph

sparsification problem has many applications, including constructing precondtioners and

nearly-optimal ultrasparsifiers [22, 35], optimal approximate matrix product [11], and some

network optimisation problems [28]. Our work is also related to a sequence of research on

network design, in which the goal is to find minimum cost subgraphs under some “connectivity

constraints”. Typical examples include constraints on vertex connectivity [8, 9, 10, 14, 23, 24],

shortest path distances [12, 13], and spectral information [3, 7, 17, 32].

2 A fast SDP solver

We use the primal-dual framework introduced in [5] to solve the SDP P-SDP(G, W, k, γ) and

prove Theorem 2. The framework is based on the matrix multiplicative weight update (MWU)

algorithm on both the primal SDP P-SDP(G, W, k, γ) and its dual D-SDP(G, W, k, γ).

Notation. For any given vector β, we use Diag(β) to denote the diagonal matrix such

that each diagonal entry [Diag(β)]ii = βi. Given matrix Z, scalar v and vector β, we use

Diag(Z, v, β) to denote the diagonal 3-block matrix with blocks Z, v and Diag(β). We use

IV and IEW
to denote the identity matrices on vertex set V and edge set EW with |EW | = m,

respectively. We further define

E , Diag(∆ · IV , m, IEW
), Π , Diag(P⊥, 1, IEW

), (1)

N , Diag(∆ · P⊥, m, IEW
) = E1/2ΠE1/2.

For any given parameter λ and vector w, we define V (λ, w) , λ, A(λ, w) , LG +∑
e∈EW

weLe − λ∆P⊥, and B(λ, w) , k −∑e∈EW
we. Let c = c(λ, w) ∈ R

m denote the

vector with ce = 1− we for each e ∈ EW , and C = C(λ, w) = Diag(c(λ, w)) be the diagonal

m×m matrix with the diagonal entry 1− we corresponding to edge e. Then we define

M(λ, w) , Diag (A(λ, w), B(λ, w), C(λ, w)) =




A(λ, w) 0 0

0 B(λ, w) 0

0 0 C(λ, w)


 . (2)

◮ Definition 3. An (ℓ, ρ)-oracle for D-SDP(G, W, k, γ) is an algorithm that on input 〈Z, v, β〉
with Diag(Z, v, β) •N = 1, either fails or outputs (λ, w) with λ ≥ 0, w ∈ R

m
≥0 that satisfies

V (λ, w) ≥ γ, A(λ, w) • Z + B(λ, w) · v + c(λ, w) · β ≥ 0, −ℓN �M(λ, w) � ρN.



B.-A. Manghiuc, P. Peng, and H. Sun 70:7

◮ Fact 4. If an (ℓ, ρ)-oracle for D-SDP(G, W, k, γ) does not fail on input 〈Z, v, β〉 with

Diag(Z, v, β) •N = 1, then 〈Z, v, β〉 is infeasible for D-SDP(G, W, k, γ).

In order to apply the MWU algorithm, in the following we use Uε(A) to denote the matrix

Uε(A) ,
E−1/2(1− ε)E−1/2AE−1/2

E−1/2

Π • (1− ε)E−1/2AE−1/2
,

where E and Π are matrices defined in (1).

2.1 The MWU algorithm

In the framework of MWU for solving our SDP, we sequentially produce candidate dual

solutions 〈Z(t), v(t), β(t)〉 such that Diag(Z(t), v(t), β(t))•N = 1 for any t. Specifically, for any

given k, γ, we start with a solution Z(1) = 1
∆(n−1) I, v(1) = 2

n−1 and β
(1)
e = 0 for any e ∈ EW .

At each iteration t, we invoke a good separation oracle that takes Diag(Z(t), v(t), β(t)) as

input, and either guarantees that Diag(Z(t), v(t), β(t)) is already good for dual SDP (and

thus certifies infeasibility of primal SDP), or outputs (λ(t), w(t)) certifying the infeasibility of

Diag(Z(t), v(t), β(t)).

If
(
λ(t), w(t)

)
is returned by the oracle, then the algorithm updates the next candidate

solution based on X(t) = Uε

(
1

2ρ

∑t−1
s=1 M (s)

)
, where M (s) , M

(
λ(s), w(s)

)
is as defined

before and ε is a parameter of the algorithm. By definition, we have that X(t) • N = 1.

Moreover, since M (t) can be viewed as a 3-block diagonal matrix with diagonal entries

A(t), B(t), C(t), we have that exp(M (t)) = Diag
(
exp

(
A(t)

)
, exp

(
B(t)

)
, exp

(
C(t)

))
. There-

fore, we can decompose X(t) as

X(t) = Diag
(

Z(t), v(t), β(t)
)

.

Note that X(t) •N = 1 is equivalent to

∆ · Z(t) • P⊥ + m · v(t) +
∑

e∈EW

β(t)
e = 1.

The following theorem guarantees that, after a small number of iterations, the algorithm

either finds a good enough dual solution, or a feasible solution to the primal SDP.

◮ Theorem 5. Let Oracle be an (ℓ, ρ)-oracle for D-SDP(G, W, k, γ), and let δ > 0. Let N ,

X(t), and M (t) be defined as above, for any t ≥ 1. Let ε = min{1/2, δ/2ℓ}. Suppose that

Oracle does not fail for T rounds, where

T = O

(
ρ log n

δε

)
≤ max

{
O

(
ρ log n

δ

)
, O

(
ρℓ log n

δ2

)}
,

then (λ̄− 3δ, w̄ − δ) is a feasible solution to P-SDP(G, W, k, γ − 3δ), where λ̄ , 1
T

∑T
t=1 λ(t)

and w̄ , 1
T

∑T
t=1 w(t).

Approximate computation. By applying the Johnson-Linderstrauss (JL) dimensionality

reduction to the embedding corresponding to Uε, we can approximate X(t+1) by X̃(t+1)

while preserving the relevant properties. Specifically, let Ũε be a randomised approximation

to Uε from applying the JL Lemma, and we compute in nearly-linear time the matrix

X̃(t+1) = Ũε

(
1

2ρ

∑t−1
s=1 M (s)

)
and decompose it into 3 blocks:

X̃(t+1) = Diag
(

Z̃(t+1), ṽ(t+1), Diag
(

β̃(t+1)
))

.
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Moreover, X̃(t+1) • LH well approximates X(t+1) • LH for any graph H, which suffices for

our oracle. Hence, we assume that the oracle receives X̃(t+1) as input instead of X(t+1). We

defer the formal lemma we are using to the full version.

2.2 The oracle

In this subsection, we will present and analyse the oracle for our SDP D-SDP(G, W, k, γ),

which is presented in Algorithm 1. For the simplicity of presentation, we abuse notation and

use X = Diag(Z, v, β) to denote the input to the oracle, although it should be clear that

the input is the approximate embedding X̃ = Diag(Z̃, ṽ, Diag(β̃)) of X.

Algorithm 1 Oracle for SDP D-SDP(G, W, k, γ).

Require: Candidate solution 〈Z, v, β〉 with ∆ ·Z •P⊥ + m · v +
∑

e∈EW
βe = 1, target value

γ

1: Let B := {e : v + βe < Le • Z}, Γ :=
∑

e∈B(Le • Z − v − βe), and T := Z •∆P⊥.

2: Let Ttol := LG • Z + kv +
∑

e∈EW
βe.

3: if Γ ≤ Tγ − Ttol then

4: Output “fail”. ⊲ In this case, 〈Z, v, β〉 is “good” enough

5: else if Ttol > γm− γ
∑

e∈EW
Z • Le then

6: return we = γ, and λ = γ.

7: else

8: return we = 1 for e ∈ B, we = 0 for e ∈ EW \B and λ = γ

To analyse the oracle, we prove the following technical lemma. First of all, we show that

if the Oracle fails, then we can find a dual feasible solution for D-SDP(G, W, k, γ).

◮ Lemma 6. Let 〈Z, v, β〉 be a candidate solution. Suppose that for B , {e : v + βe −
Le • Z < 0}, T , Z • ∆P⊥ and Ttol , LG • Z + kv +

∑
e∈EW

βe, then it holds that

Γ ,
∑

e∈B(Le • Z − v − βe) ≤ Tγ − Ttol. Moreover, by setting Z ′ = Z
T , v′ = v

T , and β′
e = βe

T

if e ∈ EW \ B and β′
e = Le•Z−v

T if e ∈ B, we have that 〈Z ′, v′, β′〉 is a dual feasible for

D-SDP(G, W, k, γ).

Secondly, we show that, if Oracle does not fail, then it returns (λ, w) that satisfies the

properties of (ℓ, ρ)-oracle for D-SDP(G, W, k, γ) for appropriate ℓ, ρ.

◮ Lemma 7. When Oracle described in the algorithm does not fail, it returns a vector w and

value λ such that V (λ, w) ≥ γ, and for the matrix M(λ, w)=Diag(A(λ, w), B(λ, w), C(λ, w)),

A(λ, w) • Z + B(λ, w) · v + C(λ, w) · β ≥ 0. Moreover, it holds that −N �M(λ, w) � 3N .

Combining these two lemmas together, we obtain the following theorem which summarise

the performance of Algorithm 1.

◮ Theorem 8. On input X̃(t), there exists an algorithm Oracle that runs in Õ(n + m)

time and is an (ℓ, ρ)-oracle for SDP D-SDP(G, W, k, γ), where ℓ = 1 and ρ = 3.

2.3 Proof of Theorem 2

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let δ′ > 0 be any constant. We specify δ = δ′γ
3 in our MWU algorithm,

which is described in the previous subsections. We set ρ = 3 and ℓ = 1, and let

T , O

(
ρℓ log n

δ2

)
= O

(
log n

(δ′)2γ2

)
= O

(
log n

γ2

)
.
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In the MWU algorithm, if the Oracle fails in the t-th iteration for some 1 ≤ t ≤ T , then

the corresponding embedding X̃(t) = Diag(Z̃(t), ṽ(t), Diag(β(t))) provides a good enough

solution: the precondition of Lemma 6 is satisfied, which further implies that X̃(t) can be

turned into a dual feasible solution with objective at most γ, i.e., we find a solution to

D-SDP(G, W, k, γ). Therefore, the primal SDP P-SDP(G, W, k, γ) is infeasible. Otherwise,

we know that the Oracle does not fail for T iterations; by Theorem 5 and Lemma 7, it

holds that for λ̄ , 1
T

∑T
t=1 λ(t), w̄ , 1

T

∑T
t=1 w(t), (λ̄ − 3δ, w̄ − δ) is a feasible solution for

P-SDP(G, W, k, γ − 3δ) = P-SDP(G, W, k, γ − δ′γ).

Now we analyse the algorithm’s runtime. By Theorem 8 and the approximate computation

of X(t+1), each iteration can be implemented in Õ(n + m) time. Thus, in Õ((n + m)/γ2)

time, we either find a solution to our SDP with objective value at least (1 − δ′)γ for any

constant γ′ > 0, or we certify that the P-SDP(G, W, k, γ) is infeasible (in case the Oracle

fails). ◭

3 Algorithm for subgraph sparsification

Now we give an overview of our efficient algorithm for constructing subgraph sparsifiers. Recall

that, for any k ∈ N, parameter κ ≥ 1, and two weighted graphs G = (V, E) and W = (V, EW ),

the subgraph sparsification problem is to find a set F ⊆ EW of |F | = O(k) edges with weights

{we}e∈F , such that the resulting graph H = (V, E + F ) is a κ-approximation of G + W , i.e.,

LG+W � LG +
∑

e∈F

webeb⊺e � κ · LG+W . (3)

To construct the required edge set F , we apply the standard reduction for constructing graph

sparsifiers by setting ve , L
†/2
G+W be for every e ∈ EW , and (3) is equivalent to

Iim(LG+W ) � L
†/2
G+W LGL

†/2
G+W +

∑

e∈F

wevev⊺

e � κ · Iim(LG+W ),

where Iim(LG+W ) is the identity on im(LG+W ). Our main result is summarised as follows:

◮ Theorem 9. Let ε and q be arbitrary constants such that ε ≤ 1/20 and q ≥ 10. Then,

there is a randomised algorithm such that, for any two graphs G = (V, E) and W = (V, EW )

defined on the same vertex set as input, by defining X =
(

L
†/2
G+W LGL

†/2
G+W

) ∣∣∣
Im(LG+W )

and

M , (
∑m

i=1 viv
⊺

i ) |Im(LG+W ) where every vi is of the form L
†/2
G+W be for some edge e ∈ EW ,

the algorithm outputs a set of non-negative coefficients {ci}m
i=1 with |{ci | ci 6= 0}| = K for

some K = O
(
qk/ε2

)
such that it holds for some constant C that

C · (1−O(ε)) ·min{1, K/T} · λk+1(X) · I � X +

m∑

i=1

civiv
⊺

i � (1 + O(ε)) · I, (4)

where T ,
⌈
tr
(
M
)⌉

. Moreover, if we assume that every vi is associated with some cost

denoted by costi such that
∑m

i=1 costi = 1, then with constant probability the coefficients

{ci}m
i=1 returned by the algorithm satisfy

∑m
i=1 ci · costi ≤ O(1/ε2) · min{1, k/T}. The

algorithm runs in time

Õ

(
min

{
nω,

mk + nk2

√
λk+1(X)

}
+ q · nO(1/q)

(
mn2/q

ε2+2/q
+ min

{
nω, mk + nk2 + kω

})/
ε5

)
.

Without loss of generality, we assume that M is a full-rank matrix, which can be

achieved by adding n self-loops each of small weight γ = Θ(1/poly(n)), so that with constant

probability these self-loops will not be sampled by the algorithm.
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Iteration j Iteration j + 1 Final iteration τ

Figure 1 Illustration of the BSS framework: the light grey and orange balls in iteration j represent

the spheres uj · I and ℓj · I, and the cyan ellipsoid sandwiched between the two balls corresponds to

the constructed ellipsoid in iteration j. After each iteration j, the algorithm increases the value of

ℓj and uj by some δℓ,j and δu,j so that the invariant (5) holds in iteration j + 1. This process is

repeated for τ iterations, so that the final constructed ellipsoid is close to be a sphere.

3.1 Overview of our algorithm

The BSS framework. At a high level, our algorithm follows the BSS framework for construct-

ing spectral sparsifiers [6]. The BSS algorithm proceeds by iterations: in each iteration j the

algorithm chooses one or more vectors, denoted by vj1
, . . . , vjk

, and adds ∆j =
∑k

i=1 cji
vji

v⊺

ji

to the currently constructed matrix by setting Aj = Aj−1 + ∆j , where cj1
, . . . , cjk

are scaling

factors, and A0 = 0 initially. Moreover, two barrier values, the upper barrier uj and the

lower barrier ℓj , are maintained such that the constructed ellipsoid Ellip(Aj) is sandwiched

between the outer sphere uj · I and the inner sphere ℓj · I for any iteration j. To ensure this,

all the previous analysis uses a potential function Φ(Aj , uj , ℓj) defined by

Φ (Aj , uj , ℓj) = tr[f(ujI −Aj)] + tr[f(Aj − ℓjI)]

for some function f , and a bounded value of Φ (Aj , uj , ℓj) implies that

ℓj · I ≺ Aj ≺ uj · I. (5)

After each iteration, the two barrier values ℓj and uj are increased properly by setting

uj+1 = uj + δu,j and ℓj+1 = ℓj + δℓ,j for some positive values δu,j and δℓ,j . The careful

choice of δu,j and δℓ,j ensures that after τ iterations Ellip(Aτ ) is close to being a sphere,

which implies that Aτ is a spectral sparsifier of ℓτ · I, see Figure 1 for illustration.

The BSS framework for subgraph sparsification. The BSS framework ensures that, when

starting with the zero matrix, after choosing O(n) vectors, the final constructed matrix

is close to I. However, applying the BSS framework to construct a subgraph sparsifier is

significantly more challenging due to the following two reasons:

Instead of starting with the zero matrix, we need to start with some non-zero matrix

A0 = X, and the number of added vectors is K = O(k), which could be much smaller

than n. This implies that the ellipsoid corresponding to the final constructed matrix

could be still very far from being a sphere.

Because of this and every rank-one update has different contribution towards each

direction in R
n, to “optimise” the contribution of O(k) rank-one updates we have to

ensure that the added vectors will significantly benefit the “worst subspace”, the subspace

in R
n that limits the approximation ratio of the final constructed sparsifier.

To address these two challenges, in the celebrated paper Kolla et al. [22] propose to keep

track of the algorithm’s progress with respect to two subspaces, each of which is measured

by some potential function. Specifically, in each iteration j they define Aj , X +
∑

i civiv
⊺

i ,
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where
∑

i civiv
⊺

i is the sum of currently picked rank-one matrices after reweighting during

the first j iterations. For the upper barrier value uj in iteration j, they define the upper

potential function

Φuj (Aj) , tr
(
PL(Aj) (ujI −Aj) PL(Aj)

)†
,

where L(Aj) is the T -dimensional subspace of Aj spanned by the T largest eigenvectors of

Aj and PL(Aj) is the projection onto that subspace. Notice that Φuj (Aj) is defined with

respect to a variable space L(Aj) that changes after every rank-one update, in order to upper

bound the maximum eigenvalue of the final constructed matrix in the entire space. Similarly,

for the same matrix Aj and lower barrier ℓj in iteration j, they define the lower potential

function by

Φℓj
(Bj) , tr (PS(Bj − ℓjI)PS)

†
,

where PS is the orthogonal projection onto S, the subspace generated by the bottom k eigen-

vectors of X, and the matrix Bj is defined by Bj = Z(Aj−X)Z, for Z = (PS(I −X)PS)
†/2

.

Since the total number of chosen vectors is K = O(k), instead of expecting the final construc-

ted matrix Aτ approximating the identity matrix, the objective of the subgraph sparsification

is to find coefficients {ci} with K = O(k) non-zeros such that the following two conditions

hold for some positive constants θmin, θmax:

it holds that X +
∑m

i=1 civiv
⊺

i � θmaxI, and

it holds that
∑m

i=1 ciZviv
⊺

i Z � θminPS .

Informally, the first condition above states that the length of any axis of Ellip(Aj) is up-

per bounded, and the second condition ensures that the final matrix Aτ has significant

contribution towards the bottom k eigenspace X. In other words, instead of ensuring

ℓj · I ≺ Aj ≺ uj · I, Φuj (Aj) and Φℓj
(Bj) are used to “quantify” the shapes of the two

ellipsoids with different dimensions:

The function Φuj (Aj) studies the ellipsoid Aj projected onto its own top eigenspaces, the

subspace that changes after each iteration;

The function Φℓj
(Bj) studies Aj −X projected onto the bottom k eigenspace of X, the

subspace that remains fixed during the entire BSS process.

Proving the existence of some vector in each iteration so that the algorithm will make

progress is much more involved, and constitutes one of the key lemmas used in [22] for

constructing a subgraph sparsifier. However, the subgraph sparsification algorithm in [22]

requires the computation of the projection matrices PL(Aj) in each iteration. Because of this,

the algorithm presented in [22] runs in Ω
(
n2mk

)
time.

Our approach. At a very high level, our algorithm and its analysis can be viewed as a

neat combination of the algorithm presented in [26] and the algorithm presented in [22].

Specifically, for any iteration j with the constructed matrix Aj , we set Bj , Z(Aj −X)Z,

where Z , (PV(I −X)PV)
†/2

, and define the two potential functions by

Φuj (Aj) , tr
(
PL(Aj) (ujI −Aj) PL(Aj)

)†q
,

and

Φℓj
(Bj) , tr (PV(Bj − ℓjI)PV)

†q

for some fixed projection matrix PV , projecting on a k-dimensional subspace S′. Similar

with [26], with the help of the q-th power in the definition of Φuj (Aj) and Φℓj
(Bj) we show

that the eigenvalues of our constructed matrices Aj and Bj are never very close to the
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two barrier values uj and ℓj . Moreover, although the top T -eigenspace of the currently

constructed matrix Aj changes after every rank-one update, multiple vectors can still be

selected according to some probability distribution in each iteration.

However, when combining the randomised BSS framework [26] with the algorithm presen-

ted in [22], we have to take many challenging technical issues into account. In particular,

we need to address the following issues: (1) Both the algorithm and its analysis in [22]

crucially depend on the projection matrix PS , of which the exact computation is expensive.

Therefore, in order to obtain an efficient algorithm for subgraph sparsification, one needs

to obtain some projection matrix close to PS and such projection matrix can be computed

efficiently. (2) As indicated by our definition of Φℓj
(Bj) above, developing a fast subgraph

sparsification algorithm would require efficient approximation of polynomials of the matrix

(PV(Bj − ℓjI)PV)q. In comparison with [26], the fixed projection matrix PV sandwiched

between two consecutive (Bj − ℓjI) makes computing the required quantities much more

challenging.

To address these issues, we prove that there is a k-dimensional subspace S′ close to S,

and all of our required quantities that involve the projection onto S′, denoted by PV , can

be computed efficiently. Moreover, we prove that the quality of our constructed subgraph

sparsifer based on the “approximate projection” PV is the same as the one constructed by

[22], in which the “optimal projection” PS is needed. Our result regarding the approximate

subspace S′ is summarised as follows:

◮ Lemma 10. There is an algorithm that computes a matrix V = L−1/2V for matrix V in

t10 , min
{

O(nω), Õ

(
mk+nk2√

λk+1(X)

)}
time, such that with constant probability the following

two properties hold: (1) PV = V V ⊺ is a projection matrix on a k-dimensional subspace S′ of

R
n; (2) For any u ∈ R

n satisfying u⊺V = 0, we have that

u⊺Xu

u⊺u
≥ λk+1(X)

2
.

We highlight that, in comparison to [26], in our setting the upper and lower potential functions

keep track of two different subspaces whose dimensions are of different orders in most regimes,

i.e., k versus T , and this makes our analysis much more involved than [26]. On the other

side, we also show that the algorithm in [26] can be viewed as a special case of our algorithm,

and from this aspect our algorithm presents a general framework for constructing spectral

sparsifiers and subgraph sparsifiers.

3.2 Description of our algorithm

Our algorithm proceeds in iterations in which multiple vectors are sampled with different

probabilities. In each iteration j, Aj is updated by setting Aj+1 = Aj + ∆j , where ∆j

is the sum of the sampled rank-one matrices with reweighting. To compensate for this

change, the two barriers uj and ℓj are increased by δu,j and δℓ,j . The algorithm terminates

when the difference of the barriers is greater than α, defined by α , 4k/Λ. Specifically, in

the initialisation step, the algorithm sets A0 , X,u0 , 2 + λmax(X), ℓ0 , −2k/Λ, where

Λ , max{k, T}. In each iteration j, the algorithm keeps track of the currently constructed

matrix Aj and hence, also of the matrix Bj , Z(Aj−X)Z, where Z , (PV(I−X)PV)†/2 for

some fixed projection matrix PV . Intuitively, the projection matrix PV used here is close to

PS , but can be approximated more efficiently than computing PS precisely. In each iteration

j, the algorithm starts by computing the relative effective resistances, which are defined as
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Ri(Aj , Bj , uj , ℓj) , v⊺

i (ujI −Aj)
−1

vi + v⊺

i Z (PV(Bj − ℓjI)PV)
†

Zvi,

for all vectors vi. Then, the algorithm computes the number of vectors Nj that will be

sampled, which can be written as

Nj ,

(
ε

4ρj
· λmin

[
(ujI −Aj)−1M

]
· λmax

(
(ujI −Aj)−1M

)

tr
[
(ujI −Aj)−1M

]
)2ε/q

· ρj

·min

{
1

λmax

(
(ujI −Aj)−1M

) ,
1

λmax (PV(Bj − ℓjI)PV)
†

}
,

where

ρj ,

m∑

t=1

Rt(Aj , Bj , uj , ℓj) = tr
[
(ujI −Aj)−1M

]
+ tr [PV(Bj − ℓjI)PV ]

†
.

Next, the algorithm samples Nj vectors such that every vi is sampled with probability

proportional to Ri(Aj , Bj , uj , ℓj), i.e., the sampling probability of every vi is defined by

p(vi) ,
Ri(Aj , Bj , uj , ℓj)∑m

t=1 Rt(Aj , Bj , uj , ℓj)
.

For every sampled vi, the algorithm scales it to

wi ,

√
ε

q ·Ri(A, B, u, ℓ)
· vi,

and gradually adds wiw
⊺

i to Aj . After each rank-one update, the algorithm increases the

barrier values by the average increases

δu,j ,
(1 + 3ε) · ε

q · ρj
and δℓ,j ,

(1− 3ε) · ε
q · ρj

,

and checks whether the terminating condition of the algorithm is satisfied. Note that between

two consecutive iterations j and j + 1 of the algorithm, the two barriers uj and ℓj are

increased by δu,j , Nj · δu,j and δℓ,j , Nj · δℓ,j , respectively.

The formal description of our algorithm is presented in Algorithm 2. We remark that,

in contrast to the algorithm for constructing a spectral sparsifier [26], the total number of

vectors needed in the final iteration j could be much smaller than O(Nj). This is why our

algorithm performs a sanity check in Line 15 after every rank-1 update wiw
⊺

i .

3.3 Proof sketch of Theorem 9

In this subsection we give an overview of the main techniques used for proving Theorem 9.

We refer the reader to the full version of our paper for a more detailed discussion.

Approximation Guarantee

Firstly, we will focus on showing that, at the end of Algorithm 2, (4) holds. The result is

summarised in the following lemma, whose proof will be left for the end of this subsection.
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Algorithm 2 Algorithm for constructing subgraph spectral sparsifiers.

Require: ε ≤ 1/20, q ≥ 10

1: u0 = 2 + λmax(X), ℓ0 = −2k/Λ ⊲ Here u0 and ℓ0 are the initial barrier values

2: û = u0 and ℓ̂ = ℓ0 ⊲ Here û and ℓ̂ are the current barrier values

3: j = 0 ⊲ j will be the index of the current iteration

4: A0 = X, B0 = 0

5: while û− ℓ̂ > α + u0 − ℓ0 do ⊲ Start of iteration j

6: Compute Rt(Aj , Bj , ℓj , uj) and hence p(vt) for all vectors vt

7: Compute Nj

8: Sample Nj vectors v1, . . . vNj
according to p

9: Set Wj ← 0

10: for every subphase i = 1 . . . Nj do ⊲ Start of subphase i

11: wi ←
√

ε
q·Ri(Aj ,Bj ,uj ,ℓj) · vi

12: Wj ←Wj + wiw
⊺

i

13: û← û + δu,j

14: ℓ̂← ℓ̂ + δℓ,j

15: if û− ℓ̂ > α + u0 − ℓ0 then

16: Stop at the current subphase ⊲ End of subphase i

17: Aj+1 ← Aj + Wj

18: Bj+1 ← Z(Aj+1 −X)Z

19: j = j + 1 ⊲ End of iteration j

20: Return M = Aj

◮ Lemma 11. The condition number of the returned matrix Aτ after τ iterations is at most

1 + O(ε) ·max{1, T/k}. Moreover, it holds that

λmin (Aτ ) ≥ c · (1−O(ε)) · λk+1(X) min{1, k/T},

for some constant c.

The above result is based on the following technical lemma:

◮ Lemma 12. For all iterations j, the following invariant is preserved by Algorithm 2

Aj ≺ (1− η)uj · I and PVBjPV � (ℓj + |ℓj |η)PV ,

for some parameter η = O
(

ε2+2/q

n2/q

)
.

In order to prove Lemma 12, we need to develop a sequence of results. For the moment, we

fix an iteration j. Recall that in this iteration the algorithm samples Nj vectors independently

from {vi}m
i=1 such that each sampled vector vi is further scaled to wi. Moreover, the algorithm

keeps track of the matrix

Wj ,

Nj∑

i=1

wiw
⊺

i .

Our choice of Nj ensures that, with high probability, the matrix Wj has bounded eigenvalues

with respect to the matrix Aj .
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◮ Lemma 13. Assume that the number of samples satisfies

Nj ≤

(
ε

4ρj
· λmin

[
(ujI − Aj)−1M

]
·

λmax

(
(ujI − Aj)−1M

)

tr
[
(ujI − Aj)−1M

]
)2ε/q

· ρj ·
1

λmax

(
(ujI − Aj)−1M

) .

Then it holds that

P

[
0 �Wj �

1

2
(ujI −Aj)

]
≥ 1− ε

2n
.

Notice that if Wj � 1
2 (ujI −Aj), Wj ’s contribution towards the direction of Aj ’s eigenvector

associating with its largest eigenvalue is upper bounded. Thus, conditioned on this event, we

can control better the eigenvalues of the resulting matrix Aj+1 = Aj + Wj . Formally, we

show the following result:

◮ Lemma 14. It holds that

E

[
Φuj+1(Aj+1)

∣∣0 �Wj �
1

2
(ujI −Aj)

]
≤ Φuj (Aj) and

E

[
Φℓj+1

(Bj+1)
∣∣0 �Wj �

1

2
(ujI −Aj)

]
≤ Φℓj

(Bj).

Finally, we show that the careful choice of Nj ensures that a sufficiently large number of

vectors are sampled in each iteration. This implies that the total number of iterations

executed by the algorithm cannot be too large. The result is summarised below:

◮ Lemma 15. With probability at least 4/5, Algorithm 2 finishes in at most

τ ≤ 80q

3ε2
· 1

cN
· Λ(1+2ε)/q

iterations, where cN = Ω
(

(1/(poly(n))
2ε/q

)
.

We are now ready to prove the main technical lemma.

Proof of Lemma 12. By Lemma 13, Lemma 15 and the union bound, with probability at

least 3/4, all matrices picked in

τ ≤ 80q

3ε2
· 1

cN
· Λ(1+2ε)/q ≤ 80q

3ε2
· nc/q

iterations, for some small constant c < q, satisfy Wj � 1
2 (ujI − Aj) for all iterations j.

Therefore, by Lemma 14 and conditioning on the event that ∀i : Wi � 1/2 · (uiI − Ai) we

have that

E
[
Φuj (Aj)

∣∣∀i : Wi � (1/2) · (uiI −Ai)
]
≤ Φu0(A0) ≤ T

2q

and

E
[
Φℓj (Bj)

∣∣∀i : Wi � (1/2) · (uiI −Ai)
]
≤ Φℓ0

(B0) ≤ k ·
(

Λ

2k

)q

.

By Markov’s inequality, it holds with high probability that

(Φuj (Aj))
1/q

= O
(

T 1/q · τ1/q
)

and
(
Φℓj

(Bj)
)1/q

= O

(
k1/q · Λ

k
· τ1/q

)
.
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For any eigenvalue of Aj , say λi, we have

(uj − λi)
−q ≤ (uj − λmax(Aj))−q <

n∑

t=n−T +1

(uj − λt(Aj))
−q

= Φuj (Aj).

Therefore, it holds that

λi < uj − (Φuj (Aj))
−1/q ≤ uj −O

(
1

T 1/q
· 1

τ1/q

)
≤ uj −O

(
2

T 1/q
·
(

ε2

qnc/q

)1/q
)

.

Since uj is O(1/ε2) and T ≤ n, we can choose η = O
(

ε2+2/q

n2/q

)
such that Aj ≺ (1− η)ujI.

The second statement can be shown in a similar way, i.e., we show that for any nonzero

eigenvalue λi of Bj , it holds that λi ≥ ℓj +
(
Φℓj

(Bj)
)−1/q

. Hence

λi ≥ ℓj + Ω

(
1

k1/q
· k

Λ
·
(

ε2

qnc/q

)1/q
)

.

Since |ℓj | = O
(

k
Λ · 1/ε

)
and k ≤ n, we can choose η = O

(
ε2+2/q

n2/q

)
such that PVBjPV �

(ℓj + |ℓj |η)PV . ◭

Proof sketch of Lemma 11. Notice that it holds for any iteration j that

δu,j − δℓ,j

δu,j

=
6ε

1 + 3ε
,

which implies that

δu,j =
1 + 3ε

6ε

(
δu,j − δℓ,j

)
≥ 1

6ε

(
δu,j − δℓ,j

)
.

Let uτ and ℓτ be the barrier values when the algorithm terminates, and our goal is to show

that

uτ

ℓτ
=

(
1− uτ − ℓτ

uτ

)−1

= 1 + O(ε) ·max{1, T/k},

which suffices to prove that

uτ − ℓτ

uτ
= O(ε) ·max{1, T/k}.

By definition, we know that

uτ − ℓτ

uτ
≤ u0 − ℓ0 + α

u0 + (6ε)−1α
≤ 3 + 6k/Λ

2 + (6ε)−14k/Λ
≤ O(ε) ·max{1, T/k},

where the last inequality holds by the definition of Λ. Similar with [22], in the full version of

the paper we prove that

λmin (AK) ≥ θminλk+1(X)/2
(

(λk+1(X)/2)
1/2

+ θ
1/2
min + θ

1/2
max

)2 .

assuming that λmax(Aτ ) ≤ θmax and λmin

(
BK

∣∣
S′

)
≥ θmin. By setting θmin = ℓτ and

θmax = uτ , the inequality above implies the second statement of the lemma. ◭
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The results for the total number of edges (vectors) sampled as well as the assigned costs

are summarised below. Due to space constraints, we defer the proofs to the full version of

the paper.

◮ Lemma 16. With probability at least 3/4, Algorithm 2 terminates after choosing at most

K =
20 · q k

3 · ε2

vectors.

◮ Lemma 17. It holds with constant probability that
∑m

i=1 ci · costi = O(1/ε2) ·min{1, k/T}.

Runtime analysis

Now we discuss a fast approximation of the quantities needed for our subgraph sparsification

algorithm. We fix an arbitrary iteration j, and drop this subscript for simplicity. A careful

inspection tells us that the efficiency of our algorithm is based on the fast approximation of

the following quantities:

1. v⊺

i Z (PV (B − ℓI) PV)
†

Zvi

2. λmax (PV(B − ℓI)PV)
†

3. λmin

[
(uI −A)−1M

]

4. λmax

[
(uI −A)−1M

]

5. tr
[
(uI −A)−1M

]

6. v⊺

i (uI −A)
−1

vi

These are precisely the nontrivial quantities required to compute the values N and

Ri(A, B, u, ℓ) for all vectors vi. As previously mentioned, for the first two items we use the

approximate projection PV instead of the actual projection PS on the bottom k eigenspace

of X. This is done in order to overcome the expensive exact computation of PS . We also

remark that, while PV = V V ⊺ for some unitary matrix V is used in our previous analysis,

we do not need to compute the matrices V or PV explicitly. Instead, it suffices to compute

the matrix V , L
−1/2
G+W V in order to approximate our required quantities (1), (2). The fast

computation of V builds upon the work of [2] and our result is summarised in Lemma 10.

Once we have access to the matrix V, we can efficiently approximate the above quantities

(1)–(6). The techniques we used are inspired from the previous work [4, 26]. However, the

presence of the matrix M as well as the projection PV make the computations nontrivial and

require extra work. We summarise our results bellow and refer the reader to the full version

of the paper for the details of each individual approximation.

◮ Lemma 18. Let j be an arbitrary iteration of Algorithm 2. We can approximately compute

the quantities (1)–(6), for all vectors vi in time

titeration = Õ

((
mn2/q

ε2+2/q
+ min

{
nω, mk + nk2 + kω

})
/ε3

)
.

The running time of Algorithm 2 is analysed in the next lemma.

◮ Lemma 19. Assuming Algorithm 2 finishes in τ = O
(
q · nO(1/q)/ε2

)
iterations, then the

total running time is

talg = Õ

(
min

{
nω,

mk + nk2

√
λk+1(X)

}
+ q · nO(1/q)

(
mn2/q

ε2+2/q
+ min

{
nω, mk + nk2 + kω

})
/ε5

)
.
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Proof. By Lemma 10, we can compute the matrix V in time t10 =min
{

O(nω),Õ

(
mk+nk2√

λk+1(X)

)}
.

This is computed only once and will be used throughout every iteration.

By Lemma 18, the running time in each iteration is

titeration = Õ

((
mn2/q

ε2+2/q
+ min

{
nω, mk + nk2 + kω

})
/ε3

)
.

Thus, the algorithm’s overall running time is

talg , t10 + τ · titeration

= Õ

(
min

{
nω,

mk + nk2

√
λk+1(X)

}
+ q · nO(1/q)

(
mn2/q

ε2+2/q
+ min

{
nω, mk + nk2 + kω

})
/ε5

)
.

◭

4 Proof of the main theorem

Finally we apply our fast SDP solver and the subgraph sparsification algorithm to design an

algorithm for the spectral-augmentability problem, and prove Theorem 1. We first give an

overview of the main algorithm: for any input G = (V, E), the set EW of candidate edges,

and parameter k, our algorithm applies the doubling technique to enumerate all the possible

γ under which the input instance is (k, γ)-spectrally augmentable: starting with the initial

γ, which is set to be 1/n1/q and increases by a factor of 2 each time, the algorithm runs

the SDP solver, a subgraph sparsification algorithm, and a Laplacian solver to verify the

algebraic connectivity of the output of our subgraph sparsification algorithm. The algorithm

terminates if the algebraic connectivity is greater than some threshold at some iteration, or

it is below the initial threshold. See Algorithm 3 for formal description.

The following lemma will be used in our analysis.

◮ Lemma 20. Let γ > 0. If G = (V, E) is (k, γ∆)-spectrally-augmentable with respect to

W = (V, EW ), then the SDP solver finds a feasible solution (λ̂, w) to P-SDP(G, W, k, (1−δ′)γ),

and the subgraph sparsification algorithm with input G, EW , k, ε, q and weights {we : e ∈
E∪EW } will find a graph H = (V, E∪F ) with F ⊆ EW , λ2(LH) ≥ c1γ2 ·∆, |F | ≤ O(qk/ε2)

and total new weights of edges in F at most O(k/ε2).

Proof. If G is (k, γ∆)-spectrally-augmentable with respect to W , then there exists a

feasible solution to P-SDP(G, W, k, γ) and our SDP solver will find a solution (λ̂, w) to

P-SDP(G, W, k, (1− δ′)γ), for any constant δ′ > 0. Note that λ̂ ≥ (1− δ′)γ. Now we use the

subgraph sparsification algorithm to sparsify the SDP solution.

We apply Theorem 9 to graphs G, W , by setting V = im(LG+W ) = ker(LG+W )⊥,

X =
(

L
†/2
G+W LGL

†/2
G+W

)
|V

and Ye = we

(
L

†/2
G+W LeL

†/2
G+W

)
|V

, and M =
∑

e∈EW
Ye, K =

O(qk/ε2), λ∗ = λk+1(X) and coste = we∑
f∈EW

wf
. Note that T = ⌈tr(M)⌉ ≤ k. This is true

since
∑

e∈EW
we ≤ k , L

†/2
G+W LeL

†/2
G+W � I, L

†/2
G+W LeL

†/2
G+W is a rank one matrix and has

trace at most 1. We get a set of coefficients {ce} supported on at most K edges, such that

C(1−O(ε)) ·min{1, K/T} · λk+1(X) ≤ λmin

(
X +

∑

e∈EW

ceYe

)

≤ λmax

(
X +

∑

e∈EW

ceYe

)
≤ 1 + O(ε).
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Algorithm 3 Algorithm for augmenting the algebraic connectivity.

Require: the base graph G = (V, E), and the set EW of m edges defined on V , and k ∈ Z
+.

1: γ0 ← 1/n
1
q ;

2: γ ← γ0;

3: α← 0;

4: F ← ∅; ⊲ the set of edges added to G

5: while γ < 1 do

6: γ ← 2 · γ, and run the SDP solver from Theorem 2 for P-SDP(G, W, k, γ)

7: if the solver certifies that P-SDP(G, W, k, γ) is infeasible then

8: if α = 0 then

9: Abort and output Reject.

10: else

11: return graph H = (V, E(G) ∪ F ). ⊲ λ2(LH) ≥ c1α2∆

12: else the solver finds a feasible solution for P-SDP(G, W, k, 0.9γ) with weights

{we}e∈EW

13: α← γ

14: Let H = (V, E(G) ∪ F ) be the output of our subgraph sparsification algorithm

with edge weights {we}e∈EW
, q, k and a sufficiently small constant ε.

15: η2 ← a 1.1-approximation of λ2(LH) ⊲ apply the Laplacian solver to compute η2

16: if η2 ≤ O
(
∆ · n−2/q

)
then

17: Abort and output Reject.

From the above and the fact that T ≤ k, K = O(qk/ε2), we have that

λ2

(
LG +

∑

e

ceweLe

)
≥ C(1−O(ε)) ·min{1, K/T} · λk+1(X) · λ2

(
LG +

∑

e

weLe

)

≥ C ′ · λk+2(LG)

4∆
· λ̂ ·∆

=
C ′

4
· λ̂ · λk+2(LG)

for some constant C ′ > 0, where the last inequality follows from the fact that

λi(X) = λi

((
L

†/2
G+W LGL

†/2
G+W

) ∣∣∣
V

)
≥ λi+1(LG)

4D
,

for any i ≥ 1.

⊲ Claim 21. It holds that λk+2(LG) ≥ λOPT, the maximum algebraic connectivity of adding

a subset set of k edges from EW to G.

Proof. Let LR be the Laplacian matrix of the graph which is formed by the optimum solution

R. Then dim ker(LR) ≥ n−k as rank(LR) ≤ |E| ≤ k. Consider the space S spanned by all the

eigenvectors of LG corresponding to λ2(LG), . . . , λk+2(LG). Since dim(S)+dim ker(LR) > n,

there exists a unit vector v ∈ ker(LR) ∩ dim(S) such that v⊥1, and

v(LG + LR)v⊺ ≤ λk+2(LG) + 0 = λk+2(LG).

This further implies that λOPT = λ2(LG + LR) ≤ λk+2(LG). ⊳
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Therefore, if we let F = {e : e ∈ EW , ce > 0} and set the edge weights to be {ce ·we : e ∈
F}, then the resulting graph H = (V, E + F ) with the corresponding weights satisfies that

λ2(LH) = λ2

(
LG +

∑

e

ceweLe

)
≥ c · γ · λOPT ≥ c · γ2∆

for some constant c > 0, where the last inequality follows from the assumption G is (k, γ∆)-

spectrally-augmentable with respect to W and thus λOPT ≥ γ∆. Since

∑

e∈EW

coste · ce ≤ O(1/ε2) min{1, K/T} = O(1/ε2),

the total weights of added edges become

∑

e∈EW

cewe =

(
∑

e∈EW

we

)
·
(
∑

e∈EW

coste · ce

)
O(1/ε2) · k = O(k/ε2). ◭

Finally, we are ready to prove the main theorem of the paper.

Proof of Theorem 1. Let G and W be the input to Algorithm 3. Note that the algorithm

only returns a subgraph H with λ2(LH) ≥ c1γ2
0∆, and H contains at most K = O(kq) edges

from EW . Hence, if G is not (O(kq), c1γ2
0∆)-spectrally-augmentable with respect to W , then

the algorithm will reject the input instance.

Without loss of generality, in the following analysis we assume that G is (k, λ⋆∆)-

augmentable for some λ⋆ > γ0, where λ⋆∆ is the optimum solution. In this case, by the

geometric search over γ in the algorithm, when γ ∈ ( λ⋆

2 , λ⋆), the SDP solver will find a feasible

solution for P-SDP(G, W, k, 0.9γ) and the graph H returned by the subgraph sparsification

algorithm with input G, W, q, k and constant ε satisfies that λ2(LH) ≥ c1γ2∆ ≥ c′
1λ2

⋆∆. If

γ ≥ λ⋆, then the algorithm will either return the graph H that we constructed corresponding

to the value γ ∈ ( λ⋆

2 , λ⋆), or finds a graph H with λ2(LH) ≥ c1γ2∆ ≥ c′
1λ2

⋆∆. By Lemma 20,

the number of added edges and the total sum of their weights are O(qk) and O(k), respectively.

Furthermore, since λ⋆ ≥ γ0, it only takes O(log n) iterations to reach γ with γ ∈ ( λ⋆

2 , λ⋆).

In each iteration, by Theorem 2, the running time for solving P-SDP(G, W, k, 0.9γ) for γ ≥ γ0

is Õ(m + n)/γ2) = Õ((m + n)nO(1/q)); by Theorem 9, the time for applying subgraph

sparsification with input G, W and constant ε is Õ(min
{

qnω+O(1/q), q(m + n)nO(1/q)k2
}

).

For the latter, we note that whenever we apply the subgraph sparsification from Theorem 9,

the corresponding matrix X satisfies that

λk+1(X) ≥ λk+2(LG)

4∆
≥ λOPT

4∆
=

λ⋆∆

4∆
≥ γ0∆

4∆
= Ω

(
n−1/q

)

and thus we obtain the claimed runtime. Furthermore, we can compute an estimate η2 of

λ2(LH) by the algorithm given in [41], which takes Õ(|E(H)|+n) = Õ(n+k) time. Thus, the

total running time is Õ
(
min

{
qnω+O(1/q), q(m + n)nO(1/q)k2

})
. This completes the proof of

the theorem. ◭
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