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Abstract. Low-level clouds (LLCs) cover a wide area of

southern West Africa (SWA) during the summer monsoon

months and have an important cooling effect on the regional

climate. Previous studies of these clouds have focused on

modelling and remote sensing via satellite. We present the

first comprehensive set of in situ measurements of cloud mi-

crophysics from the region, taken during June–July 2016, as

part of the DACCIWA (Dynamics–aerosol–chemistry–cloud

interactions in West Africa) campaign. This novel dataset al-

lows us to assess spatial, diurnal, and day-to-day variation in

the properties of these clouds over the region.

LLCs developed overnight and mean cloud cover peaked a

few hundred kilometres inland around 10:00 local solar time

(LST), before clouds began to dissipate and convection inten-

sified in the afternoon. Regional variation in LLC cover was

largely orographic, and no lasting impacts in cloud cover re-

lated to pollution plumes were observed downwind of major

population centres.

The boundary layer cloud drop number concentration

(CDNC) was locally variable inland, ranging from 200 to

840 cm−3 (10th and 90th percentiles at standard tempera-

ture and pressure), but showed no systematic regional varia-

tions. Enhancements were seen in pollution plumes from the

coastal cities but were not statistically significant across the

region. A significant fraction of accumulation mode aerosols,

and therefore cloud condensation nuclei, were from ubiqui-

tous biomass burning smoke transported from the Southern

Hemisphere.

To assess the relative importance of local and transported

aerosol on the cloud field, we isolated the local contribution

to the aerosol population by comparing inland and offshore

size and composition measurements. A parcel model sensi-
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tivity analysis showed that doubling or halving local emis-

sions only changed the calculated cloud drop number con-

centration by 13 %–22 %, as the high background meant lo-

cal emissions were a small fraction of total aerosol. As the

population of SWA grows, local emissions are expected to

rise. Biomass burning smoke transported from the Southern

Hemisphere is likely to dampen any effect of these increased

local emissions on cloud–aerosol interactions. An integrative

analysis between local pollution and Central African biomass

burning emissions must be considered when predicting an-

thropogenic impacts on the regional cloud field during the

West African summer monsoon.

1 Introduction

During the summer monsoon in June–September, large ar-

eas of southern West Africa (SWA) are covered by low-

level clouds (LLCs), which form overnight and thicken in the

morning, before breaking up in the early afternoon (van der

Linden et al., 2015). By presenting a high albedo surface

close to the ground, these clouds generate a strong surface

cooling. Many climate models struggle to accurately repre-

sent LLCs (Hannak et al., 2017), and measurements of LLCs

(and their radiative interactions with higher-level cloud lay-

ers) are a key uncertainty in the quantification of the over-

all cloud radiative effect in SWA (Hill et al., 2018). Most

of the population centres in SWA are located near the coast,

and plumes of local anthropogenic pollution are transported

inland (Deroubaix et al., 2019), potentially being entrained

into cloud base. Over the coming decades, the population of

SWA is expected to undergo large increases (United Nations,

2017), leading to corresponding increases in emissions of an-

thropogenic pollution (Liousse et al., 2014). Such increases

may affect dynamics and cloud microphysics in the region,

and it is therefore of interest to determine any impact on the

regional climate such as changes in cloud cover and precipi-

tation (Knippertz et al., 2015b).

The DACCIWA (Dynamics–aerosol–chemistry–cloud in-

teractions in West Africa) project (Knippertz et al., 2015a)

was developed to provide a comprehensive overview of

cloud–aerosol–precipitation interactions in the region. The

program studied different scales, from local emission mea-

surements near source to regional sampling using aircraft, re-

mote sensing, and model analyses. This study focuses mostly

on in situ cloud measurements made during the DACCIWA

aircraft campaign (Flamant et al., 2018b), which took place

between 29 June and 16 July 2016. Three research aircraft,

each equipped with a suite of atmospheric measurement

probes, were based out of Lomé, Togo, and conducted 50

research sorties flying over Togo, Benin, Ghana, and Côte

d’Ivoire, of which 33 included in situ sampling of cloud prop-

erties.

The flying campaign took place in typical, post-onset West

African monsoon conditions (Knippertz et al., 2017). In the

daytime continental boundary layer, the southwesterly mon-

soon flow dominates the wind field, particularly in the lower

kilometre of the atmosphere. Above around 1.5–2 km, the

wind direction shifts to easterly, and some easterly waves and

vortices passed through the region during the study period

(Knippertz et al., 2017). Near the coast, winds are slowed

by boundary layer turbulence, generating sea breeze clouds

along a convergence front that moves up to a few tens of kilo-

metres inland during the day (Adler et al., 2017; Deetz et al.,

2018b; Flamant et al., 2018a). As the turbulence subsides in

the evening, the monsoon flow strengthens to bring this front

inland as the nocturnal low-level jet (NLLJ), a strong flow of

cool and humid maritime air, often penetrating over 180 km

inland (e.g. Kalthoff et al., 2018). We follow the convention

of Adler et al. (2019) in referring to the various flows bring-

ing marine air inland as the Gulf of Guinea maritime inflow,

or simply maritime inflow for short.

The NLLJ appears to be a key factor for initiating the for-

mation of nocturnal LLCs, and previous studies have sug-

gested several factors may be at play, including the transport

of moisture and cold air inland and the impact this has on

factors such as turbulence and the radiation budget. Recent

studies by Babić et al. (2019) and Adler et al. (2019) suggest

the main factor may be the cooling effect of a current of cold

air moving inland. The importance of the maritime inflow in

cooling a particular location means that orography plays a

significant role in determining geographical variation in the

cloud field. Higher LLC coverage is found on the leeward

side of slopes, where the maritime flow can reach more eas-

ily, and where this flow is also forced to rise orographically

(van der Linden et al., 2015).

Deetz et al. (2018b) modelled the effects of changing

aerosol emissions on the cloud fields in SWA. They sug-

gested that the reduction of the land–sea temperature gradient

from increasingly hazy conditions led to a weakening of the

monsoon flow and nocturnal low-level jet, as well as a delay

in stratocumulus to cumulus transition and cloud breakup.

Haslett et al. (2019b) recently described the aerosol prop-

erties measured during the DACCIWA aircraft campaign and

showed that a large background of transported biomass burn-

ing pollution from the Southern Hemisphere was ubiquitous

in the West African boundary layer. Although city emissions

resulted in aerosol load increases directly downwind of urban

conglomerates (Brito et al., 2018), the injection of aerosols

prone to activate as cloud nuclei (>∼ 0.1 µm) is thought to

have limited impact on an already elevated background. This

transported biomass burning background was reproducible

in a modelling study by Menut et al. (2018). Painemal et al.

(2014) showed that cloud–aerosol interactions with biomass

burning smoke were the main factor governing cloud micro-

physical properties in clouds north of 5◦ S over the South

Atlantic, but so far no study has measured the microphys-

ical properties of clouds over SWA to quantify the relative
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influences of transported pollution and local anthropogenic

aerosol emissions.

The objectives of this paper are listed as follows.

1. Provide a statistical overview of in situ cloud properties

measured during the DACCIWA aircraft campaign.

2. Compare the broad-scale cloud field during the DAC-

CIWA aircraft campaign to previous overviews of the

region to assess the representativeness of the study re-

gion and period.

3. Assess the impacts of local urban emissions and trans-

ported background pollution on cloud properties in the

region.

The conclusions we draw may be used in process and re-

gional modelling studies to improve assessments of the im-

pacts of increasing urban emissions on regional cloud, and

consequently precipitation and climate, under different pol-

lution scenarios.

2 The DACCIWA aircraft project

The flying campaign took place from 29 June to 16 July

2016 and was a collaboration between science teams flying

on three aircraft: the British Twin Otter operated by British

Antarctic Survey, the French ATR42 (hereafter referred to as

the ATR) operated by SAFIRE (Service des Avions Français

Instrumentés pour la Recherche en Environnement), and the

German Falcon aircraft operated by DLR (Deutsches Zen-

trum für Luft- und Raumfahrt). The project has been de-

scribed in detail (Flamant et al., 2018b); here we provide a

brief description of the flights and relevant instrumentation.

Research sorties were conducted in daylight hours from

Lomé airport (6.17◦ N, 1.25◦ E), though the ATR refuelled

twice in Abidjan (5.26◦ N, 3.93◦ W). Figure 1 shows flight

tracks from all three aircraft below 1 km. The local time in

Togo, Ghana, and Côte D’Ivoire is UTC, though Benin uses

UTC+1. Many sorties were flown along a SW–NE axis from

Lomé to Savé (as shown in Fig. 1), close to the average di-

rection of the low-level monsoon flow. These flights included

profiles up and down through cloud, as well as straight and

level runs above, in, and below cloud to provide statistical

mapping of clouds, aerosol, and radiation. Other flight ob-

jectives included measuring emissions from different sources

(such as cities, oil rigs, and ships) and mapping clouds and

pollution further west over Ghana and Côte d’Ivoire.

The large majority of measurements were taken over the

African continent. Flights over the sea were carried out on

11 d during the campaign, and these are sufficient to gauge

the variability of aerosol offshore. Cloud penetrations on

these offshore flights were relatively few, and it is difficult

to gauge how statistically robust the offshore cloud measure-

ments were. In this analysis we use cloud data from all flights

Figure 1. Map showing the parts of the flight trackers where air-

borne cloud measurements were made below 1 km above mean sea

level. The locations of Lomé and Savé are marked as many research

flights took place between these two locations.

of the campaign and mostly only consider data from the low-

est 1 km to investigate the effects of aerosol on boundary

layer clouds over the African continent.

2.1 In situ instrumentation

Each aircraft was equipped with a suite of instrumentation

to measure basic meteorological variables such as tempera-

ture, humidity, pressure, and winds. Further details are pro-

vided by Flamant et al. (2018b). Cloud drops 3–50 µm in di-

ameter were measured using a cloud droplet probe (CDP)

on the Twin Otter, CDP and/or fast CDP on the ATR, and

a cloud–aerosol spectrometer (CAS) on the Falcon (Baum-

gardner et al., 2001; Voigt et al., 2017). Both CDPs had

modified pinholes to reduce coincidence (Lance, 2012); how-

ever, the CAS did not, and the CAS CDNC measurements

were corrected for coincidence at high concentrations as de-

scribed by Kleine et al. (2018). Each instrument had its sam-

ple area measured using a droplet gun prior to the campaign,

and sizing was calibrated in the field using glass beads of

known size and refractive index. To ensure comparability be-

tween CDNC measurements on the different platforms, we

performed a statistical analysis of all CDNC measurements

made between 0 and 100 km inland over Togo/Benin at al-

titudes below 1 km. CDNC measured on the different plat-

forms showed excellent agreement, with the medians and

quartiles all agreeing within 5 %.

We also consider cloud drop effective radius, defined as

REff =
∫ ∞

0 R3 n(R)dR
∫ ∞

0 R2n(R)dR
,

www.atmos-chem-phys.net/19/8503/2019/ Atmos. Chem. Phys., 19, 8503–8522, 2019
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where n(R) is the number concentration of drops with radius

R.

For REff, average vertical profiles between 0 and 100 km

inland showed the median values agreed within ∼ 1 µm,

which is within the uncertainties of the instruments, and the

interquartile ranges were similar for each platform.

Data were considered in cloud when the measured liq-

uid water content (LWC) was greater than 0.1 gm−3. This

relatively high LWC threshold minimises the effects of dif-

fuse cloud edges on our measurements and removes swollen

aerosol layers (see Deetz et al., 2018a; Haslett et al., 2019a).

Measurements of CDNC are reported in number per cubic

centimetre (cm−3), corrected to standard temperature and

pressure (STP, 273.15 K and 1013.25 hPa).

Aerosol composition was measured by compact time-of-

flight aerosol mass spectrometers (AMSs, Drewnick et al.,

2005). Two AMS instruments were mounted on the ATR and

Twin Otter, which were each calibrated using nebulised am-

monium nitrate and ammonium sulfate to determine absolute

and relative ionisation efficiency. We also consider aerosol

size distributions, which were measured using GRIMM opti-

cal particle counters (model 1.109 on the ATR and 1.129 on

the Twin Otter and Falcon), and a scanning mobility particle

sizer (SMPS) on board the ATR. Further details on the AMS

and SMPS are provided by Brito et al. (2018) and Haslett

et al. (2019b). From the GRIMM measurements we consider

only the total concentration of particles larger than 250 nm

(N250), and from the SMPS we use aerosol size distributions

in the range 20–500 nm. The strength of the GRIMM dataset

is that all three aircraft had instruments running on every

flight, making it a useful dataset for measuring changes in

accumulation mode aerosol concentrations. The SMPS data

coverage is more limited and is restricted to straight and

level runs, but it provides a more detailed measurement of

the aerosol size distribution. Aerosol data were screened for

cloud using a threshold for LWC of 0.01 gm−3 and CDNC of

10 cm−3, and data exceeding these thresholds were removed.

Carbon monoxide (CO) concentrations were measured

using infrared absorption spectrometry by an Aero-Laser

AL5002 on the Twin Otter, SPectromètre InfraRouge In situ

Toute altitude (SPIRIT, Catoire et al., 2017) on the Fal-

con, and a Picarro Analyzer G2401-m on the ATR. We also

consider vertical velocity, which was measured using wind

probes on the ATR and Falcon.

2.1.1 Cloud satellite measurements

Using satellite measurements allows us to view the cloud

field over a large region. We used the optimal cloud anal-

ysis (OCA, Watts et al., 2011) product taken from the Me-

teosat Spinning Enhanced Visible and InfraRed Imager (SE-

VIRI) spectrometer. This product provides cloud top pres-

sure (CTP) and cloud optical thickness (COT) for the top two

cloud layers (looking from above), for scans every 15 min.

We use this product to derive the LLC fraction (for pres-

sures above 680 hPa), as described in Appendix A. Compar-

ison with the LLC fraction using ceilometers, based at the

DACCIWA supersites near Savé and Kumasi (Kalthoff et al.,

2018), showed that this satellite-derived product agreed with

ground measurements within ∼ 10 % absolute cloud fraction,

capturing both the absolute values and also the diurnal cycle,

particularly during daylight hours. Further details are pro-

vided in Appendix A.

2.1.2 Parcel modelling

Parcel model simulations of aerosol activation were carried

out using the Aerosol-Cloud and Precipitation Interactions

Model (ACPIM) (Connolly et al., 2009). Multiple aerosol

modes of defined dry size distribution and composition can

be initialised, and the simulated air parcel rises at a pre-

scribed updraft velocity. ACPIM uses bin microphysics and

thermodynamics to evaluate the rate of condensation of wa-

ter in each size bin numerically using the diffusional drop

growth equation and Köhler theory (see Topping et al., 2013),

so it does not rely on bulk parameterisations of cloud drop ac-

tivation. The number of particles in each aerosol mode grow-

ing above the critical diameter is then evaluated to determine

the CDNC.

ACPIM was initialised starting at 95 % humidity, 296 K,

and 960 hPa, which are typical of conditions just below cloud

base over Togo. Aerosol size distributions from SMPS and

relative compositions from AMS were averaged over regions

at various distances offshore or inland over SWA, and these

were used to initialise the model for several runs at different

updraft velocities. The hygroscopicity parameter (κ) values

of inorganic and organic aerosols were assumed to be the

same as ammonium sulfate and fulvic acid, which is chem-

ically similar to highly aged organic aerosol (Jimenez et al.,

2009). By using fixed, representative thermodynamic starting

conditions, varying the updraft velocities and aerosol num-

ber, size, and composition allows us to determine the relative

sensitivities of CDNC to both variables.

Our simple modelling scheme does not include factors

such as entrainment, collision–coalescence, or an investiga-

tion into the impacts of aerosol mixing state, which can have

a large effect on calculated cloud condensation nuclei (CCN)

(Ren et al., 2018). We have also only considered a lim-

ited number of aerosol species, and other components such

as black carbon, sea salt, and mineral dust will have been

present. This is not intended to be an exact simulation, but a

sensitivity analysis using physically reasonable approxima-

tions. A detailed study of aerosol activation is beyond the

scope of this analysis and is non-trivial (e.g. Sanchez et al.,

2017). Additionally, we have no measurements with which

to constrain factors such as the size dependence of chemical

composition and mixing state, which strongly affect the ac-

curacy of CCN closure calculations (Moore et al., 2013), so

such an investigation would be purely speculative.

Atmos. Chem. Phys., 19, 8503–8522, 2019 www.atmos-chem-phys.net/19/8503/2019/
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3 Results

3.1 Diurnal cycle of low-level cloud cover

Figure 2 shows the average diurnal cycle of LLC fraction

over Togo and Benin, where the aircraft operated, plotted

versus distance north of the coast and approximate lati-

tude. LLCs peaked around 10:00 LST and fell to a mini-

mum around 18:00 LST. The initial surface warming in the

few hours after sunrise causes the nocturnal clouds to rise

and thicken, before eventually breaking up (van der Linden

et al., 2015; Kalthoff et al., 2018). Cloud cover was generally

greater inland than offshore, except for a period in the late

afternoon/early evening. A region of more extensive cloud

cover was seen developing overnight, around 50–150 km in-

land. This is the region the maritime inflow reaches on a typ-

ical evening, though it is interesting that cloud cover did not

increase overnight nearer to the coast. The highest LLC frac-

tion was around 250 km inland, in a region that began to de-

velop overnight but became particularly pronounced during

daylight hours. A further region of higher cloud cover was

seen just inland of the coast. These are most likely sea breeze

clouds developing from mid-morning to the early afternoon

and moving up to ∼ 50 km inland before dissipating. Lower

levels of cloud cover (average 0.24) were seen over all in-

land areas between 16:00 and 00:00 LST. By taking the mean

over several weeks we lose the extremes of these values – on

some evenings cloud cover was zero and on some mornings

it reached 100 %. This averaging allows us to assess which

features are statistically robust and minimises transient fea-

tures in the cloud field. Figure 2 bears a striking similarity to

similar diagrams of boundary layer temperature and relative

humidity presented by Deetz et al. (2018a), suggesting trans-

port of cool, humid air inland by the maritime inflow is a key

factor in determining LLC cover.

3.2 Regional variation in low-level cloud cover

Figure 3 shows the orography of West Africa and a map

of LLC fraction at its 10:00 UTC peak. The LLC fraction

decreased dramatically in the drier regions north of ∼ 10–

11◦ N. South of this latitude, the largest LLC fraction was

seen on the upwind side of slopes and the lowest on the

leeward sides, for a southwesterly monsoon flow. Addition-

ally, a patch of lower LLC fraction is seen just offshore of

Ghana, Togo, and Benin, which is related to the colder wa-

ters there due to the coastal upwelling system (see Flamant

et al., 2018a). The areas of high mean LLCs are the most

robust features, with the lowest standard deviation, mean-

ing patches of continuous cloud were present on almost all

days during the campaign. Areas with lower average LLC

fraction had higher standard deviation and were therefore

more variable; the cloud cover in these regions varied day

to day but was lower on average. The features in our mean

LLC fraction over the region are broadly similar to those pre-

Figure 2. The diurnal cycle of mean low-level cloud fraction at dif-

ferent distances inland or offshore over Togo and Benin (4–11◦ N,

0.6–2.75◦ E), taken from the LLC flag derived from SEVIRI cloud

data. The data are shown from the time period coinciding with the

DACCIWA aircraft campaign: 29 June–16 July 2016. The latitude

scale on the right axis is approximate, as the latitude of the coastline

varies by 0.6◦ over Togo and Benin.

sented in multi-year satellite observations by van der Linden

et al. (2015), meaning the measurement period is likely to be

broadly representative of a typical monsoon season. The ab-

solute values we present are more in line with the synoptic

observations than the satellite measurements in the previous

work, as the LLC fraction product here takes into account

times when LLCs would not be visible due to higher cloud

obscuring the view.

Figure 3 also shows the major population centres in the re-

gion. Pollution plumes are expected to extend for hundreds

of kilometres downwind of the major cities (Deroubaix et al.,

2019). Figure 3 does not show any features extending down-

wind of the major cities that would represent a signature for

anthropogenic influence on cloud cover on a regional scale.

This was also the case in plots similar to Fig. 3 at all times of

day.

3.3 Regional variation in cloud microphysics

To investigate the effect of local emissions on cloud mi-

crophysical properties, we collated cloud measurements be-

low 1 km in altitude from all three aircraft and compared

them with distance to the coast (and the population centres

nearby) on a north–south axis, as shown in Fig. 4a. Fig-

ure 4b shows corresponding normalised histograms in the

different regions. The limited spatial area of the aircraft sam-

pling means that regional-scale orographic effects discussed

in Sect. 3.2 are not likely to have a large effect on in situ cloud

properties. The heterogeneous nature of the dataset means

www.atmos-chem-phys.net/19/8503/2019/ Atmos. Chem. Phys., 19, 8503–8522, 2019
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Figure 3. Mean and day-to-day standard deviation of low-level

cloud fraction between 10:00 and 11:00 UTC during the DACCIWA

aircraft campaign, 29 June–16 July 2016, taken from the LLC flag

derived from SEVIRI cloud data. The contours show the elevation

of the land surface and are labelled in metres above mean sea level.

Text markers show the locations and abbreviated names of large

cities in the region, which are listed in Table 1. The text size gives a

qualitative indication of the relative population of each city. The

arrow markers in the bottom left show the median and quartiles

of wind direction, measured inland below 1 km between 10:00 and

11:00 UTC.

that some areas and some days have large numbers of data

points recorded, while others have relatively few. In particu-

lar, cloud measurements over the sea were sparse compared

to inland. To give an indication of how statistically represen-

tative our data are, the number of data points and number of

individual days the data are from are also listed in Fig. 4a.

Offshore, we split the data up into two bins. The aim of

the offshore analysis is to consider clouds and pollution con-

ditions representative of the air upwind of the DACCIWA

region, which is then brought inshore by the wind. Close to

the coast, several factors may cause terrestrial pollution to

be transported to an area offshore. Firstly, some areas of the

coast are more prominent than others; for example the area

located just offshore near Lomé may be downwind of Accra

if the wind was blowing from a west-south-westerly direc-

tion. Secondly, sea breeze circulations may act to recircu-

late pollution (Flamant et al., 2018a). Additionally, a ship-

Table 1. List of cities in Fig. 3.

Code City name Latitude (◦) Longitude (◦)

AB Aba 5.12 7.37

AC Accra 5.55 −0.20

AJ Abidjan 5.32 −4.03

BE Benin 6.33 5.62

CO Cotonou 6.37 2.43

IB Ibadan 7.40 3.92

IL Ilorin 8.50 4.55

JO Jos 9.93 8.88

KA Kano 12.00 8.52

KD Kaduna 10.52 7.44

KU Kumasi 6.67 −1.62

LA Lagos 6.46 3.38

LO Lomé 6.13 1.22

OG Ogbomosho 8.13 4.25

PH Port Harcourt 4.82 7.03

ZA Zaria 11.07 7.70

ping corridor near to the coast presents a local source of CO

and aerosol. In Fig. 4a there is no apparent effect of any pol-

lution near to the coast, but plumes of CO and aerosol were

observed up to 20 km offshore that would affect the analy-

sis in Sects. 3.6 and 4. For the remainder of this analysis,

when considering “offshore” data, we therefore only con-

sider measurement made at least 20 km south of the coast,

to unambiguously remove any possibility of local terrestrial

emissions affecting our offshore measurements.

In the offshore bin, there were CDNC measurements from

five individual days, and the distribution of measured CDNC

in Fig. 4b appears bimodal, with a main mode centred around

100–200 cm−3 and a smaller mode centred around 500 cm−3.

Looking at Fig. 4a, this bimodality is the result of sampling

different populations of clouds. This may be due to variable

pollution conditions offshore or some other factor. Bennartz

(2007) studied CDNC in the global marine boundary lay-

ers and found that the average CDNC in the pristine South

Atlantic was 67 cm−3, reported in ambient temperature and

pressure. For stratocumulus topping the South Atlantic ma-

rine boundary layer at 800 hPa and 280 K, this number is

roughly equivalent to 87 cm−3 when corrected to STP, which

lies around the 10th percentile of the CDNC measured in off-

shore clouds in the DACCIWA region, meaning the offshore

measurements presented here were representative of moder-

ately polluted clouds.

Moving inland, several differences are apparent. The in-

land CDNC distributions in Fig. 4b are approximately Gaus-

sian, centred around ∼ 400 cm−3, but with long tails extend-

ing up to over 1000 cm−3, which were measured most fre-

quently near the urban centres near the coast and diminished

further inland. Some clouds were observed with CDNC over

1500 cm−3. These long tails on the distributions are due to

the effect of thick urban plumes, but they only represent a
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Figure 4. Measured CDNC for all data below 1 km, stratified by distance inland and pollution conditions. Panel (a) shows all data as a

function of distance from the coast. The markers and error bars show the median, 25th, and 75th percentiles. The numbers at the top show the

number of different days’ worth of data in each bin, as well as the number of individual data points. Panel (b) shows normalised histograms

of CDNC at different distances from the coast. Panel (c) shows a histogram of in-cloud pollution, and panel (d) shows normalised histograms

of inland CDNC stratified by CO concentrations.

relatively small fraction of the inland data. The large major-

ity of CDNC measurements inland were in the range 200–

840 cm−3 (10th and 90th percentiles), and medians were

470 cm−3 up to 50 km from the coast and ∼ 430 cm−3 fur-

ther inland. It is possible that some of this small difference

in the medians may be due to measurement of more convec-

tive sea breeze clouds near the coast, but it is relatively minor

overall.

To investigate the effect of local pollution on CDNC,

Fig. 4c shows the distribution of CO concentrations mea-

sured in inland clouds. The inland CO data show a mode

with mean and standard deviation of 141 ± 17 ppbv, but the

distribution is asymmetric, with a tail extending to higher

values above around 160 ppbv. We therefore used this value

of 160 ppbv (the 93rd percentile) as a threshold to distin-

guish the thickest pollution plumes. Our measurements in

this polluted tail were generally in and around the major

cities, which were one of the research themes of the DAC-

CIWA campaign. On the regional scale these are likely to

be over-represented compared to the more sparsely popu-

lated regions of Ghana and Côte d’Ivoire but may be under-

represented compared to the more polluted regions of coastal

Nigeria. For comparison, the mean and standard deviation

of in-cloud offshore CO concentrations were 143 ± 11 ppbv.

This offshore value, and similarly the minimum inland CO

concentrations of ∼ 100 ppbv, is significantly enhanced com-

pared to CO concentrations in the unpolluted South Atlantic,

which reach lows of 60 ppbv in the absence of transported

biomass burning smoke (Zuidema et al., 2018). This con-

trast highlights the ubiquity of transported biomass burning

smoke affecting the DACCIWA region (Haslett et al., 2019b).

Using the 160 ppbv CO threshold to stratify the CDNC

highlights the effect of pollution plumes, which we show in

Fig. 4d. Using only the inland data here removes any possible

bias from differing conditions (for example dynamics) over

the sea. The data in Fig. 4d show enhanced CDNC in the

polluted plumes, with the entire distribution shifted around

1.5 times higher. However, these highly polluted plumes rep-
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Figure 5. Average vertical profiles of aerosols larger than 250 nm (a), cloud drop number concentration (b), and effective radius. The markers

are the medians and are different sizes depending on the number of individual days the data are taken from. The error bars show the 25th

and 75th percentiles, and the solid lines connect the medians. The cloud profiles show the average properties of the cloud field, which often

contained multiple discreet layers.

resent less than 10 % of the inland data measured over the

region.

There appeared to be a difference between the offshore and

inland clouds that was not related to differing pollution. In-

land clouds with CO < 160 ppbv (i.e. similar to levels found

offshore) had a median CDNC of 430 cm−3, compared to

265 cm−3 offshore. However, Fig. 4b shows some offshore

clouds that had CDNC and CO comparable to those found

inland. With the limited offshore data available we are un-

able to fully quantify whether there was any systematic dif-

ference, which might be expected due to different dynamical

conditions.

3.4 Vertical profile of cloud microphysics

Figure 5 shows average vertical profiles of N250, cloud drop

number concentration, and cloud effective radius, measured

at different distances north or south of the coast. The aerosol

measurement here is only particles larger than 250 nm, so it

is representative of the variability of the accumulation mode,

though not the total number. N250 does not show any variabil-

ity related to smaller particles. Inland, accumulation mode

aerosol concentrations were highest closer to the ground and

decreased with altitude up to around 2–2.5 km. There was

relatively little meridional variation inland, but aerosol con-

centrations were enhanced by around ∼ 40 % near the ground

compared to offshore concentrations. This enhancement de-

creased with altitude, as concentrations offshore were fairly

constant up to 2.5 km, and above 2.5 km offshore concentra-

tions were higher than those inland. Together, these aerosol

profiles suggest local terrestrial sources adding to the back-

ground aerosol on a regional scale. In the boundary layer, the

southwesterly winds brought offshore pollution inland, and

local city emissions were added to the pollution transported

from offshore, but, above the inversion at boundary layer

top, the wind shifted to a regime dominated by the African

easterly jet and this linkage was broken. Above the bound-

ary layer, distinct biomass burning plumes were encountered

more often, which caused the larger variability in N250 in the

free troposphere.

The CDNC profile inland (Fig. 5b) shows a decrease with

altitude, with a similar profile to N250, but the relative de-

crease was lower in magnitude. Inland there was high vari-

ability within all regions but little difference between the av-

erage values of CDNC, though > 100 km inland concentra-

tions were ∼ 10 % lower than closer to the coast. Offshore

concentrations at almost all levels were significantly lower

than those inland, and the difference was larger than the dif-

ferences in aerosol and did not correlate with differences in

the aerosol vertical profiles. However, the majority of off-

shore bins in Fig. 5b show data from one or two individual

days, so they may not be representative of offshore clouds in

general. If the difference is representative, it does not appear

to be directly related to differences in accumulation mode

aerosols.

Figure 5c shows the corresponding cloud effective radius

profile. Again, there was relatively little difference inland,

particularly in the boundary layer, and on the whole REff

increased with altitude. In the free troposphere there was

more deviation, and REff did not always increase with alti-

tude. This is due to the structure of clouds over SWA; mul-

tiple cloud layers with distinct and separate bases were of-

ten present, meaning clouds at higher altitudes were not nec-

essarily deeper than those below, and cloud observations at

higher altitude were not necessarily higher above the cloud
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Figure 6. Day-to-day variation in N250 (a) and CDNC (b). The data shown are from all data measured below 1km. The markers, boxes, and

bars show the medians, 25th and 75th percentiles, and the 10th and 90th percentiles respectively. Offshore data were collected over 20 km

south of the coast.

base than observations at lower altitude. Between 0.5 and

1.5 km, the clouds offshore tended to have higher REff than

those measured inland at the same altitude, which is consis-

tent with the lower CDNC measured in this altitude range.

However, throughout the rest of the lower troposphere, in-

cluding near the surface, the clouds measured offshore had

similar REff to those measured inland at the same altitude, de-

spite generally lower CDNC. This implies that these offshore

clouds had lower liquid water contents than inland clouds at

the same altitude, suggesting that clouds offshore may have

been influenced by a different thermodynamic structure, such

as different temperature or humidity profiles causing differ-

ent cloud base heights.

Overall, relatively little systematic spatial variability was

seen inland in aerosol or cloud parameters. There are dif-

ferences in aerosol and CDNC between inland and offshore

clouds, but not in REff, meaning the differences cannot be

solely due to increased aerosol activation inland. For the re-

mainder of this analysis we will consider only clouds mea-

sured in the lowest kilometre of the atmosphere, as this cov-

ers the majority of the cloud measurements made in the

morning, and to minimise the influence of the African east-

erly jet. Although the properties of individual clouds were

variable, the average inland clouds below 1 km were fairly

homogeneous regardless of the distance inland, meaning we

can consider all inland clouds together and develop better

statistics of the day-to-day variability and diurnal cycle of

cloud properties.

3.5 Day-to-day variability

In the previous sections, we demonstrated that the ubiqui-

tous background aerosol reaching SWA caused all clouds to

be fairly polluted. Figure 6 shows the day-to-day variabil-

ity in both the offshore and inland aerosol concentrations,

as well as the CDNC. For the accumulation mode aerosol,

the inland concentrations of N250 were around 40 % higher

than offshore, though there was some day-to-day variability

in this ratio. The average inland enhancement is in excel-

lent agreement with Haslett et al. (2019b), who also found

a 40 % enhancement in accumulation mode aerosol in con-

tinental background areas compared to upwind marine, us-

ing SMPS measurements averaged over the whole campaign.

The day-to-day averages of the accumulation mode aerosol

number concentration from the SMPS showed good corre-

lation with the GRIMM, with R2 = 0.7, but data were only

available for 9 d inland and 2 d offshore. The GRIMM data

therefore show a similar trend to the SMPS, but with greater

coverage. The mean and standard deviations in daily N250 are

170 ± 50 cm−3 offshore and 230 ± 50 cm−3 inland, meaning

the average variabilities were similar. Together with the good

correlation, this suggests that aerosol imported from offshore

had a strong influence on the average amount, and day-to-day

variability, of accumulation mode aerosol inland.

The day-to-day variability in the aerosol was not strongly

represented in the CDNC measurements in Fig. 6b. There

was a degree of correlation in the median CDNC and N250

measurements (R2 = 0.72) after the 5th of July, but there was
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no correlation in the first half of the campaign. On a cloud-to-

cloud basis this correlation was dwarfed by the inherent local

variability in CDNC. Comparing the inland CDNC to off-

shore, on four days the median values inland were 85–175 %

higher than those measured offshore but 25 % lower on one

day. These differences were not correlated with differences in

the offshore and inland aerosol. As was stated in Sect. 3.3, we

do not have sufficient measurements to investigate or explain

these differences in detail, or to assess if they are representa-

tive. On any individual day, the CDNC measurements were

much more variable than the aerosol concentrations, suggest-

ing highly localised factors such as entrainment or dynamics

may have had an influence on the CDNC. Overall, the day-

to-day variabilities in the inland CDNC and N250 were both

∼ 20 %, and there was a degree of correlation for some of

the project, suggesting aerosol concentrations may have had

some effect on daily CDNC. In the next section, we discuss

diurnal variation to investigate these factors in more detail.

3.6 Diurnal variability of aerosols, clouds, and

dynamics

The variation in inland CDNC at different times of day is

shown in Fig. 7a. As some of the measurements were taken

over a wide range of longitude, here we used the local so-

lar time (LST) instead of UTC. A trend is apparent in the

data, as CDNC increased inland throughout the morning and

remained higher through the afternoon. The inland CDNC

measurements were 45 %–60 % higher in the afternoon than

before 08:00. The median of all CDNC measured inland in

the morning was 430 and 540 cm−3 in the afternoon. We

draw this distinction because cloud cover peaked in the late

morning, before decreasing in the afternoons as the clouds

broke up. The 90th percentiles of CDNC in Fig. 7a exhib-

ited a more dramatic increase in the afternoon, indicating a

greater cloud drop concentration in the more convective bro-

ken clouds.

CDNC is determined by the supersaturation in an updraft

and the concentration of aerosols that activate at that super-

saturation. Figure 7b and c show the diurnal variations in

N250 and in-cloud vertical velocity. The accumulation mode

aerosol showed no strong diurnal variation, varying only

±10 % during the day. In comparison, the distributions of

vertical velocity showed a shift towards stronger updrafts in

the afternoon. In any stable cloud layer the median vertical

velocity is zero, and this was the case for all times of day

shown in Fig. 7c other than the few cloud measurements

made after 16:00 LST. As the median value of vertical ve-

locity in a stable cloud is zero, the 75th percentile can be

considered a representative updraft and is useful to investi-

gate changes in updrafts that are present at cloud base, where

the majority of aerosol activation occurs. Vertical velocity

does not vary strongly with altitude in stratocumulus clouds

(Wood, 2012), so although our measurements are not just

Figure 7. Inland diurnal variation in CDNC (a), N250 (b), and in-

cloud vertical velocity (c). The data shown are from all data mea-

sured below 1 km. The markers are the medians and are different

sizes depending on how many individual days the data are taken

from. The boxes are the 25th and 75th percentiles, and the bars are

the 10th and 90th percentiles. The solid lines connect the medians,

and the dashed line in panel (c) connects the 75th percentiles.

from cloud base, they are still suitable to use in our simu-

lations.

The distribution of vertical velocity was fairly sta-

ble throughout the morning, with 75th percentiles around

0.45 ms−1 and 90th percentiles around 1 ms−1. In the af-

ternoon, the clouds became more convective, with 75th per-

centiles of vertical velocity of 0.5–1.6 ms−1 and 90th per-

centiles of 1.1–1.7 ms−1. The stronger updrafts in the after-

noon suggest that dynamics played a role in the diurnal cycle

of CDNC but cannot fully explain the changes. In the next

section we use parcel model simulations to quantify the ef-

fect of these factors on CDNC.

4 Parcel model simulations

The limited offshore dataset and the possibility of differing

dynamics inland makes it difficult to assess the impact of lo-

cal aerosol emissions on cloud properties based on measure-

ments alone. To further investigate the relative sensitivities of

CDNC to aerosol properties and updraft velocities, we con-

ducted a series of parcel model simulations using ACPIM,

described in Sect. 2.1.2. We initialised the model with rep-

resentative thermodynamic conditions and varied the updraft
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Table 2. Lognormal fit parameters for the fits shown in Fig. 8, using

the equation dN/dlnDp = N√
2π ln(σ )

exp

(

−
(

ln
(

Dp

)

−ln(Dmed)
)2

2ln(σ )2

)

.

N σ Dmed

(cm−3) (nm)

Offshore wide Aitken mode 282 1.65 75.5

Offshore accumulation mode 570 1.50 199.1

Local Aitken mode 2829 1.66 56.5

Local accumulation mode 175 1.42 242.5

Sea salt coarse mode 1.18 1.52 1236

velocity and aerosol size distribution and composition based

on the measurements made in the field campaign.

4.1 Aerosol size and composition

The average measured aerosol size distributions are shown in

Fig. 8a–c. Here, the data coverage was more limited, and the

scanning time of the instrument was 90 s, so we used a sim-

ple mean of all the data inland or offshore, averaging out any

diurnal or day-to-day variation. While the Aitken mode was

variable inland due to highly localised anthropogenic emis-

sions, the accumulation mode showed minimal variability as

a significant fraction of particles in this size range were due

to long-range transport (Haslett et al., 2019b). This averaging

approach is therefore reasonable to inform cloud activation

modelling, as the accumulation mode is the source of CCN.

The average measured offshore aerosol size distribution and

accumulation mode composition are shown in Fig. 8a and d.

Two lognormal fits were used to approximate this size dis-

tribution for use in ACPIM. The average measured inland

aerosol size distribution and accumulation mode composi-

tion are shown in Fig. 8c and f. The offshore size distribu-

tion was subtracted from the inland distribution to give an

estimate of the average contribution of dispersed local emis-

sions to regionally averaged inland aerosol over SWA. Two

lognormal fits were then used to approximate the average lo-

cal emissions, and the sum of the four fitted modes makes up

the measured size distribution inland. The lognormal fit pa-

rameters are listed in Table 2. The utility of this approach is

that it allows us to scale the transported background aerosol

(i.e. the offshore fits) and the local aerosol separately.

The measured size distributions in Fig. 8a and c, and the

measured compositions in Fig. 8d and f, are almost identi-

cal to similar estimates presented by Haslett et al. (2019b).

The difference in our approach when highlighting the impact

of local emissions is that we have subtracted the transported

background to isolate the effect of dispersed local emissions

on regional inland aerosol, whereas Haslett et al. (2019b)

measured aerosol in the thickest urban plumes but still on

top of the transported background.

The offshore aerosol size and composition are consistent

with being a mixture of aged biomass burning (Rissler et al.,

2006; Capes et al., 2008; Sakamoto et al., 2015) and Atlantic

marine aerosol (Zorn et al., 2008; Taylor et al., 2016). The

two modes of local aerosol were an Aitken mode contain-

ing the majority of the particle number concentration and a

smaller accumulation mode. We are unable to determine the

specific source of each mode, but local emissions are largely

from domestic wood burning and transport, and when com-

bined these sources are capable of producing aerosols with

this size distribution and composition (Maricq et al., 2000;

Capes et al., 2008; Vakkari et al., 2014). More informative

studies of aerosol size distribution in African cities appear to

be absent from the literature. The local Aitken mode, which

accounts for the majority of particle number inland, contains

particles that were too small to make a significant contribu-

tion to CCN in stratocumulus clouds, and the majority of the

aerosols that are large enough to activate into cloud drops

were still the result of long-range transport.

4.2 Model results

We used the aerosol size distributions and composition

shown in Fig. 8 and Table 2 as input for ACPIM simulations

at varying updraft velocities. The resultant simulated CDNCs

are shown in Fig. 9a. For weak updrafts the different input

aerosols make little difference to the CDNC values, as parti-

cle activation starts from the largest sizes, where the inland

and offshore size distributions were most similar. The differ-

ence between the two then increases with updraft velocity.

For the representative morning updraft of 0.45 ms−1 (calcu-

lated as the 75th percentile of vertical velocity), the calcu-

lated enhancement in inland CDNC due to local aerosols is

44 %. This enhancement is larger for stronger updrafts; for

the representative afternoon updraft of 0.78 ms−1, it rises to

65 %. In polluted clouds with relatively gentle convection,

CDNC is more sensitive to changes in updraft than in aerosol

(Reutter et al., 2009). However, Fig. 9a suggests the clouds

over SWA are only in this regime for the lowest updrafts, and

for the average updrafts the clouds are in a regime where they

are sensitive to both changes in updraft and aerosol.

A large fraction of the day-to-day variability expected in

the mean inland CDNC, shown by the shadings in Fig. 9,

derives from day-to-day variability in the offshore aerosol

brought inland. At higher updrafts, the variability from off-

shore aerosol causes 50 % of this inland variability, but at

lower updrafts this fraction increases to 100 %. Using the av-

erage morning and afternoon updrafts (as defined above), the

modelled CDNC is 31 % higher in the afternoon than in the

morning, which compares well to a 26 % increase in the mea-

sured CDNC shown in Fig. 7.

Figure 9b shows the effect of varying the local emis-

sions on the calculated CDNCs, using these average morn-

ing and afternoon updrafts. For comparison, the top axis in

Fig. 9b shows the number concentration of aerosols larger

than 125 nm (N125) in the input size distributions, as a way

of comparing the effects that scaling local emissions have on

www.atmos-chem-phys.net/19/8503/2019/ Atmos. Chem. Phys., 19, 8503–8522, 2019



8514 J. W. Taylor et al.: Low-level clouds over West Africa during the summer monsoon

Figure 8. Aerosol size distributions (a–c) and accumulation mode composition measurements (d–f) made over SWA that were used as input

into ACPIM. The averaged local emissions were calculated by subtracting the offshore transported aerosol from the inland regional aerosol.

Figure 9. CDNC calculated during ACPIM parcel model runs initialised using measured aerosol size distributions and compositions shown in

Fig. 8 and Table 2. The shaded regions show the expected day-to-day variability in CDNC as a result of variation in the aerosol concentrations,

based on the standard deviation of measurements shown in Fig. 6a. Panel (a) shows the sensitivity of CDNC to updraft velocities and panel (b)

the sensitivity to different scale factors for local emissions in the aerosol input. The smaller and larger updraft velocities in panel (b) are

representative of morning and afternoon.
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aerosol concentrations (i.e. transported background plus lo-

cal emissions). The diameter of 125 nm was chosen as N125

is roughly comparable to the modelled values of CDNC in

Fig. 9b and is therefore an approximation of the modelled

critical diameter, although the actual critical diameter will

have been different in each model run and varies as the

aerosol size distributions and number concentrations change.

An alternative way of looking at the impact of transported

aerosols inland is to say that if local emissions were doubled,

N125 would only be 38 % higher, and CDNC would only in-

crease by 17 % in the morning and 22 % in the afternoon.

If local emissions were halved, N125 would be reduced by

19 %, and CDNC would decrease by 13 % in the morning and

16 % in the afternoon. If local emissions were removed en-

tirely, N125 would decrease by 38 %, and CDNC would drop

by 31 % in the morning and 39 % in the afternoon. Large

changes in local emissions cause smaller changes in CDNC

because the high aerosol background means they form only

a fraction of the total aerosol. Additionally, the local emis-

sions are smaller and less hygroscopic than the background

aerosol, so they are less likely to activate. The effect of vary-

ing local aerosol emissions does not produce a linear rela-

tionship between CDNC and total aerosol concentrations.

In particular, the effect of increasing total aerosol concen-

trations has less of an impact on CDNC than decreasing

aerosol. The exact comparability between the aerosol metric

and CDNC will depend on the size assumed to be represen-

tative of the critical diameter (125 nm in this comparison but

would vary as the aerosol changes), but the nonlinearity of

the relationship between aerosol and CDNC is independent

of this choice of size. This nonlinearity may be related to a

reduction in supersaturation for a given updraft velocity, as

CCN number concentration increases and water vapour con-

denses more quickly.

The values of CDNC produced by ACPIM are higher

than the median values shown in the ambient measurements.

We have acknowledged the limitations of our simplistic ap-

proach above, such as the assumptions regarding aerosol

mixing state and the lack of entrainment in the model. Moore

et al. (2013) summarised 36 previous studies of CCN closure

and similarly found that CCN concentrations were generally

overpredicted, other than when using size-resolved measure-

ments of aerosol composition. Additionally, a previous com-

parison by Simpson et al. (2014) showed that ACPIM calcu-

lated higher CDNC compared to simpler parameterisations

when using multiple aerosol modes. The values of modelled

CDNC using the representative morning and afternoon up-

drafts are between the 75th and 90th percentiles of measured

CDNC shown in Fig. 7a, meaning the difference between the

average model and measured values is smaller than the vari-

ability in the measured data. ACPIM is an idealised simula-

tion and we have used it here primarily to explore the sen-

sitivity to local aerosol emissions rather than arbitrarily try

to tune factors such as aerosol mixing state, more realistic

dynamics, or entrainment (of which we have limited or no

measurements) to make the CDNC agree perfectly.

We performed some additional simulations to explore

some possible sensitivities in our assumptions. Firstly we

considered the presence of a coarse sea salt aerosol mode,

which we isolated from the GRIMM size distributions. The

size distribution of this mode is listed in Table 2, and the

composition was assumed to be NaCl. As the concentration

in the sea salt mode is so low compared to the accumulation

mode, this addition of a coarse sea salt mode made less than

a 1 % difference to the derived CDNC. We also performed

some illustrative runs on the inland aerosol – one possible

scenario is that the local Aitken mode aerosols were from

primary combustion. We assumed them to be 100 % organic

and proportioned the composition of the local accumulation

mode to match the total measured organic/inorganic ratio.

Compared to the base case, this increased the inorganic frac-

tion in the local accumulation mode from 31 % to 41 %, and

the resultant CDNCs showed around a 12 % increase. These

simulations show that there are some differences that are at-

tributable to assumptions in aerosol composition and mixing

state, but they are likely to be smaller than the differences

we show related to the total amount of aerosol and updraft

velocity.

5 Discussion

Most stratocumulus clouds are over the oceans, and most pre-

vious studies of cloud–aerosol interactions in stratocumulus

clouds have focused on clouds in this setting. Allen et al.

(2011) observed cloud drop number concentration in the

southeast Pacific decreasing from 300 cm−3 near the coast

to ∼ 100 cm−3 150 km downwind offshore. Their situation

is simpler to visualise as the anthropogenic source regions

are well defined, the ocean surface is flat (compared to the

land surface), and there is no strong diurnal cycle in ocean

surface temperature. In southern West Africa, the situation is

made more complex by the combination of local sources and

the variability of the dynamics, both in terms of the diurnal

cycle and the difference between offshore and inland.

In very remote regions of the South Atlantic, like in the

southeast Pacific, clouds are generally clean, with average

cloud drop number concentration estimated at 67 cm−3 (or

87 cm−3 when corrected to STP) (Bennartz, 2007), and ef-

fective radius may be ∼ 15–20 µm for clouds up to 1.5 km

in height (Painemal et al., 2014). In this regime, cloud

albedo is strongly susceptible to changes in aerosol con-

centration. In DACCIWA, the limited measurements of off-

shore clouds were split into one day with CDNC around

300–700 cm−3, which was ∼ 35 % higher than the corre-

sponding inland measurements; and four days with CDNC

around 100–200 cm−3, 45 %–65 % lower than inland. None

of the offshore measurements were representative of clean

clouds; offshore clouds were universally more polluted, with
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higher CDNC and lower REff, than those in the clean re-

gions of the South Atlantic. The ubiquitous presence of aged

biomass burning smoke transported from fires in western

Central Africa towards SWA provides a source of CCN in

greater concentrations than may be found in clean, remote

regions.

One of the aims of this paper was to assess the relative im-

pacts of local and transported aerosols on the microphysics

of continental clouds over SWA. None of the offshore dif-

ferences in CDNC, either in the different offshore CDNC on

different days or the different offshore/inland ratios, corre-

sponded with differences in the measured aerosol concentra-

tions. Therefore other factors must have been at play to cause

the variability in the offshore cloud measurements, such as

different dynamics, thermodynamics, or simply random bi-

ases due to our limited set of observations. Our measure-

ments of offshore clouds were sporadic rather than system-

atic, and it is difficult to assess the statistical significance

of the variability within these offshore clouds or the differ-

ences observed between the clouds measured offshore and

inland. Figure 2 shows that, in our measurement region, the

low-level cloud fraction offshore was much lower than in-

land, and most of the inland cloud formed over the continent,

rather than forming offshore before moving inland. The com-

plex dynamic and thermodynamic structure of the marine and

continental boundary layers (Wood, 2012) and the diurnal

cycle of these differences mean that the offshore and inland

clouds are not directly comparable to assess the impact of

local aerosol emissions.

In contrast, the offshore aerosol measurements are much

more robust. There were aerosol measurements from a larger

number of days, with a much longer sampling time on each

day, and aerosol concentrations are much less susceptible

to changes in boundary layer thermodynamics compared to

clouds. Our measurements showed an average ∼ 40 % in-

crease in regional accumulation mode aerosol inland com-

pared to offshore. The accumulation mode is the most im-

portant for CCN, as particles smaller than this are too small

to activate. Haslett et al. (2019b) also found a 40 % enhance-

ment in the inland accumulation mode aerosol concentrations

compared to offshore using SMPS data, which is in excel-

lent agreement with our GRIMM measurements of N250. In

localised city plumes, highly concentrated emissions had a

noticeable increase in CDNC, but these concentrated plumes

were not widely observed over the regional scale.

Our model simulations allow us to isolate the effects of

specific aerosol modes and dynamics. The increase in CDNC

inland due to local aerosols is strongly sensitive to the up-

draft velocity used in the simulation, but for our represen-

tative morning and afternoon updrafts the local aerosols in-

creased inland CDNC by and 44 % and 65 %. As these num-

bers are larger than our measured increase in accumulation

mode aerosol, some of the particles in the Aitken mode fits

must be having an influence. Regardless, local aerosols con-

stitute less than half of the regional CCN over SWA. Any

future increases in the local anthropogenic emissions during

the summer monsoon will be on top of the transported back-

ground, and this reduces the sensitivity of CDNC to local

emissions, which form less of the total aerosol.

Across the whole of SWA, anthropogenic emissions are

dominated by Nigeria, which contains over half of the re-

gion’s population (United Nations, 2017). The Niger delta is

also a large source of industrial pollution. In the boundary

layer, Nigeria was downwind of our in situ measurements,

so we have no measurements of Nigerian pollution. Under

such conditions, Flamant et al. (2018a) and Deroubaix et al.

(2019) have shown that Lagos did not influence the air qual-

ity to the west (i.e. Benin and Togo). It is possible that local

emissions have more of an effect on CDNC in Nigeria, but

the baseline CDNC is still likely to have been high enough

that this will have a reduced effect on cloud albedo compared

to a clean background. Based on the satellite data there was

no obvious effect on LLC fraction downwind of Lagos and

the Niger delta, suggesting geographical variations in cloud

formation and lifetime were still largely controlled by dy-

namics, orography, and the transport of cool, humid air in-

land by the maritime inflow.

Over the next few decades, the populations of coastal cities

such as Accra, Lomé, and Cotonou are expected to rise dra-

matically, as are their respective emissions. While this may

mean there is more of an effect from local pollution on the

cloud field, our results suggest the dominating factors for

cloud radiative properties during the summer West African

monsoon are likely to remain the transport of biomass burn-

ing aerosol from the Southern Hemisphere. Indeed, as the

population of western Central Africa is also expected to rise

at a similar rate to SWA (United Nations, 2017), increasing

rates of agricultural burning may cause this background to

rise. In this study we have focused on cloud–aerosol interac-

tions leading to the indirect effects and have not attempted to

investigate possible changes to the cloud field by the semi-

direct effect or direct effect via changing dynamics, as sug-

gested by Deetz et al. (2018b) and Kniffka et al. (2019). It

is vital that future studies examining these effects take into

account the transport of biomass burning emissions to SWA

from the Southern Hemisphere.

6 Conclusions

This study has assessed factors affecting properties of low-

level clouds over southern West Africa during the West

African summer monsoon, using an approach combining

satellite observations with in situ measurements from the

novel DACCIWA dataset. Satellite observations of low-level

cloud (LLC) cover suggested regional variation in the cloud

field was determined largely by the local orography and

transport of cool, humid air inland by the maritime inflow,

and no obvious impact of was observed in the large-scale

cloud field downwind of major population centres. An as-
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sessment of cloud drop number concentration (CDNC) based

on aircraft data acquired during the DACCIWA field cam-

paign, as well as parcel modelling, showed that local emis-

sions had a reduced effect on CDNC on the regional scale,

as biomass burning pollution transported from the South-

ern Hemisphere dominated regional aerosol concentrations

(Haslett et al., 2019b). This transported pollution also caused

a high baseline CDNC inland, putting the clouds in a regime

where they had a reduced susceptibility to any further in-

creases in aerosol, and also minimising the impact any en-

hancements in CDNC are likely to have on cloud radiative

effects and precipitation.

We investigated statistics of CDNC on different days, at

different times of day, and at different distances downwind

of the coast (and the populated regions nearby), to assess the

causes of the observed variability. Overall, the large majority

of CDNC measurements fell into the range 200–840 cm−3,

and relatively little meridional variation was seen inland.

The day-to-day variability of CDNC showed some correla-

tion with measured aerosol concentrations, but this was not

seen across the whole of the campaign. A diurnal cycle was

observed, and CDNC increased by 45 %–60 % as clouds be-

gan to break up and become more convective in the after-

noons compared to measurements made in the early morn-

ing. A systematic increase in CDNC was observed in CO

plumes near the coastal cities, reaching over 1500 cm−3 in

some cases. However, these plumes represented only a small

fraction of the data measured across the region, and are un-

likely to be the major factor determining CDNC inland. Off-

shore, the limited measurements of CDNC were split into

clouds with around 100–200 cm−3 and those with around

300–700 cm−3. However, relatively few cloud penetrations

were made offshore, so it is difficult to assess whether any

differences between offshore and inland clouds are statisti-

cally representative. In no region, and at no time of day, were

clouds observed that were representative of those found in

pristine environments, and our measurements were all af-

fected by the ubiquitous biomass burning pollution trans-

ported to the region from offshore.

In order to assess the impacts of local urban emissions

and transported background pollution on cloud properties,

we performed a sensitivity analysis with a parcel model that

was initialised with representative aerosol size distribution

and composition, as well as thermodynamic conditions based

on the ambient measurements. We divided up the aerosol into

different modes representing either transported pollution or

local emissions and scaled the local emissions to see the ef-

fect on CDNC. Doubling local emissions increased the calcu-

lated CDNC by 17 %–22 %, whereas CDNC was reduced by

13 %–16 % if local emissions were halved or by 31 %–39 %

if they were removed altogether. The aerosol background

from transported smoke means local emissions only make up

a fraction of total aerosol. Our results suggest that increasing

local emissions over the next few decades will therefore have

a reduced impact on CDNC.

Compared to clean conditions, this polluted regime means

local emissions have a reduced effect on aerosol concentra-

tions, enhanced aerosols have a reduced effect on CDNC,

and enhanced CDNC has a reduced effect on cloud radia-

tive properties. As the Southern Hemisphere biomass burn-

ing season and West African monsoon coincide every year,

and the cloud field during DACCIWA was similar to a pre-

vious multi-year assessment by van der Linden et al. (2015),

it is reasonable to assume that our observations are typical

of clouds over SWA at this time of year. As the popula-

tion of SWA grows in the coming decades, the transported

biomass burning pollution will have a dampening effect on

the impacts that growing aerosol emissions have on low-

level clouds via cloud–aerosol interactions. Future studies in-

vestigating other mechanisms by which aerosols may affect

the cloud field, such as by changing atmospheric dynamics

and thermodynamics, must take into account the transport

of biomass burning smoke from the Southern Hemisphere to

SWA.

Code and data availability. The DACCIWA field measurements

are available on the DACCIWA SEDOO database (http://baobab.

sedoo.fr/DACCIWA/, last access: 20 June 2019). SEVIRI opti-

mal cloud analysis data and associated product guides are avail-

able to download from EUMETSAT (https://www.eumetsat.int/

website/home/Data/Products/Atmosphere/index.html, last access:

20 June 2019). ACPIM is available to download from the Univer-

sity of Manchester (https://personalpages.manchester.ac.uk/staff/

paul.connolly/research/acpim01.html, last access: 20 June 2019).
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Appendix A: Low-level cloud flag derivation

The SEVIRI optimal cloud analysis (OCA) product is based

on the scheme described by Watts et al. (2011). Cloud top

pressure (CTP), cloud optical thickness (COT), and cloud-

top effective radius, and their respective uncertainties, are re-

ported every 15 min with a spatial resolution of around 3 km

in the DACCIWA region. Here we utilise the CTP for the up-

per and second cloud layers (CTP1 and CTP2) and the COT

of the upper layer (COT1).

Our scheme for determining LLC cover is shown in Fig

A1. Pixels are defined as LLCs if either CTP1 or CTP2 are

statistically significantly above a threshold pressure (CTPT).

Where the greater of CTP1 and CTP2 is within the uncer-

tainties of this threshold, the pixel is defined as “borderline”

LLCs. Additionally, where the top layer of cloud is not at

low level, a threshold COT (COTT) is used to account for the

fact that this thick top layer makes it difficult to detect any

other cloud layers below. This extra factor may be responsi-

ble for the better agreement between our scheme and ground

measurements compared to others (e.g. van der Linden et al.,

2015). We chose a value of CTPT of 680 hPa (∼ 3.5 km) be-

cause the OCA algorithm can sometimes place a cloud on

the wrong side of an inversion. 680 hPa is near a minimum

in relative humidity (Kalthoff et al., 2018), at a level above

the inversion at boundary layer top but below any mid-level

clouds.

A comparison to LLC fraction derived from ground-based

ceilometers in Kumasi and Savé is shown in Fig. A2. The

ceilometers made ground-up measurements of cloud base,

compared to top-down satellite measurements of cloud top,

which may cause a small uncertainty in the comparison that

is difficult to quantify. Surprisingly, the best agreement was

generated by ignoring the per-pixel uncertainty in the SE-

VIRI data (i.e. assuming all values of CTP were absolutely

accurate). This comparison showed agreement in the diur-

nal cycle and absolute values within 10 % LLC fraction, as

well as similar levels of variability (i.e. the standard devi-

ations). The comparison was better during the day than at

night, in agreement with a similar observations by van der

Linden et al. (2015), though using a different LLC scheme.
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Figure A1. Schematic describing the derivation of the LLC flag from SEVIRI OCA data. We used values of CTPT = 680 hPa and

log10(COTT) = 0. The dashed lines separate off the section of the scheme that is only necessary where the per-pixel uncertainty is con-

sidered.

Figure A2. Comparison of LLC fraction derived from satellite and ground-based ceilometer measurements from Savé (a) and Kumasi (b).

The satellite measurements were calculated from a 4 pixel × 4 pixel grid centred on the ground site.
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