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Abstract. We examine the street-scale variation of NOx ,
NO2, O3 and PM2.5 concentrations in Beijing during the
Atmospheric Pollution and Human Health in a Chinese
Megacity (APHH-China) winter measurement campaign in
November–December 2016. Simulations are performed us-
ing the urban air pollution dispersion and chemistry model
ADMS-Urban and an explicit network of road source emis-
sions. Two versions of the gridded Multi-resolution Emis-
sion Inventory for China (MEIC v1.3) are used: the standard
MEIC v1.3 emissions and an optimised version, both at 3 km
resolution. We construct a new traffic emissions inventory by
apportioning the transport sector onto a detailed spatial road
map. Agreement between mean simulated and measured pol-
lutant concentrations from Beijing’s air quality monitoring
network and the Institute of Atmospheric Physics (IAP) field
site is improved when using the optimised emissions inven-
tory. The inclusion of fast NOx–O3 chemistry and explicit
traffic emissions enables the sharp concentration gradients
adjacent to major roads to be resolved with the model. How-

ever, NO2 concentrations are overestimated close to roads,
likely due to the assumption of uniform traffic activity across
the study domain. Differences between measured and simu-
lated diurnal NO2 cycles suggest that an additional evening
NOx emission source, likely related to heavy-duty diesel
trucks, is not fully accounted for in the emissions inventory.
Overestimates in simulated early evening NO2 are reduced
by delaying the formation of stable boundary layer condi-
tions in the model to replicate Beijing’s urban heat island.
The simulated campaign period mean PM2.5 concentration
range across the monitoring network (∼ 15 µgm−3) is much
lower than the measured range (∼ 40 µgm−3). This is likely
a consequence of insufficient PM2.5 emissions and spatial
variability, neglect of explicit point sources, and assumption
of a homogeneous background PM2.5 level. Sensitivity stud-
ies highlight that the use of explicit road source emissions,
modified diurnal emission profiles, and inclusion of urban
heat island effects permit closer agreement between simu-
lated and measured NO2 concentrations. This work lays the
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foundations for future studies of human exposure to ambient
air pollution across complex urban areas, with the APHH-
China campaign measurements providing a valuable means
of evaluating the impact of key processes on street-scale air
quality.

1 Introduction

In recent decades, China’s rapid economic growth, industri-
alisation and urbanisation have led to severely deteriorating
air quality. Associations between high concentrations of air
pollutant species, such as fine particulate matter (PM2.5), ni-
trogen oxides (NOx = NO + NO2) and ozone (O3), and
adverse health effects are well-established in China (Han et
al., 2018). Most notably, the inhalation of ambient PM2.5 is
linked to respiratory illnesses, cardiovascular disease, lung
cancer and adverse birth outcomes (Han et al., 2018; Liang
et al., 2019). The Global Burden of Disease Study 2016 iden-
tified ambient PM2.5 exposure as the fourth leading cause of
premature death in China (GBD 2016 Risk Factors Collabo-
rators, 2017).

To accurately assess the extent of human exposure to pol-
lution in densely populated and complex urban areas and to
reduce this health risk, comprehensive information is needed
on the spatiotemporal variation of ambient pollutant concen-
trations, the dominant emission source sectors, chemical pro-
cesses and the role of meteorological conditions in pollution
accumulation and dispersion. High-quality air pollutant con-
centration measurements can provide some of the required
information. For instance in Beijing, a 35-station automated
air quality monitoring network has measured continuous
hourly concentrations of PM2.5, PM10, SO2, NO2, O3 and
CO since 2013. However, these measurements, recorded by
Beijing’s Environment Protection Bureau (EPB), are sparsely
distributed (Chen et al., 2015; Li et al., 2018; Cui et al.,
2019). This, coupled with the sharp pollutant concentration
gradients that exist across urban areas (Hood et al., 2018),
limits the accuracy of any subsequent human exposure anal-
yses. Therefore, air quality modelling, evaluated using net-
work measurements, may fill in the gaps to provide complete
spatially and temporally resolved concentration fields (Bates
et al., 2018).

Air quality modelling, from global to street scale, re-
quires detailed representations of local and regional emission
fields. However, generating accurate and up-to-date emis-
sions data is a considerable challenge, owing to difficulties
in obtaining the necessary activity, emission factor, and pro-
duction/control technology data for each emission source
sector (Hong et al., 2017; Qi et al., 2017). Additionally, in
China, the rapid decrease in emissions of major air pollu-
tants over recent years needs to be accounted for (Sun et
al., 2018; Zheng et al., 2018). This reduction in emissions
has followed the nationwide implementation of a number of

clean air policies since 2013 as part of the Air Pollution Pre-
vention and Control Action Plan (APPCAP) and more lo-
cally through the Beijing Action Plan (Ni et al., 2018; Cheng
et al., 2019; Wang et al., 2019). Overall, emissions in Bei-
jing of SO2, NOx , VOCs and PM2.5 are reported to have de-
creased by 84 %, 43 %, 42 % and 55 % between 2013 and
2017 (Cheng et al., 2019). These emission reductions were
estimated by Cheng et al. (2019), using the technology-based
model framework of the Multi-resolution Emission Inventory
for China (MEIC), and are in good agreement with indepen-
dent satellite-derived emission trends (Liu et al., 2016, 2017).

The MEIC emission inventory is widely used in studies
aimed at understanding the key emission sources and the ef-
fectiveness of air pollution control measures across various
regions of China (Li et al., 2017; Zheng et al., 2018; Cheng
et al., 2019). However, uncertainties in MEIC emissions es-
timates, related to their underlying methodology and input
data, have also been highlighted. For instance, the MEIC
model relies on the use of national and provincial energy con-
sumption statistics, which were shown by Hong et al. (2017)
to contain large sources of error. The MEIC model uses spa-
tial proxies, such as gross domestic product (GDP) and urban
population density, to downscale emissions from provincial-
to county- and grid-level scale (Qi et al., 2017). A study
by Zheng et al. (2017) revealed a tendency to over-allocate
emissions to central urban areas when using these spatial
proxies to produce the MEIC inventory at resolutions finer
than 0.25◦. Zheng et al. (2017) attributed this to the displace-
ment of large industrial facilities away from urban centres,
therefore decoupling the real-world locations of the emis-
sions from the population-related proxies used to represent
them in the MEIC inventory.

Numerous regional modelling studies, incorporating emis-
sion inventories such as MEIC and Eulerian chemical trans-
port models (CTMs), have been carried out for Beijing (Liu
et al., 2016; Petaja et al., 2016; Li et al., 2017; Y. Wang et
al., 2017, 2018; Chang et al., 2019). A key limitation of re-
gional models, however, is that they cannot be used to rep-
resent pollutant concentrations at the scale needed to fully
assess human health impacts. As a result, a range of street-
scale-resolution air quality modelling techniques have re-
cently emerged. Land use regression (LUR) modelling stud-
ies, combining geospatial indicators with air quality mea-
surement data, can generate local-scale (< 1 km) pollutant-
level variations, but have been limited by the sparsity of mon-
itoring network data available in Beijing (J. Xu et al., 2019;
M. Xu et al., 2019). Alternatively, box models, such as the
Model of Urban Network of Intersecting Canyons and High-
ways (MUNICH), are used to calculate pollutant concentra-
tions within street canyons, but require detailed information
on the spatial dimensions of a city’s street canyons and are re-
stricted by assumptions of uniform concentrations along in-
dividual road segments (Lugon et al., 2019). Gaussian plume
dispersion models, capable of simulating dispersion from an
array of explicitly represented emission source types, includ-
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ing road and point sources, are instead often implemented.
Widely used for environmental regulatory purposes, mod-
els such as ADMS-Urban (Owen et al., 2000) and AER-
MOD (Cimorelli et al., 2005) incorporate detailed bound-
ary layer parameterisations and transport processes. The ad-
ditional modelling of local fast chemistry processes on pol-
lutant emissions with ADMS-Urban, involving the simpli-
fied Generic Reaction Set (GRS) chemistry scheme, includ-
ing NOx–O3 reactions, enables sharp concentration gradi-
ents adjacent to major urban sources to be captured (Hood et
al., 2018). Previous applications of ADMS-Urban in China
have largely focussed on evaluating the impact that emission
control schemes targeting individual sources have on the im-
mediate environment. For instance, Chen et al. (2009) com-
bined pollutant concentrations simulated by ADMS-Urban
with population data to investigate the impact of traffic con-
trol policies on human exposure levels in Shanghai. Simi-
larly, Cai and Xie (2011) used the ADMS-Urban model to
quantify the effect that the odd–even traffic scheme (restrict-
ing vehicles with odd or even number plates), enforced dur-
ing the 2008 Olympics, had on emissions from a selection
of major roads, finding that some of the previously most pol-
luted areas subsequently complied with the Chinese National
Air Quality Standards (CNAAQS).

This study aims to produce, for the first time, fully re-
solved street-scale NO2, O3 and PM2.5 concentrations across
urban and suburban Beijing using ADMS-Urban and explicit
source road traffic emissions. Previously, Yang et al. (2019)
used the RapidAir dispersion model in Beijing, which ex-
cludes chemical processes, and a link-level traffic emissions
inventory developed using congestion maps and manual ve-
hicle counts to simulate pollutant concentrations at the street
level. A bottom–up street-scale vehicle emissions inventory
was also created by Y. Zhang et al. (2018), using traffic sur-
veys and video identification of vehicle fleet composition, to
evaluate the impact of a new low-emission zone (LEZ) in ur-
ban Beijing. For this study, we compile an explicit source
traffic emissions inventory by apportioning gridded emis-
sions onto the freely available OpenStreetMap (OSM) road
network geometry. Unlike the data-intensive methodologies
adopted by Y. Zhang et al. (2018) and Yang et al. (2019), spa-
tiotemporal variations in traffic volume and vehicle type are
not considered here. However, this work provides a robust
framework suitable for similar street-scale air quality mod-
elling across large urban areas with limited data availabil-
ity that future human health studies can build on. Further-
more, both the MEIC v1.3 and an optimised version of the
same inventory are used to assess the performance of proxy-
based inventories for street-scale modelling. Aggregated sec-
toral emissions (industrial, power and residential) are also
included. We perform simulations for the Atmospheric Pol-
lution and Human Health in a Chinese megacity (APHH-
China) winter measurement campaign period, which took
place in November–December 2016 at the Institute of Atmo-
spheric Physics (IAP), Chinese Academy of Sciences (Shi

et al., 2019). Measured pollutant concentrations from both
the APHH-China campaign and Beijing’s air quality moni-
toring network are used to evaluate modelled concentrations,
providing valuable insight into the key processes that impact
street-scale air quality. The adaptability of ADMS-Urban is
utilised in a series of further sensitivity simulations aimed
at exploring the impact that explicit road traffic emissions,
modified diurnal emissions profiles and Beijing’s evening ur-
ban heat island (UHI) have on discrepancies between mea-
sured and modelled pollutant concentrations.

A detailed description of the ADMS-Urban model and its
inputs is provided in Sect. 2. Section 3 presents an evalua-
tion and discussion of results comparing modelled concentra-
tions, using both emission inventories, with monitoring net-
work and field campaign measurement data. A summary of
this work’s primary findings is provided in Sect. 4 along with
details of possible future study development.

2 Methodology

The street-scale air pollution dispersion and chemistry
model, ADMS-Urban, is used here to simulate ambient con-
centrations of NOx , NO2, O3 and PM2.5 across Beijing dur-
ing the APHH-China winter campaign period (5 Novem-
ber 2016–10 December 2016). Section 2.1 provides a full
description of the model and its configuration for Beijing,
including details on emission source types, pollution disper-
sion, chemical processes and background pollutant concen-
trations. Emission inventory development, including the con-
struction of an explicit network of road source emissions, is
outlined in Sect. 2.2. In Sect. 2.3, the statistical measures
used to evaluate model performance are described.

2.1 Model description and set-up

ADMS-Urban, developed by Cambridge Environmental Re-
search Consultants (CERC), is a quasi-Gaussian pollution
dispersion and chemistry model that has been applied world-
wide for environmental regulation, investigation and assess-
ment of emission control strategies and generation of high
spatial resolution air quality forecasts (McHugh et al., 2005;
Carruthers, 2009; Cai and Xie, 2011).

The model domain (75km × 90km) covers urban Bei-
jing, defined here as everywhere within the Sixth Ring Road
(marked in Fig. 1), and extends into the suburban counties of
Shunyi and Changping to the north and Tongzhou, Daxing
and Fangshan to the south, as illustrated by Fig. 1.

2.1.1 Emission sources, meteorological inputs and

surface parameters

In the model, pollutant emissions are represented as individ-
ual plumes dispersing from a range of explicitly represented
sources, including point, road, area and volume sources. Ag-
gregate grid sources (2-D and 3-D) are used to account for
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Figure 1. Map of Beijing (source: OpenStreetMap, 2019) with the
modelling domain, measuring 75km×90km, outlined (dashed blue
line). Urban (green circle), suburban (pink circle), upwind back-
ground (yellow square) and IAP (red circle) air quality monitor-
ing station locations, including site numbers, are provided. Beijing
Capital International Airport (yellow star) and the Sixth Ring Road
(black line) are also highlighted. © OpenStreetMap contributors
2019. Distributed under a Creative Commons BY-SA License.

additional, poorly defined diffuse emissions (e.g. domestic
heating or minor roads) (Mohan et al., 2011; Dédelé and
Miskinyté, 2015; Hood et al., 2018). Plume dispersion cal-
culations are driven by a single set of meteorological mea-
surements that are representative of upwind conditions and
assumed to be homogeneous across the study domain. For
this study, we use hourly wind speed, wind direction, air tem-
perature and cloud cover data from the Beijing Capital Inter-
national Airport Meteorology Observatory, which is located
∼ 20 km north-east of the Fourth Ring Road (Fig. 1). The
input meteorology is processed by the model to calculate pa-
rameters that determine the stability and height of the plane-
tary boundary layer (PBL) for each hour. Cloud cover mea-
surements, along with the time of day and day of year, are
used to calculate incoming solar radiation which generates
surface sensible heat flux (Fθ0), friction velocity (U∗) and
Monin–Obukhov length (LMO) terms via the surface energy
balance. LMO is a measure of the relative importance of me-

chanical turbulence and buoyancy in the PBL and along with
surface heat flux terms determines PBL height (PBLH) in the
model. Alternatively, measurements of PBLH can be used if
available. For this study, simulations are performed using di-
rectly input observations of mixed layer height (MLH) de-
rived from ceilometer measurements taken at the IAP field
site during the APHH-China campaign (Kotthaus and Grim-
mond, 2018; Shi et al., 2019). The MLH represents the height
of the lowest atmospheric layer always in direct contact with
the earth’s surface resulting from turbulent exchange (Kot-
thaus and Grimmond, 2018) and is assumed here to equate to
the model’s PBLH output.

ADMS-Urban calculates the ratio of PBLH to LMO, a
measure of the relative importance of mechanical turbu-
lence and buoyancy, to generate a continuous PBL stabil-
ity profile that varies with height. This PBLH/LMO param-
eterisation controls the vertical and horizontal spread extents
of each emitted Gaussian plume, with the aggregate con-
tribution from each individual emission source determining
hourly simulated pollutant concentrations. In unstable con-
ditions, an additional convectively driven turbulence com-
ponent is calculated. This produces a skewed, non-Gaussian
concentration distribution, meaning that for elevated sources
the height of maximum concentration and mean height of the
plume itself will descend and ascend, respectively (CERC,
2017).

Differences between conditions at the exposed airport me-
teorological site and the predominantly built-up modelling
domain, largely caused by frictional effects of buildings and
street canyons that perturb near-surface dynamics locally, are
accounted for through distinct definitions of surface rough-
ness (Z0) and minimum Monin–Obukhov LMO in both en-
vironments. Z0 and minimum LMO values of 0.5 and 30 m,
respectively, represent conditions at the meteorological mea-
surement site. However, greater Z0 and minimum LMO val-
ues of 1.5 and 100 m, respectively, typical of urban areas
dominated by densely packed tall buildings and concrete sur-
faces (Stewart and Oke, 2012), are used across the modelling
domain and displace the upwind vertical wind speed, wind
direction and turbulence profiles derived from the meteoro-
logical measurements.

2.1.2 PBL stability adjustment

Both Z0 and minimum LMO definitions prevent the modelled
boundary layer from becoming unrealistically stable in ur-
ban areas where the surface radiation balance is perturbed
by a number of factors, including anthropogenic heat release,
building geometry and the thermal properties of concrete sur-
faces (Oke, 1982). The resulting positive temperature differ-
ential between urban areas and the surrounding rural environ-
ment is referred to as the UHI effect (Hamilton et al., 2014).
This phenomenon is strongest in the late afternoon and early
evening hours, when anthropogenic heat from rush hour traf-
fic and residential heating systems, as well as incoming solar
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Figure 2. Diurnal mean PBLH/LMO values for the campaign period
(blue line). Modified PBLH/LMO, from 16:00 to 19:00, to account
for evening UHI, shown by red dashed line.

radiation stored in the urban fabric throughout the day, is re-
leased into a stabilising PBL (Liu et al., 2007).

For this study, a further restriction on PBL stability has
been applied to more comprehensively account for Beijing’s
strong evening UHI (K. Wang et al., 2017). Figure 2 shows
how the PBL stability, represented by PBLH/LMO, varies di-
urnally for the campaign period. The LMO values are de-
rived from a prior model simulation without stability mod-
ifications and the observed MLH (Sect. 2.2.1) is used as
the PBLH. PBLH/LMO > 1, −0.3 ≤ PBLH/LMO ≤ 1 and
PBLH/LMO < −0.3 represent stable, neutral and unstable
conditions, respectively.

During the day, the surface net radiation is partitioned be-
tween upwards fluxes of sensible and latent heat and the
downwards flux of heat into the ground (Oke, 1982). The
version of ADMS-Urban used here (v 4.2) assumes that this
ground heat flux is a constant proportion of the net radiation.
In reality, this proportion varies diurnally, peaking around
midday when a greater proportion of incoming solar radia-
tion is stored by the urban fabric (Anandakumar, 1999; Grim-
mond and Oke, 1999). The release of this excess heat in the
early evening sustains convection in the PBL, prolonging its
instability. To account for this, a constant rate of decrease
in PBLH/LMO has been assumed between original modelled
values for 15:00 and 20:00, producing the modified cam-
paign period mean PBLH/LMO diurnal profile illustrated in
Fig. 2. Modified LMO values from 16:00 to 19:00 are added
to the set of input meteorological variables for all subse-
quent simulations, with the directly input PBLH measure-
ments remaining unchanged. This adjustment increases sen-

sible and latent heat fluxes, therefore enhancing the turbulent
mixing of air during this early evening period. The 16:00–
19:00 time window is chosen as it coincides with sunset in
November–December in Beijing, and it is in agreement with
the extended duration of evening sensible heat flux decay
in urban areas, compared with surrounding rural areas, ob-
served by other UHI-related studies (Zhou et al., 2013; Bar-
low et al., 2015). Without this adjustment, the model tends to
predict overly stable meteorological conditions in the early
evening, which can lead to the over-prediction of pollutant
concentrations. It is important to note that the modelled sur-
face heat flux and LMO terms are calculated independently
of the PBLH, so that small positive LMO values can generate
an overly stable boundary layer even when paired with the
measured MLH assumed here to represent real-world stabil-
ity conditions.

2.1.3 Chemistry

The chemical transformation of pollutants contained within
each dispersing plume is represented using the GRS chem-
istry scheme (Malkin et al., 2016). Typically, regional CTMs
such as WRF-Chem and CMAQ use detailed chemical mech-
anisms containing hundreds or even thousands of reactions
involving NO, NO2, O3 and VOCs, including homogeneous
and heterogeneous aerosol production (Sarwar and Luecken,
2008). The GRS, however, simplifies these to the following
seven reactions:

ROC + hv → RP + ROC, (R1)

RP + NO → NO2, (R2)

NO2 + hv → NO + O3, (R3)

NO + O3 → NO2, (R4)

RP + RP → RP, (R5)

RP + NO2 → SGN, (R6)

RP + NO2 → SNGN, (R7)

where ROC represents reactive organic compounds, RP is the
radical pool, SGN is the stable gaseous nitrogen product and
SNGN is the stable non-gaseous nitrogen product (CERC,
2017). The inclusion of fast NOx–O3 chemistry, whereby
at high NOx levels, NO consumes O3 (Reactions R3 and
R4), enables the sharp pollutant species concentration in-
creases, with proximity to major road or large point sources,
to be captured. Reaction (R1) summarises all of the oxidation
and photolysis reactions that lead to radical production from
VOCs (Malkin et al., 2016), while Reactions (R2) and (R5)
represent subsequent radical loss.

An additional set of reactions involves the production of
ammonium sulfate, following the oxidation of SO2 and re-
actions with water and ammonia, and this provides a source
of both PM10 and PM2.5. Other secondary organic and inor-
ganic components of particulate matter, which can comprise
up to a combined 70 % of total PM2.5 mass in Beijing (Ma
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et al., 2017; Tao et al., 2017; Y. Wang et al., 2017), are ac-
counted for in the background concentration field described
in Sect. 2.1.4.

2.1.4 Background pollutant concentrations

Background pollutant concentrations represent the regional
pollution levels on which the local emissions build. For this
study, background levels for NO2, O3, PM2.5, PM10, SO2
and CO are derived directly from hourly air quality measure-
ment data and are assumed to be uniform across the study
domain. Measured concentrations at 12 national air quality
monitoring stations, run by the China National Environmen-
tal Monitoring Center (CNEMC), the IAP field site and an
additional site 60 km south-east of Beijing, situated in the
built-up Guangyang district of Langfang in Hebei province,
are used to estimate this background concentration field. The
locations of these 14 sites are given in Table 1.

For particulate matter (PM2.5 and PM10), an hourly up-
wind background concentration is derived based on wind di-
rection with concentrations selected from sites 3 (270–360◦),
10 (0–90◦) and 14 (90–270◦) located to the NW, NE and SE
of urban Beijing, respectively. Particulates have near-surface
lifetimes of days to weeks; therefore, concentrations in Bei-
jing are heavily influenced by long-range transport (LRT)
of both primary and secondary components originating in
neighbouring industrial regions (Y. Wang et al., 2017; Cheng
et al., 2019). The measured upwind concentration is expected
to capture this transported background regional air. Gaseous
species such as NO2 have a much shorter lifetime (∼ 1 d)
and therefore a smaller regional contribution, with concentra-
tions across urban areas dominated primarily by local traffic
sources (Zhang et al., 2014). The NO2 concentrations at the
upwind monitoring station were subsequently not deemed
representative of the true background value owing to both
this greater spatial variation and the proximity of the upwind
monitoring stations to local emission sources. Instead, to ap-
proximate background values for gaseous species (NO2, O3,
CO and SO2), the hourly minimum concentration for each
pollutant across the 12 network monitoring stations and the
IAP field site is selected, yielding an approximation for the
underlying conditions uninfluenced by local sources.

2.2 Emissions inventory processing

For this study, ADMS-Urban simulations use both aggregate
3-D grid source and explicit road source emissions of NOx ,
NO2, SO2, VOC (total), PM2.5, PM10 and CO derived from
a standard and an optimised version of the high-resolution
(3 km) MEIC v1.3 emissions inventory. The standard MEIC
v1.3 emissions inventory, for 2013, consists of five emission
source sectors: transportation, power, industrial, residential
and agricultural (Qi et al., 2017). Note that the latter is not
used in this study due to both the lack of farmland in ur-
ban Beijing and the negligible contributions to the pollutant

species simulated in this study from agricultural emission
sources (Qi et al., 2017). The transportation sector is esti-
mated following Zheng et al. (2014), in which county-level
emissions, derived from county-level vehicle ownership, are
downscaled to grids based on road network and road-specific
vehicle activity data. Liu et al. (2015) describe the unit-
based technique, adopted to generate the power sector emis-
sions, which utilises the Coal-fired Power Plant Emissions
Database (CPED), including information on the technolo-
gies, activity data, operation situation, emission factors and
locations of individual units. Industrial and residential sector
emissions are calculated from provincial-level activity data
and emission factors (Zheng et al., 2017). Industrial emis-
sions are downscaled to the county level using GDP (Na-
tional Bureau of Statistics, 2014), with both industry and res-
idential emissions further distributed to grid-level resolutions
based on high-resolution (∼ 1 km) population density data
(Oak Ridge National Laboratory, 2013) (Zheng et al., 2017).
To model conditions during the APHH-China winter cam-
paign, the MEIC v1.3 emissions inventory is re-scaled for
this study to account for the 2013–2016 emission reductions
in Beijing (Sect. 1). According to Cheng et al. (2019), total
emissions of NOx (and NO2), SO2, VOCs and PM (PM2.5
and PM10) in Beijing were estimated to decrease by 30 %,
63 %, 27 %, 35 % and 30 %, respectively, between 2013 and
2016. This adjusted MEIC v1.3 emissions inventory is here-
after referred to as MEIC Std.

An alternate optimised version of MEIC v1.3 (hereafter
referred to as MEIC Opt) was created (Li et al., 2018), for
November and December 2016, with the aim of addressing
the over-allocation of emissions to urban areas that occurs
when downscaling MEIC v1.3 to fine scales based on proxy
data (Zheng et al., 2017). This MEIC Opt inventory was cre-
ated using the Nested Air Quality Prediction Modeling Sys-
tem (NAQPMS) to perform iterative minimisation of a cost
function comparing NAQPMS simulations with winter cam-
paign observations (Li et al., 2018). This optimisation algo-
rithm was used to redistribute MEIC emissions from central
urban Beijing to suburban and rural areas and to adjust their
magnitude to represent the campaign period. Both the MEIC
Std and MEIC Opt inventories comprise monthly varying
emissions with distinct diurnal weighting profiles applied to
each emission sector.

Aggregate 3-D grid sources contain the sum of all MEIC
emission source sectors (residential, transportation, indus-
trial and power) and consist of seven vertical layers (38,
90, 152, 228, 337, 480 and 660 m). In the absence of suf-
ficient information required to model point source emissions
(e.g. large power plants) explicitly, ADMS-Urban’s 3-D grid
sources enable plume release and dispersion from each of
the seven grid source heights, accounting for tall emission
sources included within the MEIC v1.3 power or industrial
sector grids. MEIC Std and MEIC Opt campaign period
mean NO2, NOx , PM2.5, PM10, SO2 and VOC emission rates
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Table 1. Locations (latitude and longitude) of all monitoring stations, including distinction between urban (within the Sixth Ring Road)
and suburban site types. The approximate distance (nearest 10 m) from each monitoring station to the nearest road centre line and the
corresponding road type are also provided.

Site Site Latitude Longitude Distance to nearest Nearest
name type (◦ N) (◦ E) road centre line (m) road type

1 Guanyuan Urban 39.93 116.34 90 Secondary
2 Wanshou Xigong Urban 39.88 116.35 80 Tertiary
3 Dingling Suburban 40.29 116.22 285 Tertiary
4 Dongsi Urban 39.93 116.42 200 Secondary
5 Tiantan Urban 39.89 116.41 90 Tertiary
6 Nongzhanguan Urban 39.94 116.46 400 Trunk
7 Haidan Wanliu Urban 39.99 116.29 100 Tertiary
8 Gucheng Urban 39.91 116.18 260 Tertiary
9 Shunyicheng Suburban 40.13 116.66 190 Secondary
10 Huairouzhen Suburban 40.33 116.63 NA Tertiary
11 Changpingzhen Suburban 40.22 116.23 200 Secondary
12 Aoti Zhongxin (Olympic Park) Urban 39.98 116.4 110 Secondary
13 IAP Urban 39.97 116.37 110 Secondary
14 TCM Medical Material Company Urban 39.52 116.69 NA Secondary

NA – not available

from 3-D grid sources, aggregated across all, urban and sub-
urban grid cells, are shown in Table 2.

An explicit network of road emissions for Beijing has
been constructed based on the MEIC transportation sec-
tor emissions. Figure 3 illustrates the pseudo top–down ap-
proach adopted here in the absence of detailed information
on traffic activity and fleet composition. Figure 3a shows
the spatial distribution of the November and December mean
MEIC Std transportation sector surface NO2 emissions. The
transportation sector emissions of all pollutants are appor-
tioned to individual road segments on a grid cell-by-grid
cell basis, using the ArcGIS geographic information sys-
tem software. The spatial road network of Beijing, pre-
sented in Fig. 3b, is provided by the OpenStreetMap dataset
(https://openstreetmap.org/, last access: 6 June 2019) and in-
cludes individual road segment type and geometry informa-
tion. Emissions are mapped onto the road network based on
each road segment length and an emissions weighting fac-
tor, producing the distribution shown in Fig. 3c, following
Eq. (1):

Emisi,j,k =
li,j · wk

n∑
i=1

(li,j · wk)

× Ej , (1)

where li,j represents the length of road segment i in grid cell
j of road type k. The weighting factor of road type k is given
by wk . Ej and n denote the total traffic emissions and num-
ber of road segments in grid cell j , respectively. A weighted
mean emission rate, based on road segment length, is calcu-
lated along segments traversing multiple grid cells in order
to avoid discontinuities.

Weighting factors (Table 3) are estimated using road type
and width (based on manual inspection of the most frequent
number of lanes for each road type), acting as proxies for
traffic activity. Each road type weighting factor is applied
equally to all pollutant species. The magnitude of weighting
factors relative to each other is important, rather than their
absolute values, according to Eq. (1). Minor roads were re-
moved from the network to limit the computational expense
of each simulation and are instead aggregated within the 3-
D grid sources. This methodology is based on the assump-
tion that traffic volume, speed and fleet composition are con-
stant across all road type classes listed in Table 3. However,
substantial variations in traffic flow characteristics on roads
of the same classification within Beijing’s urban area have
been observed. For example, Jing et al. (2016) used GPS-
fitted buses and taxis to collect near real-time traffic data
along the major road types in Beijing, finding much greater
levels of congestion closer to the urban centre, causing in-
creased traffic volume and vehicle speed variations. Addi-
tionally, Y. Zhang et al. (2018) observed a greater proportion
of vehicles with lower emission standards on roads outside
the Fifth Ring Road. Given that the same emission weighting
factors for roads of the same class are applied across the do-
main and the lack of traffic flow variations on specific roads
within cities in the MEIC framework (Zheng et al., 2014), the
methodology adopted here may under-allocate emissions on
more congested inner-city roads and over-allocate emissions
in suburban areas.

2.3 Model evaluation

Evaluation of regional-scale Eulerian CTMs involves the
comparison of measurements at specific monitoring site loca-
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Table 2. Campaign period mean MEIC Std (S) and MEIC Opt (O) pollutant species emissions (t d−1) aggregated across all, urban and
suburban grid cells. Change (%) in emissions between inventories, following optimisation, calculated as (O – S/S) ×100.

Campaign period mean aggregate pollutant emission rates (t d−1)

Region of domain NO2 NOx PM2.5 PM10 SO2 VOC

S O S O S O S O S O S O

All 60.2 46.9 889.3 504.6 86.2 110.3 156.5 176.1 72.5 54.4 717.6 1942.5
Change (%) −22.1 −43.3 28.0 12.5 −25.0 170.7
Urban 44.0 22.1 649.1 238.3 49.9 46.9 89.3 69.5 42.4 27.5 476.8 1273.1
Change (%) −49.8 −63.3 −6.0 −22.2 −35.1 167.0
Suburban 16.3 24.7 240.2 266.2 36.3 63.4 67.2 106.7 30.1 27.0 240.8 669.4
Change (%) 51.5 10.8 74.7 58.8 −10.3 178.0

Figure 3. (a) Spatial distribution of November and December mean transportation sector MEIC Std NO2 emissions (lowest vertical layer)
covering the full study domain, (b) spatial road network of Beijing (source: OpenStreetMap, © OpenStreetMap contributors 2019. Distributed
under a Creative Commons BY-SA License), (c) explicit road source NO2 emission rates following apportioning of (a) onto (b), and (d)

enlarged section of the road emissions network covering the IAP field site and site 12.

Table 3. Estimated emission weighting factors for each modelled
road type.

Road type Weighting

Motorway 0.7
Trunk 0.5
Primary 0.4
Secondary 0.25
Tertiary 0.15

tions with simulated concentrations in the nearest model grid
box (Zhong et al., 2016; Y. Wang et al., 2017; Zheng et al.,
2017). However, for street-scale air quality modelling with
ADMS-Urban, pollutant concentrations can be simulated at
specific locations, referred to hereafter as receptor points. For
this study, concentrations are modelled at the locations of
the 12 monitoring network stations, as well as the IAP field
site, for direct comparison with the corresponding measured
concentrations. The following three statistical performance
measures are considered simultaneously, enabling a compre-
hensive evaluation of modelled predictions of concentrations,
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using both MEIC Std and MEIC Opt emissions inventories,
during the APHH-China winter campaign period.

normalised mean square error (NMSE) =
(M − O)

2

MO
, (2)

fractional bias (Fb) =
M − O

0.5(O + M)
, (3)

Pearson’s correlation coefficient (R) =

1

n − 1

∑n

i=1
(Mi − M/σM) (Oi − O/σO), (4)

where n denotes the total number of matching hourly mod-
elled and observed concentrations; M and O indicate mean
modelled and observed concentrations, respectively, and σ is
the standard deviation.

NMSE (ideal value = 0) is a measure of the model’s over-
all accuracy (Cai and Xie, 2011), incorporating the effects
of both systematic and random errors (Patryl and Galeriu,
2011); Fb (ideal value = 0) reflects the model’s tendency to
overestimate or underestimate concentrations, compared to
measurements; and R (ideal value = 1) informs on the extent
to which modelled and measured values are linearly related.

In this study, the statistical evaluation of pollutant concen-
trations simulated at the exact coordinates of the measure-
ment locations is complemented by street-scale-resolution
maps which more clearly illustrate the strong spatial het-
erogeneity of pollution levels across Beijing. Fully resolved
PM2.5, NO2 and O3 concentration fields in central Beijing
are simulated with a combination of regularly spaced re-
ceptor points at ∼ 150 m and additional output points dis-
tributed within and in the immediate vicinity of all individ-
ual road emission source segments. The addition of emission
source-oriented output points increases the model resolution
to < 10 m across regions containing dense distributions of
explicit road sources, therefore enabling the sharp pollutant
concentration variations adjacent to roads to be captured.

3 Results and discussion

Street-scale-resolution maps of PM2.5, NO2 and O3 concen-
trations across a region of urban Beijing are presented in
Sect. 3.1. Section 3.2 provides a statistical evaluation of sim-
ulated pollutant species against hourly measurements at 12
monitoring network sites and the IAP campaign field site (Ta-
ble 1), using both MEIC Std and MEIC Opt inventories. Di-
urnal cycles of NOx , NO2 and O3 concentrations are given in
Sect. 3.3, and Sect. 3.4 contains an analysis of local and re-
gional PM2.5 sources. Sensitivity studies explore the impact
on model performance of including explicit road emission
sources, varying diurnal emissions profiles and accounting
for the evening UHI in Sects. 3.5, 3.6 and 3.7, respectively.

3.1 Street-scale variation of PM2.5, NO2 and O3

concentrations

Mean PM2.5, NO2 and O3 concentrations simulated for the
campaign period (5 November–10 December 2016), using
the MEIC Opt inventory, for a region of urban Beijing within
the Fifth Ring Road are presented in Fig. 4. The influence of
the explicit road emissions network on the spatial variation of
all species is clear, most notably along the Second, Third and
Fourth Ring Roads. PM2.5 and NO2 concentrations peak at
125 and 160 µgm−3, respectively, along the ring road centre
lines, before sharply decaying. The magnitudes of this drop
and distance across which it occurs are determined not only
by emission source strength, but also by physical and chemi-
cal mechanisms, with the speed of plume dispersion and mix-
ing, controlled by mechanical and convective turbulence gen-
eration, interacting with the differing lifetimes of individual
pollutants. In Fig. 5, mean NO2 concentrations decrease by
∼ 20–25 µgm−3 along a horizontal profile extending 100 m
either side of the Second Ring Road. The spatial variation
of O3 concentrations is approximately inversely related to
these NO2 levels. Modelled O3 concentrations decrease to
5 µgm−3 along the Second Ring Road centre line and reach
25 µgm−3 between the Fourth and Fifth Ring Roads (Fig. 4).
This is a result of the fast reaction of O3 with NO (titration)
(Reaction R4) which dominates in high-NOx environments
(Y. Zhang et al., 2015; Tang et al., 2017; Ma et al., 2018),
such as those next to major roads. The conversion of primary
NO exhaust emissions to NO2, following the titration of O3,
also produces a sharply increasing NO2/NOx ratio with dis-
tance from the road centre (Fig. 5). In the following sections,
a comprehensive evaluation of the model performance is pre-
sented.

3.2 Model evaluation and assessment of emission

inventories

Table 4 summarises the performance of ADMS-Urban in
Beijing during the APHH-China winter measurement cam-
paign, with comparisons between MEIC Std and MEIC Opt
simulations enabling an assessment of the MEIC v1.3 opti-
misation.

Modelled NOx concentrations at the IAP field site display
the most substantial differences between the two simulations
(Table 4; Fig. 6). Modelled NOx concentrations using the
MEIC Opt inventory are 149.8 µgm−3, 56 % lower than the
MEIC Std case, leading to NMSE and Fb decreases from
2.35 to 0.63 and 0.93 to 0.17, respectively (Table 4). This
enhanced model agreement is reflected in Fig. 6, in which
a large proportion of modelled NOx values reaching 400–
600 µgm−3 with MEIC Std, up to a factor of 6 higher than
measurements, is reduced to within a factor of 2 of mea-
sured concentrations using MEIC Opt. This result reflects the
63 % NOx emissions reduction across urban Beijing, over all
source sectors, in the optimised inventory (Table 2). How-
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Figure 4. Spatial maps of mean PM2.5 (b), NO2 (c), and O3 (d) concentrations for the winter campaign period (5 November to 10 Decem-
ber 2016), simulated using the MEIC Opt emissions inventory. Simulated concentrations cover the region marked in (a). Mean measured
concentrations at monitoring network sites (NO2, O3 and PM2.5) and the IAP field site (NO2 and O3) are represented by coloured dots.
© OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.

Table 4. Statistical evaluation of modelled pollutant concentrations for the campaign period, using MEIC Std (S) and MEIC Opt (O) emis-
sions inventories. Mean modelled (Mod) and observed (Obs) concentrations and statistics divided into all (12 monitoring network sites and
the IAP field site for NO2 and O3, monitoring network sites only for PM2.5) and urban and suburban monitoring site groups. Urban and
suburban sites defined in Table 1. NOx measurements only available at the IAP field site. Mean concentrations and statistics calculated from
matching hourly values.

Mean concentrations (µg m−3) Model evaluation statistics

NMSE Fb R

Sites Mod (S) Mod (O) Obs S O S O S O

PM2.5 All 90.3 89.8 93.4 0.37 0.37 −0.03 −0.04 0.76 0.76
Urb 93.4 92.1 100.9 0.36 0.36 −0.08 −0.09 0.78 0.78
Sub 84.0 85.3 78.3 0.40 0.41 0.07 0.09 0.74 0.74

O3 All 10.4 14.6 18.5 1.54 0.74 −0.56 −0.24 0.71 0.79
Urb 6.1 12.8 17.2 3.20 0.93 −0.95 −0.29 0.70 0.77
Sub 20.0 18.6 21.4 0.48 0.47 −0.07 −0.14 0.82 0.83

NO2 All 69.5 65.7 65.3 0.27 0.30 0.06 0.00 0.55 0.53
Urb 79.2 71.4 71.3 0.27 0.31 0.10 0.00 0.42 0.44
Sub 47.9 52.9 51.8 0.21 0.23 −0.08 0.02 0.74 0.70

NOx IAP 345.5 149.8 126.1 2.35 0.63 0.93 0.17 0.35 0.41
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Figure 5. Simulated campaign period mean NO2 concentrations,
with distance from the point on the Second Ring Road centre
line (marked by X in Fig. 4c) using MEIC Opt (pink). Simulated
NO2/NOx ratio denoted by a black dashed line. Shaded areas rep-
resent the 95 % confidence interval.

ever, correlation coefficient (R) values for simulated NOx re-
main low using both emissions inventories, slightly increas-
ing from 0.35 to 0.41 with MEIC Opt. This smaller improve-
ment in the correlation between measured and modelled NOx

using MEIC Opt, compared to NMSE and Fb, reflects the
dependency of R on modelled NOx levels that capture the
correct temporal variation as well as the overall magnitude
of NOx measurements. The noise apparent in the measured
and simulated NOx comparison in Fig. 6 is therefore likely
related to either the diurnal emissions profile or meteorolog-
ical variations.

NO2 concentrations differ less, with NMSE values of 0.27
and 0.30 for the MEIC Std and MEIC Opt simulations, re-
spectively. However, a greater difference is evident at urban
receptor locations, with modelled NO2 concentrations from
the MEIC Opt simulation 12 % lower than those with MEIC
Std. Across suburban sites, the opposite pattern is seen, with
changes in Fb values between measurements and MEIC Std
and MEIC Opt simulations ranging from negative (−0.08) to
positive (0.02), respectively. Both urban and suburban NO2
concentration changes, between simulations, reflect the over-
all redistribution of NO2 emissions in the MEIC Opt inven-
tory, away from central Beijing and towards the city outskirts
(Table 2).

The much greater urban NOx concentration difference be-
tween the two simulations, as compared to NO2, can be at-
tributed to two factors. Firstly, NO2 concentrations respond
in a more non-linear way to NOx emission changes than
NOx concentrations. This has been shown in previous stud-

ies (e.g. Kurtenbach et al., 2012) and can be explained by
the timescales and kinetics involved in the formation and de-
struction of secondary NO2. As NOx levels decrease, the pro-
duction of secondary NO2 via Reaction (R4) occurs faster
as O3 concentrations are higher, leading to a slower rate
of decrease of NO2 concentrations compared to NOx emis-
sions. Additionally, the proportion of NOx directly emitted
as NO2 is greater with MEIC Opt (NO2/NOx = 0.093) than
MEIC Std (NO2/NOx = 0.068) (Table 2). This is reflected
by the much greater reduction, from MEIC Std to MEIC Opt,
in domain-aggregated NOx emissions (43 %), as compared
NO2 (22 %) (Table 2).

At urban sites, O3 concentrations simulated with MEIC
Opt are 12.8 µgm−3, which is a factor of 2 greater than those
simulated using MEIC Std (6.1 µgm−3). Overall, the mod-
elled O3 concentrations at urban sites using MEIC Opt are in
closer agreement with the measurements, reflected by lower
Fb and NMSE values of −0.29 and 0.93, respectively, as
compared to −0.95 and 3.2 in the MEIC Std simulations (Ta-
ble 4). This is caused by both lower urban NOx emissions
in MEIC Opt and the reduced proportion of remaining NOx

emitted directly as NO, in MEIC Opt, leading to less O3 de-
struction through Reaction (R4). Contrastingly, higher MEIC
Opt NOx emissions in suburban Beijing reduce modelled O3
concentrations by 7 %. As a result, modelled O3 performance
across all monitoring stations is substantially improved in the
MEIC Opt simulation, with a NMSE reduction from 1.54 to
0.74 and an R value increase from 0.71 to 0.79 (Table 4).
These results highlight the strong dependency of O3 concen-
tration predictions in urban areas, which inform human ex-
posure analyses and influence future emission control imple-
mentation, on the accurate spatial variation and magnitude of
NOx emissions in high-resolution emissions inventories. The
increase in modelled urban O3 concentrations following NOx

emissions reductions also highlights both the negative impact
that controls on one pollutant species can have on another as
well as the possible need for air quality guidelines that con-
sider multiple pollutants, in contrast to the single pollutant-
based air quality index used in China (Han et al., 2018).

Figure 7a and b illustrate site-specific differences between
measured and simulated NO2 and O3 concentrations, re-
spectively, using both emissions inventories. It is clear that,
despite generally closer model agreement with measure-
ments using MEIC Opt, NO2 concentrations remain sub-
stantially overestimated at urban sites 1 (∼ 14 µgm−3) and 2
(∼ 9 µgm−3). To help understand the cause of this, the sen-
sitivity of modelled concentrations within 100 m of a road
source near site 1 is illustrated in Fig. 8. Concentrations along
a cross-road slice, extending 100 m either side of the road,
are simulated after halving and doubling the magnitude of
emissions of all species from this secondary road. Emissions
from all other sources in the model configuration remain the
same. Along the road centre, the range of simulated concen-
trations between emission scenarios is ∼ 10 µgm−3; how-
ever, this difference decreases to ∼ 2 µgm−3 at a distance
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Figure 6. Hourly measured and modelled NOx concentrations during the campaign period at the IAP field site. Panels (a) and (b) show
concentrations simulated using MEIC Std and MEIC Opt, respectively. Colours represent the total number of matching hourly measured
and modelled values contained within distinct hexagonal bins. Dashed lines mark a factor of 2 difference between measured and simulated
concentrations.

of 100 m, which is much lower than modelled NO2 overes-
timations produced by MEIC Opt at sites 1 and 2, each lo-
cated ∼ 80–90 m from the nearest road. Therefore, the high
modelled NO2 at sites 1 and 2 may only be partially at-
tributed to an over-allocation of explicit road source emis-
sions caused by either (a) underlying gridded emissions that
are still too high or (b) not considering traffic volume/speed
variations across the domain in road class emission weight-
ing factor estimates. It should also be noted that the phys-
ical barriers to pollution dispersion represented by the ur-
ban canopy, and specifically street canyons, are not explicitly
modelled in this study. This may lead to road emissions dis-
persing further from the road centre than in reality, therefore
contributing to elevated modelled concentrations at greater
distances from explicit road sources (Dédelé and Miskinyte,
2015). The sensitivity of the simulated NO2/NOx concen-
tration ratio to emission magnitude changes is also shown
in Fig. 8. For each emissions scenario, the NO2/NOx emis-
sions ratio remains the same (0.093) (Table 2); however, the
concentration ratio varies. With doubled NOx emissions, the
NO2/NOx ratio is ∼ 0.3 along the road centre, compared to
∼ 0.4 with halved NOx emissions (Fig. 8). This difference,
which decays to zero at a distance of ∼ 75 m, is mostly driven
by PBL dynamics and the mixing of freshly emitted NOx into
air with a lower NO2/NOx concentration ratio driven by the
impact of higher NOx emissions on secondary NO2 produc-
tion via Reaction (R4), as discussed above.

A clear distinction exists between measured PM2.5 con-
centrations recorded at the suburban (78 µgm−3) and urban
(101 µgm−3) monitoring stations (Table 4). These values are
well in excess of China’s annual PM2.5 National Ambient
Air Quality Standard (NAAQS) of 35 µgm−3; however, con-

centrations are expected to be higher in winter due to more
stable meteorology (Zheng et al., 2015; Li et al., 2017) and
enhanced coal combustion for residential heating and cook-
ing and at power plants in neighbouring cities (Chen et al.,
2017). Simulated PM2.5 concentrations, however, do not re-
flect such an urban–suburban discrepancy, with mean ur-
ban values exceeding those at suburban sites by only 9 and
7 µgm−3 using MEIC Std and MEIC Opt, respectively (Ta-
ble 4). Across all monitoring stations, the range in cam-
paign period mean measured concentrations is substantially
higher (∼ 40 µgm−3) than the simulated range using both
MEIC Std (∼ 20 µgm−3) and MEIC Opt (∼ 15 µgm−3), re-
spectively. These results suggest that either PM2.5 emission
sources are too uniform in magnitude and spatial distribu-
tion across the domain in the current model set-up or that
the assumption of a homogeneous background PM2.5 con-
centration is invalid. It is likely that, by diluting PM2.5 emis-
sions within individual grid cells and not explicitly represent-
ing point source emissions (e.g. large industrial units), the
model is unable to capture the PM2.5 concentration hotspots
that would increase the urban PM2.5-level increment and im-
prove model agreement with the observed spatial variation.
With the exception of simulated PM2.5 adjacent to major
roads, this modelled uniformity in urban PM2.5 is clearly ev-
ident in Fig. 4, in which PM2.5 concentrations vary by only
∼ 5–10 µgm−3 across the area enclosed by the Fifth Ring
Road. The mean estimated PM2.5 background concentration
is 79 µgm−3 (Fig. 7), which is higher than both the mean
measured concentrations at suburban sites 3 and 10, located
to the north. This implies that either the background PM2.5
level is, in reality, inhomogeneous with lower concentrations
to the north and higher to the south of urban Beijing or that
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Figure 7. Campaign period mean measured and modelled (a) NO2, (b) O3, and (c) PM2.5 concentrations at all monitoring network sites
(numbered) and the IAP field site (NO2 and O3). Blue and pink lines indicate concentrations simulated using MEIC Std and MEIC Opt,
respectively. Horizontal light blue line represents campaign period mean background concentrations calculated from measurements.

Figure 8. (a) Campaign period mean simulated NO2 concentrations and NO2/NOx concentration ratios with distance from the road centre
along the cross-road slice marked in (b) using half (blue), double (yellow) and unchanged (green) emissions of all species from an explicit
road source marked by red line. The green circle in (b) marks the position of monitoring site 1. (b) © OpenStreetMap contributors 2019.
Distributed under a Creative Commons BY-SA License.
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the upwind background monitoring site to the south is too
heavily influenced by local emission sources and is not rep-
resentative of background conditions. The relative contribu-
tions from PM2.5 emission sources and background inhomo-
geneity to the underestimated spatial variation in PM2.5 is
further discussed in Sect. 3.4.

3.3 Winter campaign diurnal cycles of NO2, O3 and

NOx

The diurnal variation of pollutant species in urban areas pro-
vides insight into how concentrations are impacted by both
diurnal variations in meteorology and temporally varying
emissions. The locations of urban stations 1, 12 and IAP, and
suburban site 11 are illustrated in Fig. 9, with measured mean
diurnal NO2 concentrations averaged over the campaign pe-
riod at all four sites compared with those simulated using
both the MEIC Std and MEIC Opt inventories in Fig. 10.
There are several common differences between modelled and
measured concentration profiles at all three urban stations
(Fig. 10a, c and d). Firstly, both simulated NO2 diurnal cycles
at sites 1, 12 and IAP are considerably lower than measure-
ments from 23:00 to 06:00. This discrepancy peaks at 02:00,
with simulated concentrations ∼ 20 and ∼ 30 µgm−3 lower
than measurements, using MEIC Std and MEIC Opt, respec-
tively. Observed NO2 concentrations at urban sites remain
elevated between 23:00 and 06:00, relative to the rest of the
day, resulting in a diurnal profile absent of the distinct morn-
ing and evening peaks commonly observed in other megaci-
ties, such as London (Hood et al., 2018). High nocturnal NO2
concentration measurements during the APHH-China win-
ter campaign at the IAP field site are also noted by Shi et
al. (2019).

Previous studies have attributed the evening influx of
heavy duty diesel trucks (HDDTs), banned from commut-
ing within the Fourth Ring Road from 06:00 to 23:00 (Zhang
et al., 2019), to evening NOx concentration increases across
urban Beijing of up to 10 µgm−3 (Wu et al., 2016; Yang et
al., 2019). A large proportion of this HDDT fleet originates
in other provinces where emission standards are not as strict
as those in Beijing (Wang et al., 2011). It is possible, there-
fore, that in a proxy-based emissions inventory (e.g. MEIC),
such traffic restrictions and inter-provincial vehicle mobil-
ity are not fully accounted for (Zheng et al., 2014). This is
supported by the much closer agreement between evening
modelled and measured NO2 at suburban site 11 (Fig. 10b),
situated outside the Sixth Ring Road (Fig. 9) and away from
the influence of additional nighttime HDDT NOx emissions.
Additionally, ADMS-Urban makes an approximation when
modelling dispersion in calm conditions by applying a mini-
mum wind speed of 0.75 m s−1 (CERC, 2017). These stable,
low wind speed conditions, however, are common in winter
in Beijing and have been strongly linked to the acceleration
of pollution accumulation during severe winter haze events
(X. Zhang et al., 2015; Z. Zhang et al., 2016; L. Zhang et

al., 2018). Therefore, it is likely that the large early morning
NO2 concentration model underestimations across all three
urban sites are a consequence of NOx emissions that are too
low in magnitude, from 23:00 to 06:00, dispersing into a sim-
ulated PBL that may be insufficiently stable due to the use of
a minimum wind speed in the model.

From 06:00 to 09:00, modelled NO2 concentrations in
both the MEIC Std and MEIC Opt simulations increase
sharply (Fig. 10). This is most prominent at site 1, where
simulated levels approximately double during this 3 h pe-
riod. This increase corresponds to the release of rush hour
traffic-related NOx emissions into a stable and shallow morn-
ing PBL. Contrastingly, measurements at these sites decline
over this early morning period following an evening concen-
tration peak as described above. This overestimation of NO2
continues throughout the afternoon, with similar profiles at
sites 12 and IAP reflecting the close proximity of both recep-
tor locations (∼ 3 km apart) (Fig. 9).

The concurrence of evening rush hour traffic emissions
and a stabilising PBL, associated with the reduction in sur-
face heating following sunset, creates a second simulated
NO2 concentration peak at ∼ 18:00. In contrast to the sim-
ulated morning concentration rise, the close agreement be-
tween the measured and modelled times of onset and magni-
tude of this early evening increment indicates that the sim-
ulated stability adjustment (Sect. 2.1.2), implemented be-
tween 16:00 and 19:00, has successfully accounted for the
re-release of stored heat, characteristic of large urban areas.

There is little difference between the diurnal NO2 concen-
tration profiles simulated using the MEIC Std and MEIC Opt
inventories, and this is consistent with the model evaluation
results described in Sect. 3.2. Simulated NO2 concentrations
across the urban sites are marginally lower using MEIC Opt
compared to MEIC Std, with the reverse true at suburban site
11, again reflecting the relocation of emissions out of the ur-
ban centre.

The much closer agreement between measured NOx con-
centrations at the IAP field site and those simulated with
MEIC Opt compared to MEIC Std, outlined in Sect. 3.2, is
further emphasised by the diurnal cycles in Fig. 11. MEIC
Opt produces much lower NOx concentrations than MEIC
Std across all hours of the day (up to a factor of 3), peak-
ing during morning and evening rush hour with concentra-
tions of ∼ 200 and ∼ 250 µgm−3, respectively. The simu-
lated NO2/NOx concentration ratio at IAP produced with
MEIC Opt ranges from 0.4 to 0.7 throughout the day, 0.2–
0.3 greater than the MEIC Std simulation. This again re-
flects the combined influences of both the greater NO2/NOx

emission ratio in MEIC Opt (Table 2) and the non-linear re-
sponse of secondary NO2 concentrations to NOx emission
changes, as discussed in Sect. 3.2. Overestimated NOx con-
centrations and underestimated NO2/NOx concentrations ra-
tios at IAP produced with MEIC Opt indicate that, despite
emissions modifications, the magnitudes of NOx emissions
(specifically NO) are too high in the MEIC Opt inventory.
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Figure 9. Spatial distribution of November and December mean MEIC Opt NO2 emissions (all emission sectors) overlaid with Beijing
road network (source: OpenStreetMap, 2019). Enlarged regions cover urban sites 1, 12 and IAP as well as suburban site 11. Right panel:
© OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.

Figure 10. Campaign period mean diurnal variation in modelled and measured NO2 concentrations at sites (a) 1, (b) 11, (c) 12, and (d) IAP.
Modelled concentrations produced using both MEIC Std (blue) and MEIC Opt (pink). Measurements marked by red line. Shaded areas and
error bars represent the 95 % confidence intervals for simulated and measured concentrations, respectively.

The impact of NOx emission differences on diurnal O3
concentrations is illustrated in Fig. 12. Using MEIC Std,
simulated O3 concentrations across all three urban sites
are considerably lower than measured values from 08:00
to 17:00, with the measured–modelled difference reaching
∼ 20 µgm−3 at midday. This reflects the prominence of Re-
action (R4), caused by high urban NO emissions in MEIC
Std. The reverse response is seen at site 11, where midday
O3 is overestimated by ∼ 10 µgm−3 as a result of low MEIC
Std NO emissions in suburban versus urban regions. Dur-
ing daylight hours, there is much closer agreement between
measured and modelled O3 across all four sites with MEIC
Opt. This reflects the adjusted balance between photochemi-

cal production of O3, via Reaction (R3), and its removal via
Reaction (R4), caused by decreased NOx emissions in urban
areas and increased emissions in suburban areas, in the MEIC
Opt inventory. NOx–O3 chemistry is also greatly influenced
by proximity to road sources. As shown in Fig. 8 and dis-
cussed in Sect. 3.2, roads with higher NOx emissions lead
to lower NO2/NOx concentration ratios within distances of
100 m and therefore greater O3 loss through its titration by
NO in Reaction (R4).
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Figure 11. Campaign period mean diurnal variation in modelled and measured (a) NOx concentrations and (b) NO2/NOx concentration
ratios at the IAP field site. Modelled concentrations produced using both MEIC Std (blue) and MEIC Opt (pink). Measurements marked by
red line. Shaded areas and error bars represent the 95 % confidence intervals for simulated and measured concentrations, respectively.

Figure 12. Campaign period mean diurnal variation in modelled and measured O3 concentrations at sites (a) 1, (b) 11, (c) 12 and (d) IAP.
Modelled concentrations produced using both MEIC Std (blue) and MEIC Opt (pink). Measurements marked by red line. Shaded areas and
error bars represent the 95 % confidence intervals for simulated and measured concentrations, respectively.

3.4 Local and regional contributions to PM2.5

concentrations

Figure 13 presents the diurnal variation of the range of
site-specific campaign period mean measured and simulated
PM2.5 concentrations, using MEIC Opt, across all 12 mon-
itoring network sites. The interquartile range of all network
measurements, illustrating the extent to which PM2.5 con-
centrations vary spatially across the domain, greatly exceeds
that of modelled concentrations for most of the day. This ob-
served range is largest at night and consistently in excess of
20 µgm−3, compared to the simulated range of 5–10 µgm−3.
The measured ranges are additionally sub-divided into those
recorded at urban and suburban monitoring sites, with the di-
urnal median urban PM2.5 values as much as ∼ 35 µgm−3

higher than those for suburban sites between 23:00 and

02:00. It is possible that, similarly to the elevated evening
NO2 concentration measurements discussed in Sect. 3.3, this
high measured nighttime urban PM2.5 concentration incre-
ment is also related to the influx of HDDTs to central Bei-
jing following the lifting of traffic restrictions from 23:00
to 06:00, with recent studies (Y. Zhang et al., 2015; Wu et
al., 2016) reporting a rising contribution from HDDT exhaust
emissions to PM2.5 levels across China. A subsequent reduc-
tion of the measured urban–suburban PM2.5-level discrep-
ancy during daytime hours, reaching ∼ 10 µgm−3 at midday,
coincides with much closer overall agreement between mod-
elled and measured concentrations.

The large difference between mean measured urban and
suburban PM2.5 concentrations throughout the day in Fig. 13
is not captured by the model. This is likely the result of ei-
ther a lack of heterogeneity in the modelled PM2.5 emis-
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Figure 13. Variations in site-specific campaign period mean measured (red) and modelled (blue) PM2.5 concentrations across all monitoring
network stations for each hour of the day. Measurements sub-divided to highlight the variation between suburban (cyan) and urban (pink)
monitoring network stations specifically.

sion sources, particularly across urban areas, or that, in re-
ality, substantial non-uniformity in the background concen-
tration exists across the domain. The former is consistent
with a number of previous studies on PM2.5 source appor-
tionment in Beijing, which have suggested that, during ex-
tended periods of elevated particulate mass concentrations in
winter, local emissions can account for 80 % of PM2.5 con-
centrations (Li et al., 2017; Y. Wang et al., 2017; Chang
et al., 2019). Therefore, as discussed in Sect. 3.2, in or-
der to simulate the high spatial variation of PM2.5 concen-
trations, characterised by large urban PM2.5 concentration
increments, higher-resolution modelling of primary PM2.5
emissions through the inclusion of explicitly represented
large point sources is likely to be necessary.

It is also possible that greater secondary aerosol produc-
tion needs to be included in the model’s chemistry scheme,
further increasing the simulated urban PM2.5 increment. Cur-
rently in ADMS-Urban, with the exception of ammonium
sulfate production, secondary PM2.5 concentrations are as-
sumed to be included in the upwind background concentra-
tion. As the dominant contribution to secondary PM2.5 in
Beijing is reported to be from neighbouring industrial regions
to the south (Ma et al., 2017), this assumption seems largely
valid. However, the relative local contributions of other sec-
ondary components in Beijing, such as ammonium nitrates,
are found to be increasing (Y. Wang et al., 2017; Xu et al.,
2019; Yang et al., 2019). This is a consequence of the ef-
fectiveness of recent SO2 emission controls and the lack of
agricultural ammonia (NH3) emissions reductions (Zheng et
al., 2018), which have promoted the formation of ammo-
nium nitrate (Xu et al., 2019). Xu et al. (2019) also found
the nitrate aerosol to be of increasing importance at night
during winter, as a result of its greater stability at lower
temperatures, which, coupled with high nighttime NO2 con-
centrations (Fig. 10), may further account for the elevated
evening PM2.5 levels (Fig. 13). The applicability of this pre-

vious work is possibly limited by the smaller domain size and
short timescales of pollution dispersion in this study com-
pared with those necessary for secondary aerosol produc-
tion. However, future work testing the impact of both the
higher-resolution representation of PM2.5 emission sources
and additional secondary particle formation pathways within
the chemistry scheme is needed to fully understand the po-
tential impact of both on improving agreement between sim-
ulated and measured PM2.5 concentrations (Fig. 13).

The regional contribution to total PM2.5 concentrations in
Beijing has been shown by previous studies to vary from
< 10 % to > 90 % depending on the time of year and meteo-
rological conditions (He et al., 2015; Liu et al., 2015; Li et al.,
2017; Y. Wang et al., 2017). Therefore, the sensitivity of the
calculated PM2.5 background concentration to the methodol-
ogy used to select the appropriate monitoring site is impor-
tant and is illustrated in Fig. 14. As described in Sect. 2.1.4,
simulated PM2.5 concentrations include a wind direction-
dependent upwind background contribution calculated using
either of two sites to the north or one to the south of urban
Beijing. Figure 14 shows the diurnal range of calculated up-
wind background values during the winter campaign, with
the corresponding range of background PM2.5 calculated by
instead selecting the minimum hourly concentration across
the monitoring network, matching the methodology used to
determine background concentrations for gaseous species.

For each hour, the upwind background PM2.5 upper quar-
tile, median and lower quartile greatly exceed the cor-
responding values when using the minimum background
methodology. This discrepancy is greatest for the upper quar-
tile values and peaks during morning and evening rush hour,
reaching ∼ 80 µgm−3 at 17:00 (Fig. 14). The lower whiskers,
however, denoting the lowest datum lying within 1.5 times
the interquartile range of the lower quartile, are common
across both sets of PM2.5 background diurnal cycles. In-
terpretation of these results is assisted by Fig. 15, which
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Figure 14. Ranges in campaign period mean calculated background PM2.5 concentrations for each hour of the day using minimum (green)
and upwind (yellow) concentration methodologies.

presents hourly wind vectors and PM2.5 time series measure-
ments throughout the campaign at all three upwind sites as
well as urban sites 1 and 2. It is clear that the highest up-
wind PM2.5 background concentrations occur when values
at the additional site to the southeast of urban Beijing (site
14) are selected during periods of southerly winds (Fig. 15).
The lowest background concentrations, therefore, can be at-
tributed to either of the northerly sites (site 3 and site 10).
Northerly winds advect clean air originating over the rel-
atively unpolluted mountainous regions into urban Beijing
(Tie et al., 2015). This switch in wind directions creates a
saw-tooth pattern, with pollution episodes initially consisting
of a slow build-up phase, associated with stagnant southerly
winds, and culminating with sharp concentration drops re-
lated to the influx of cold northerly air (Li et al., 2017;
Y. Wang et al., 2017). A clear example of this, from 23 to
27 November, is shown in Fig. 15.

PM2.5 concentrations at site 14, situated in the south-
eastern corner of the model domain, are consistently higher
than those measured at sites located in central Beijing. This
monitoring station is located in the built-up Guangyang Dis-
trict of Langfang in Hebei province and is not in the imme-
diate vicinity of any large point sources. Therefore, this re-
gion is possibly more heavily influenced by regional PM2.5
advected from industrial towns and cities to the south. This
highlights an important limitation of our study, which as-
sumes a homogeneous background concentration for each
species; this assumption may not be valid across such a large
and complex urban area.

Both local PM2.5 emission sources not represented in our
study and background inhomogeneity appear to contribute
substantially to differences in the spatial and temporal varia-
tion of measured and modelled PM2.5 concentrations. How-
ever, the large diurnal variability in measured PM2.5 con-
centration ranges across the domain (Fig. 13), not captured
by the model, is more likely the influence of local emis-

sion sources, with longer timescales required for background
PM2.5 concentration variability driven by regional transport.

3.5 Impact of explicit road source modelling

In this section, we investigate the sensitivity of the simulated
NO2 concentrations to the inclusion of explicit road source
emissions. Simulations that use aggregate 3-D grid sources
alone are much less computationally expensive than those
that also incorporate explicit road source emissions and al-
low studies to be performed with ADMS-Urban in urban ar-
eas where detailed road network information is unavailable.
In Fig. 16, measured NO2 concentrations averaged across
the campaign are compared with those simulated using 3-
D grid and explicit road sources, as well as 3-D grid sources
only, derived from the MEIC Opt emissions inventory. By
resolving road traffic emissions into explicitly represented
road sources, as opposed to using gridded emissions only,
mean modelled NO2 concentrations across urban stations in-
crease from 62.8 to 71.4 µgm−3 (Table 5). This modelled
urban NO2 concentration increase results in a Fb value im-
provement from −0.13 to 0 (Table 5) reflecting the greater
NO2 levels simulated by the model at locations in close prox-
imity to explicit roads. By using grid sources only, the road
traffic emissions are diluted over each 3 × 3 km grid cell and
the strong concentration gradients associated with a region
densely populated by major roads, illustrated in Fig. 4, are
not captured. Similarly, Dédelé and Miskinyté (2015) and
Hood et al. (2018) found that increased traffic emissions
due to higher traffic volume and adjusted emission factors,
respectively, produced improved Fb values using ADMS-
Urban.

More accurate model predictions next to roads can lead
to better assessments of human exposure levels to pollutant
species and are evidence of the successful implementation
of the top–down approach to estimating explicit road traffic
emissions used in this study. However, it is also clear from
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Figure 15. Hourly PM2.5 concentrations at measurement sites 1, 2, 3, 10 and 14 during the campaign period. Wind vectors, representing
wind speed magnitude and direction recorded at the airport meteorological station, are also provided (black arrows).

Table 5. Same information presented as in Table 4 but for NO2 concentrations simulated (MEIC Opt) using 3-D grid sources only (G) as
well as 3-D grid and explicit road sources (G-R) (also presented in Table 4).

Mean concentrations (µg m−3) Model evaluation statistics

NMSE Fb R

Site Mod (G) Mod (G-R) Obs G G-R G G-R G G-R

NO2 All 58.9 65.7 65.3 0.28 0.30 −0.10 0.00 0.59 0.53
Urb 62.8 71.4 71.3 0.29 0.31 −0.13 0.00 0.51 0.44
Sub 50.1 52.9 51.8 0.21 0.23 −0.03 0.02 0.73 0.70

Fig. 16 that agreement between modelled and measured NO2
concentrations at sites 1 and 2 is substantially poorer when
using explicit road sources than with the grid-source-only
simulation. The model evaluation statistics for all monitor-
ing sites (Table 5) reflect this with increases in NMSE from
0.28 to 0.3 and decreases in R from 0.59 to 0.53 when mod-
elling road emissions explicitly. As discussed in Sect. 3.2,
this highlights the impact that the assumption of constant
traffic activity, high underlying gridded emissions or the ab-
sence of street canyon and urban canopy modelling can have
on simulated concentrations at certain near-road locations.

Minimal R value changes and a much lower Fb improve-
ment, −0.03 to 0.02, are seen across suburban compared to
urban areas, following the inclusion of explicit road source
emissions. This reflects the lower density of roads in subur-
ban areas (Fig. 4) and therefore the absence of strong con-
centration gradients that enhance NO2 levels at near-road
urban locations. The relative influence of diffuse emissions
contained within the underlying gridded emission sources on
simulated pollutant concentrations is therefore more promi-
nent with distance from Beijing’s urban centre, with previous
studies specifically highlighting the persisting importance of
residential coal combustion for heating and cooking during
winter in suburban and rural Beijing (Cai et al., 2018; Li et
al., 2018).

3.6 Accounting for additional evening NOx emission

source

In this section, the influence of modifying the MEIC diur-
nal emissions profile, used for all previous simulations, to
account for additional sources of nighttime NOx emissions
is examined. As discussed in Sect. 3.3, a likely explanation
for the simulated underestimate in nocturnal NOx and NO2
concentrations is that an additional evening NOx emission
source is not accounted for in the emissions inventories. The
timing of these peak NO2 and NOx measurements, between
23:00 and 06:00, coincides with the influx of HDDTs within
Beijing’s Fourth Ring Road.

Figure 17 presents the standard MEIC diurnal emissions
profile (DP_MEIC), and two alternative profiles, DP_25 and
DP_50, constructed by increasing the standard MEIC profile
factors between 23:00 and 06:00 by ∼ 0.25 and ∼ 0.5, re-
spectively, to account for additional nighttime HDDT emis-
sions. For both modified emissions profiles, in order to retain
the same 24 h emissions total, DP_MEIC is further adjusted
between 07:00 and 22:00, by magnitudes that also preserve
the timings of the morning and evening emissions peaks as-
sociated with rush hour traffic. The weekend emissions pro-
file, characterised by a delayed morning peak and ∼ 30 %
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Figure 16. Campaign period measured and modelled NO2 concen-
trations at all the measurement sites (numbered). Modelled concen-
trations produced using 3-D grid and explicit road emission sources
(blue) and 3-D grid sources only (orange) derived from the MEIC
Opt emissions inventory. Horizontal light blue line represents cam-
paign period mean background NO2 concentrations calculated from
measurements.

Figure 17. Diurnal emissions profiles applied to the simula-
tions shown in Fig. 18. Standard MEIC diurnal emissions pro-
file (DP_MEIC) marked by blue line; modified DP_MEIC with
increased proportions of nighttime emissions marked by pink
(DP_25) and cyan (DP_50) lines and weekend emissions profile
marked by dashed black line.

reduced total daily traffic emissions, is kept unchanged for
all three sensitivity simulations.

Campaign period mean diurnal profiles of NO2 concentra-
tions, simulated using the diurnal emissions profiles shown
in Fig. 17, are presented in Fig. 18. At suburban site 11, the
close agreement between simulated and measured NO2 con-
centrations using DP_MEIC is strengthened further by in-
creasing the proportion of emissions released at night rel-
ative to the daytime. Modelled NO2-level overestimations
throughout the morning and afternoon hours at sites 12 and

IAP using DP_MEIC are reduced when applying the two
modified emissions profiles. However, at site 1 the applica-
tion of DP_50 is unable to reduce daytime NO2 concentra-
tions substantially, which is likely related again to the effect
of overestimated emissions along the nearest explicit road
source (Fig. 8). The evening NO2 concentration is underesti-
mated at sites 1, 12 and IAP, using DP_MEIC, and this is suc-
cessively reduced by a small amount with DP_25 and DP_50.
The remaining evening differences suggest that, although the
inclusion of higher nighttime emissions improves agreement,
other possible issues exist related to ADMS-Urban’s inabil-
ity to model dispersion at very low wind speeds; inaccurate
underlying gridded emissions; the simplified GRS chemistry
scheme; and the exclusion of street canyon and urban canopy
modelling or PBL dynamics.

3.7 The influence of boundary layer height and

stability on diurnal NO2 concentrations

In this section, the impact of PBLH and stability on diur-
nal NO2 concentrations is explored with further sensitivity
simulations. The space into which emitted plumes of pol-
lutants can disperse and mix is determined by the PBLH.
Figure 19 shows the difference between measured and mod-
elled PBLHs and their impact on simulated diurnal NO2 con-
centrations. Differences between the PBLH simulated with-
out evening stability adjustment and the observed PBLH
(Fig. 19) are characterised by a daytime overprediction and
nighttime underprediction. At 15:00, the rapidly growing
convective PBL peaks at ∼ 1100 m, exceeding the observed
heights by ∼ 200 m. This difference between observed and
simulated PBLHs could be a result of an overestimation of
the solar radiation-driven surface sensible heat flux and me-
chanically driven turbulent flux values, which are the princi-
pal parameters impacting the modelled PBLH. Additionally,
due to complex cloud physics, detecting the exact limit of
vertical mixing is difficult in the presence of low-level strat-
iform clouds, which form frequently in Beijing during win-
ter, and may further account for low PBLHs derived from
ceilometer observations (Kotthaus and Grimmond, 2018).
After sunset at 17:00, the modelled PBLH shrinks to ∼

200 m, 400 m below the measured height. This sharp tran-
sition between an unstable and a stable modelled PBL is a
consequence of ADMS-Urban not accounting for the UHI
effect in its surface energy balance calculations, as described
in Sect. 2.1.2.

The early evening stability adjustment (Sect. 2.1.2) ap-
plied to all previous simulations in this study replicates the
effect of the UHI by reducing PBL stability between 16:00
and 19:00. By applying the stability modification, early
evening modelled PBLH increases and reaches ∼ 1300 m
by 18:00 before sharply decreasing to ∼ 200 m by 20:00.
Note that directly input PBLH measurements are unaffected
by changes to LMO and surface heat flux terms. The sta-
bility adjustment reduces NO2 concentrations simulated at
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Figure 18. Campaign period mean diurnal variation in measured and modelled NO2 concentrations using MEIC Opt at sites (a) 1, (b) 11,
(c) 12, and (d) IAP. Measurements marked by red line. Shaded areas and error bars represent the 95 % confidence intervals for simulated and
measured concentrations, respectively.

Figure 19. (a) Campaign period mean diurnal variation in modelled PBLH with stability correction (pink), modelled PBLH without stability
correction (cyan) and measured PBLH (red). (b) Campaign period mean diurnal variation in measured (red) and modelled NO2 concentrations
with measured PBLH and stability correction (blue), modelled PBLH with stability correction (pink), measured PBLH without stability
correction (green), and modelled PBLH without stability correction (cyan) at the IAP field site. Shaded areas and error bars represent the
95 % confidence intervals for simulated and measured PBLH and concentrations, respectively.

16:00 using modelled and measured PBLHs by ∼ 40 and
∼ 15 µgm−3, respectively, greatly improving agreement with
measurements. The sharp morning modelled NO2 concen-
tration rise, peaking at 09:00, decreases by ∼ 10 µgm−3

through use of the measured PBLH alone. However, applica-
tion of a similar PBL stability adjustment, between 07:00 and
10:00, would likely reduce the early morning PBLH underes-
timation and further weaken the modelled NO2 concentration
rise associated with the input of rush hour-related NOx emis-
sions into a morning PBL that is currently too stable and too
shallow compared to observations.

The results suggest that although atmospheric stability
modifications have a strong impact on NO2 concentrations,
the use of observed PBLH instead of modelled heights has
little effect. This is clearest outside the hours in which the
stability correction has been applied, when large (∼ 300 m)
measured and modelled mid-afternoon and nighttime PBLH
discrepancies have negligible impact on simulated NO2 con-
centrations. The greater impact of PBL stability changes
alone, however, is clearly evidenced by the ∼ 15 µgm−3 dif-
ference at 16:00 between simulations using measured PBLHs
with and without the stability correction. This dominant in-
fluence of PBL stability is possibly related to the impact in
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the model configuration of near-surface traffic emissions and
the exclusion of elevated point sources, with pollution dis-
persion from the latter more likely to be restricted by low
PBLHs which would then further affect modelled NO2 lev-
els.

4 Conclusions

In this study, street-scale-resolution concentrations of NOx ,
NO2, O3 and PM2.5 are simulated for Beijing, using the
Gaussian pollution dispersion and chemistry model, ADMS-
Urban. Simulations for the APHH-China winter measure-
ment campaign period (5 November–10 December 2016) are
driven by an explicit source road traffic emissions inventory,
developed for this work using a pseudo top–down method-
ology. This approach, which involves apportioning an un-
derlying high-resolution gridded emissions inventory onto
Beijing’s spatial road network, provided by OpenStreetMap,
may be applied to investigate the air quality in other cities
where detailed bottom–up traffic emissions inventories are
unavailable.

Measurements recorded at 12 of Beijing’s air quality mon-
itoring network stations and at the Institute of Atmospheric
Physics (IAP) field site are compared with simulated pollu-
tant levels generated by the Multi-resolution Emission In-
ventory for China v1.3 (MEIC Std), at 3 km resolution, and
an optimised version of the same inventory (MEIC Opt).
MEIC Opt, which is based on campaign measurements, has
lower emissions across urban Beijing (within the Sixth Ring
Road) and higher emissions in surrounding suburban areas,
resulting in greatly improved agreement between observed
and simulated concentrations for all species. Most notably,
driven by NO emission changes, simulated mean NOx con-
centrations at the IAP site are lower by more than a factor
of 2 using MEIC Opt compared to the MEIC Std inventory.
Consequently, modelled urban O3 concentrations increase by
109 %, with suburban O3 concentrations decreasing by 7 %
in simulations performed with MEIC Opt.

The inclusion of explicit road sources allows sharp NO2
concentration gradients adjacent to major roads to be re-
solved, leading to generally closer agreement between net-
work measurements and simulated concentrations. However,
limitations of the model configuration can lead to modelled
NO2 levels that are substantially higher than measurements
at some near-road (∼ 100 m) sites. These model uncertain-
ties stem from the application of uniform weighting factors
to roads of the same classification (thus neglecting traffic ac-
tivity variations), the assumptions inherent to the underlying
gridded inventory, and exclusion of the physical barriers to
pollution dispersion created by street canyons. Future work
could focus on refining the explicit road emissions network
created here by testing the impact of adjusting weighting fac-
tors for different pollutants and across urban and suburban ar-
eas to better account for the impact of traffic congestion and

vehicle type, such as HDDTs, on emissions along different
road classifications.

Differences in the diurnal variability of measured and sim-
ulated NO2 concentrations during the winter campaign pe-
riod reveal features related to emissions (e.g. local driving
restrictions) and the urban heat island (UHI) that air qual-
ity modelling studies over large urban areas should consider.
For instance, measured NO2 concentrations at urban moni-
toring sites situated close to roads can reach nighttime values
above 80 µgm−3, exceeding both morning and evening rush
hour levels. This pattern is not reproduced in the simulated
NOx concentrations and is consistent with the evening influx
of heavy duty diesel trucks (HDDTs), banned from travers-
ing within the Fourth Ring Road between 06:00 and 23:00.
The increase in HDDT traffic at night across urban Beijing
is therefore an important local emission source that needs to
be included in MEIC and other proxy-based emission inven-
tories. Additionally, modifying modelled PBL stability pa-
rameters to replicate early evening (16:00–19:00) instability
driven by the delayed release of heat stored in the urban fab-
ric improves the diurnal variation in simulated NO2 concen-
trations. A similar modification may improve morning model
predictions, although it would be difficult to use the presence
of a UHI to justify this.

The range in measured PM2.5 concentrations across the
monitoring network for the campaign period (∼ 40 µgm−3)
is much higher than the corresponding simulated range using
both MEIC Std (∼ 20 µgm−3) and MEIC Opt (∼ 15 µgm−3).
The large difference between measured suburban and urban
PM2.5 levels is also not captured by the model and may
indicate any or all of the following: (a) PM2.5 emissions
are too low in magnitude and not represented at sufficiently
high resolution, particularly across urban areas, (b) the sim-
plified GRS chemistry scheme needs to be modified to in-
crease contributions from locally produced secondary PM2.5,
or (c) the assumption of a homogeneous background concen-
tration across complex megacities, such as Beijing, which are
heavily influenced by the advection of regional pollution, is
not valid.

Sensitivity studies have shown that using explicit road
source emissions, including an additional nighttime emis-
sion source, and accounting for UHI effects, through en-
hanced early evening instability conditions, can produce
closer agreement between simulated and measured NO2 con-
centrations.

Street-level modelling, along with the open data sources
and methodologies used here, may be applied for future
work elsewhere. Quantifying spatiotemporal pollutant dis-
tributions at such fine scales is essential for human health
exposure-related studies and for informing choices on the
emission controls of specific sectors.

Atmos. Chem. Phys., 20, 2755–2780, 2020 www.atmos-chem-phys.net/20/2755/2020/



M. Biggart et al.: Street-scale air quality modelling for Beijing 2777

Data availability. All modelled output data presented
here may be accessed by contacting the authors. Mea-
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