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Abstract
Traditional approaches to travel behaviour modelling primarily rely on household travel 
survey data, which is expensive to collect, resulting in small sample sizes and infrequent 
updates. Furthermore, such data is prone to reporting errors which can lead to biased 
parameter estimates and subsequently incorrect predictions. On the other hand, mobile 
phone call detail records (CDRs), which report the timestamped locations of mobile com-
munication events, have been successfully used in the context of generating travel pat-
terns. However, due to their anonymous nature, such records have not been widely used in 
developing mathematical models establishing the relationship between the observed travel 
behaviour and influencing factors such as the attributes of the alternatives and the decision 
makers. In this paper, we propose a joint modelling framework that utilises the advantages 
offered by both travel survey data and low-cost CDR data to optimise the prediction capac-
ity of traditional trip generation models. In this regard, we develop a model that jointly 
explains the reported trips for each individual in the household survey data and ensures 
that the aggregated zonal trip productions are close to those derived from CDR data. This 
framework is tested using data from Dhaka. Bangladesh consisting of household survey 
data (65,419 persons in 16,750 households), mobile phone CDR data (over 600 million 
records generated by 6.9 million users), and aggregate census data. The model results show 
that the proposed framework improves the spatial and temporal transferability of the joint 
models over the base model which relies on household travel survey data alone. This serves 
as a proof-of-concept that augmenting travel survey data with mobile phone data holds sig-
nificant promise for the travel behaviour modelling community, not only by saving the cost 
of data collection, but also improving the prediction capability of the models.
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Introduction

Traditional approaches to developing travel behaviour models rely on household travel sur-
veys to establish the mathematical relationship between the choices made by the travellers, 
the attributes of the network and socio-demographic characteristics of the travellers. How-
ever, household surveys are often affected by low response rates and reporting errors (e.g. 
Rolstad et  al. 2011; Groves 2006). Further, the surveys are expensive to conduct which 
leads to small sample sizes and lower update frequencies. Consequently, transport models 
designed to fit household travel survey data alone can result in biased parameters capturing 
the noise in the data rather than the actual relationships in the population.

On the other hand, there has been growing interest in the use of mobile phone data for 
mobility modelling over the last few decades. Among the various transport-related applica-
tions, such data has been widely used to estimate origin–destination matrices (e.g. Çolak 
et al. 2015; Iqbal et al. 2014; Pan et al. 2006; White and Wells 2002) and trip generation 
(e.g. Çolak et al. 2015). Since mobile phone data generally covers significant proportions 
of the population (GSM Association 2017), the data is able to reliably capture the aggre-
gate travel patterns. However, due to its anonymous nature, mobile phone data is not tradi-
tionally used in developing mathematical models of travel behaviour that establish the rela-
tionship between observed travel behaviour and causal factors such as the attributes of the 
alternatives and the decision makers. The existing mobility models based on mobile phone 
data alone cannot be used to reliably test alternative or future travel demand scenarios, and 
yet this is one of the core roles of transport models.

We are thus in a situation where traditional survey data is small in size, potentially 
unrepresentative and inaccurate, but contains information on key causal variables. On 
the other hand, mobile phone data is larger in size, more representative and accurate but 
missing information on key causal variables. This situation motivates the present research 
where we propose a framework that brings in a third type of data, namely census informa-
tion, which is representative and contains detailed socio-demographic variables but does 
not have travel behaviour information. We thus combine household travel survey data, 
aggregate census data, and mobile phone data using a combination of population synthesis 
techniques (to generate realistic disaggregate artificial populations to assist with forecast-
ing) and mathematical modelling to jointly optimise the aggregate and the disaggregate 
fit of travel behaviour models. In terms of the aggregate fit, we seek to minimise the error 
between the modelled and the zonal trip productions derived from call detail record (CDR) 
data, while in terms of the disaggregate fit, we seek to ensure that the model parameters 
represent the genuine sensitivities of individuals in the population. The framework is cali-
brated and tested in the context of trip generation models.

In the context of trip generation, the traditional models based on household survey data 
establish the mathematical relationship between the number of trips made by an individ-
ual or household with the socio-demographics (see Bwambale et  al. 2015 and the cited 
references). But the household survey data is prone to under-reporting of the number of 
trips (e.g. Zhao et al. 2015; Stopher et al. 2007; Itsubo and Hato 2006). Aggregating mod-
els based only on household survey data for estimating the zonal travel patterns can lead 
to errors, with serious consequences for the different steps of the four-stage model. This 
prompts us to investigate various ways of adjusting the parameter scales of the traditional 
trip generation model by using a joint optimisation process to combine it with the trip pat-
terns derived from the mobile phone data. We adopt a joint optimisation approach because 
CDR data too is inherently noisy, and thus not error-free. Given the lack of knowledge 
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about which datasource really represents the ground truth, it would also be unrealistic to 
benchmark one dataset over the other.

In the proposed joint modelling framework, the base trip generation model is first esti-
mated using household travel survey data alone to obtain the parameter priors (i.e. the sen-
sitivities). The parameter scales are then adjusted in three different approached (without 
changing the prior parameter signs). The joint models hence explain the reported trips for 
each individual in the household survey data and ensure that the aggregated zonal trip pro-
ductions are close to those derived from CDR data. This ensures that the joint models do 
not lose the travel behaviour sensitivities reflected in the household survey data and is com-
putationally tractable.

The rest of the paper is organised as follows, “Literature review” section presents a brief 
review of the literature, “Data” section presents the data used in this study, “Modelling 
framework” section presents the modelling framework, “Modelling results” section pre-
sents the model results, and “Summary and conclusions” section presents the summary and 
conclusions of the study.

Literature review

This section presents a brief review of the literature on related work in applying mobile 
phone data to trip generation and other mobility studies, as well as an overview of different 
population synthesis techniques.

Previous applications of mobile phone data to trip generation

The estimation of trip generation from CDR data remains a challenging area of research, 
with only one study so far covering this subject to the best of our knowledge (Çolak et al. 
2015). This is mainly due to the spatio-temporal discontinuities in the data as it only 
reports mobile phone positions associated with calls (voice, message, data), thereby mak-
ing it difficult to capture movements when the phone is not in use. Çolak et  al. (2015) 
attempt to address the issue of missed movements to and from the home location by intro-
ducing a home-based trip where the first or the last reported position of the day in the CDR 
data is at a non-home location. Although this partly addresses the problem, the challenge 
still remains as several other home-based trips made during the day can be missed if the 
mobile phone is not in use. Nonetheless, it is important to note that CDR data is likely to 
become more reliable in the near future with the increasing use of apps by means of mobile 
internet data services (Gerpott and Thomas 2014), which will increase the frequency of 
recorded mobile phone positions, thereby reducing the spatio-temporal discontinuities in 
the data. Besides CDR data, trip generation has also been previously estimated from GSM 
data, which is more continuous compared to CDR data (e.g. Bwambale et al. 2019). How-
ever, GSM data remains rare as it is typically not stored by mobile network operators due 
to storage space constraints.

Related studies on mobile phone data and population synthesis

The availability of large-scale mobile phone data over the last few decades has motivated 
a lot of research in quantifying human mobility and activity patterns using synthetic data 
generation methods (e.g. Chen et al. 2014).



2290	 Transportation (2021) 48:2287–2314

1 3

From an epidemiology perspective, Vogel et al. (2015) combined CDR data with syn-
thetic populations to model the spread of Ebola in West African countries and obtained 
promising results with respect to the Ebola predictions of the Centre for Disease Control 
and Prevention (CDC). Still in West Africa, Cárcamo et al. (2017) developed an intelligent 
epidemiology simulation software based on synthetic populations made up of agents with 
realistic travel behaviour derived from CDR data. In France, Panigutti et al. (2017) com-
pared the spread of a simulated epidemic using CDR and census survey travel patterns, 
finding greater similarity in areas with high population and connectivity, potentially due to 
the higher calling rates.

In the field of transport, Zilske and Nagel (2014) generated artificial CDR data from 
synthetic passengers in a simulated traffic scenario and re-used the data to approximate the 
amount of missed traffic at different calling rates to quantify the error introduced by CDR 
location discontinuities. The study found that the errors were inversely proportional to the 
calling rates and proposed scaling procedures based on observed data such as traffic counts. 
This led to a subsequent study where simulated CDR data and a synthetic population were 
combined with link traffic counts to generate all-day trip chains (Zilske and Nagel 2015). 
This study found that even highly biased CDR data could reasonably reproduce the traffic 
state across different time periods. This approach of using observed traffic counts to scale 
CDR data has also been tested in Dhaka in the context of transient origin–destination (OD) 
matrix estimation (Iqbal et al. 2014).

Calabrese et  al. (2011) developed a methodology to determine the origin–destination 
flows utilising 829 million mobile phone locations data for 1 million devices. Those mobile 
phone locations data were generated using the cell tower triangulation algorithm and have 
a lower resolution and higher uncertainty compared to GPS data. Data of this type was the 
primary source of location data for Location Based Services (LBS) before smartphones 
began to acquire a significant share of the mobile phone market. In the case of a smart-
phone, location data can also be collected through different smartphone applications that 
use the phone’s GPS technology, WAP data, and user-provided information (Rao and 
Minakakis 2003; Huang et al. 2018). Therefore, smartphone LBS data provide more details 
(with higher resolution, and higher frequency) footprints of the user’s activities. However, 
the penetration rate of such application data is very low compared to CDR data. Several 
studies have used LBS data from different sources to implement it in transportation engi-
neering applications. Some of the applications include travel data collection (Greaves et al. 
2015; Safi et al. 2015, 2016; Patterson and Fitzsimmons 2016; Xiao et al. 2016), activity 
analysis (Xiao et al. 2012; Zhou et al. 2016), travel behaviour analysis (Vlassenroot et al. 
2015; Ferrer López and Ruiz Sánchez 2014; Deutsch et al. 2012), and travel mode detec-
tion (Zhou et al. 2016; Wu et al. 2016; Shin et al. 2015).

Still in the field of transport, population synthesis has been applied on real-world mobile 
phone datasets. Ros and Albertos (2016) updated MATSim (an agent-based multi-simula-
tion software) by fusing census and CDR data from Spain to generate synthetic populations 
with mobility patterns observed in the CDR data. It may be noted that in this particular 
case, the mobile operator also provided the age and the gender of the users, which ensured 
a reliable dependence structure between the travel patterns and socio-demographics in 
the final synthetic population. However, mobile phone data is usually anonymous, which 
makes direct socio-demographic linkage impossible. In our earlier work (Bwambale et al. 
2019), we developed a demographic group prediction model based on mobile phone usage 
behaviour extracted from CDR data (as part of a latent class model for trip generation), and 
can potentially be used for generating synthetic populations, however, this also requires a 
sub-sample of CDR data with known demographics, which is rarely available.
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Kressner (2017) combined consumer and anonymous mobile phone data (wireless sig-
nalling and GPS data) from the United States to generate synthetic individual-level trip 
diaries. The socio-demographics in the disaggregate consumer data were benchmarked 
against the marginal census totals, while the synthetic travel was benchmarked against the 
mobility patterns extracted from the aggregate mobile phone data of several operators. 
Although this approach performed quite well in terms of aggregate-level validation, the 
disaggregate dependency structure between the individual’s socio-demographics and trips 
could be seen as arbitrary. Zhang (2018) proposed an integrated model using Exponen-
tial Random Graph and Bayesian approaches to combine HHS and CDR data to generate 
a synthetic ‘connected’ population. The proposed model aims to reproduce the marginal 
and joint distributions of individuals and household level socio-economic characteris-
tics, a geographical pattern of the observed community structure, and the statistics of the 
observed social network.

To maintain the underlying dependence structure between the individual’s socio-demo-
graphics and trips, Janzen et  al. (2017) combined household travel survey data, register 
data (national statistics) and CDR data from France to correct the under-reporting of long-
distance trips in travel surveys using population synthesis techniques. The socio-demo-
graphics in the travel survey data were matched against those in the register data, while the 
reported long-distance trips in the travel survey data were matched against those derived 
from the CDR data. However, a potential issue with this approach is that it assumes uni-
form under-reporting for all the respondents in the travel survey data, and yet this might 
vary, at least across different demographic groups, with some cases of over-reporting. 
Furthermore, the assumed higher reliability of CDR data versus travel survey data is con-
tentious and needs to be approached impartially. This is why we propose an optimisation 
approach between the two datasets.

Existing methods of population synthesis

Population synthesis is widely applied in activity-based models, and various techniques 
have been proposed to do this. This section presents a brief review of these methods.

The most widely applied technique is iterative proportional fitting (IPF), which works 
by fitting a contingency table based on disaggregate survey data to the marginal totals in 
aggregate census data, constrained by a set of control variables (Beckman et  al. 1996). 
Since its development, various improvements based on the original concept have been 
proposed to enhance its applicability to new challenges. These improvements have mainly 
focussed on addressing the zero-cell problem (Guo and Bhat 2007), simultaneous control 
of household and individual-level attribute distributions (Casati et al. 2015; Zhu and Fer-
reira Jr 2014; Ye et  al. 2009; Guo and Bhat 2007), improving the computational speeds 
(Pritchard and Miller 2012), and non-integer conversion to integers (Choupani and Mam-
doohi 2015) etc.

Another popular technique is combinatorial optimisation, which focusses on select-
ing a subset of households in the disaggregate sample data that closely fit the marginal 
distributions in the census data for the same area (Voas and Williamson 2000). This is 
done by randomly selecting an initial subset of households from the sample data, and itera-
tively replacing these with those remaining in the sample data, if and only when this leads 
to improvements in the fit of the subset. Although this approach has been reported to be 
superior (Ryan et al. 2009), the IPF method remains the most popular due to its low data 
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requirements, reliability, and faster optimisation (Choupani and Mamdoohi 2015; Sun and 
Erath 2015).

Besides the two methods above, other techniques have been proposed including, the 
sample-free method (Barthelemy and Toint 2013), Markov chain Monte Carlo simulation 
(Farooq et al. 2013), and the Bayesian network framework (Sun and Erath 2015), among 
others.

Data

This section describes the study area, the data used, and the data processing conducted 
prior to model estimation. The study combines different data types (i.e. household travel 
survey data, census data, and CDR data) collected at different times between 2009 and 
2012. Despite this limitation, these periods are considered close enough to facilitate 
cross-comparison.

Data description

Study area

The study location is Dhaka Metropolitan Area (DMA) in Bangladesh. The area covers 
approximately 303 square kilometres and is one of the world’s most crowded places with 
a population density of 30,551 persons per square kilometre (BBS 2013). Due to the high 
population density, the cell tower density is also very high. The area is served by 1361 
towers, with most these located in the central business district. The average tower-to-tower 
distance is approximately 1 kilometre (Iqbal et  al. 2014). The total daily trip production 
from DMA residents was approximately 20.8 million in 2010, with 85.46% of these being 
home-based (JICA 2010).

CDR data

The CDR data used in this study was provided by Grameenphone Ltd and covers the work-
ing days (i.e. Mondays to Thursdays) between 24 June 2012 and 07 July 2012 (2 weeks). 
The dataset contains information from 6.9 million anonymous users representing about 
57% of the population (BBS 2012), who together generated over 600 million records dur-
ing this period An excerpt of the randomised CDR data is presented in Table 1, where the 
location information refers to tower positions as opposed to triangulated positions.

Table 1   Excerpt of the CDR data (anonymised and randomised)

Unique ID Date Time Duration Tower longitude Tower latitude

AAH03JACKAAAgfBALW 20120624 13:41:49 15 23.9339 90.2931
AAH03JAC8AAAbZfAHB 20120624 13:41:25 73 23.7931 90.2603
AAH03JAC4AAAcvbABC 20120624 13:27:39 8 23.7761 90.4261
AAH03JAC9AAAbWFAVM 20120624 13:27:27 41 23.7097 90.4036
AAH03JABkAAHvEkAQE 20120624 13:32:38 530 23.7386 90.4494
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Household travel survey data

The household travel survey data used was collected between March 2009 and March 2010 
as part of the Dhaka Urban Transport Network Development Study (JICA 2010). The sam-
pling of households in each zone was based on the population shares at a rate of approxi-
mately 1%. The total sample covers 67,461 individuals and 17,270 households, represent-
ing an average household size of approximately four persons. The collected information 
includes each individual’s socio-demographic details (e.g. gender, age, working status, 
income, household size and housing type) and a single day trip diary. Table 2 presents the 
summary statistics of the data.

Census data

The 2011 Bangladesh Population and Housing Census data was used (BBS 2012). The 
Census was conducted from 15 to 19 March 2011. The available data reports the aggregate 
totals of the selected person and household level attributes at different geographical scales 
[e.g. village, ward, and zone (Thana)].

Since we could not access the detailed census data due to privacy reasons, we used pop-
ulation synthesis techniques (Ye et al. 2009) to generate realistic artificial populations for 
the different study area zones by combining the aggregate census data with the household 
survey data as explained later in “Population synthesis” section.

It may be noted that the fusion of household survey data and census data could only be 
done at the zone (Thana) level due to differences in the study area delimitations at smaller 
geographical scales. The variables available in both datasets are summarised in Table 3.

Data processing and combination

General concept

Figure 1 presents a summary of the data processing framework. The subsequent sections 
discuss the key aspects of this framework.

The overarching idea is to minimise the difference between the zonal trip productions 
derived from CDR data and those obtained by aggregating the disaggregate trip generation 

Table 2   Summary statistics of the household survey data

Gender Age Working status Trip rate shares

Male 53% 0–9 years 15% Employed 35% 0 trips 43%
Female 47% 10–14 years 9% Unemployed 38% 1–2 trips 41%

15–19 years 8% Student 27% 3–4 trips 14%
20–29 years 22% 5 + trips 2%
30–49 years 32%
50–59 years 8%
60 + years 5%
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model, without compromising the behavioural sensitivities reflected in the household sur-
vey data. Model aggregation is based on a synthetic population generated using the Itera-
tive Proportional Updating technique (Ye et al. 2009).

Population synthesis

Among the various software applications for population synthesis, we used PopGen (Ye 
et  al. 2009), which is capable of conducting Iterative Proportional Updating (IPU). This 
algorithm simultaneously controls for both the person and the household-level attribute 
distributions during the fitting procedure, and has been proven to perform better than the 
simpler synthesis methods.

As seen in Fig. 1 (top left), the algorithm relies on two raw datasets, the household sur-
vey data and the zone level aggregate census data to generate the zone-specific synthetic 
populations by means of IPU. The household and individual level control variables used in 
the IPU process are presented in Tables 4 and 5 respectively. It may be noted that we did 
not use the individual’s occupation as there are differences in the definitions of the catego-
ries used in the household survey and the census data. 

Figure  2 presents the distribution of the Average Absolute Relative Differences 
(AARD)1 across the zones. This metric gives the mean deviation of the person weighted 
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Fig. 1   Data processing framework

1  AARD =
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i=1

�wi
−c

i�
c
i

  where c
i
 is the ith household or person-level constraint obtained from the census data (e.g. the number of 

men, women, and households by household size etc.), w
i
 is the weighted frequency of persons with the ith 

attribute in the generated synthetic population, and N is the total number of constraints.
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sums with respect to the household and person aggregate census totals (the constraints). 
As observed, the AARD values for most zones are concentrated in the lower ranges of 
the axis, an indication that the population synthesis was successful.

Furthermore, comparisons of the synthetic versus the actual estimates for each attrib-
ute at the person and the household levels are presented in Figs. 3 and 4 respectively, 
where the distributions are observed to have a close match.

Table 4   Household-level control variables used in PopGen

HSETYP Housing type HHLDSIZE Household size

HSETYP1 Pucka (permanent house) HHLDSIZE1 1
HSETYP2 Semi-pucka (semi-permanent house) HHLDSIZE2 2
HSETYP3 Kutcha (thatched house) HHLDSIZE3 3
HSETYP4 Jhupri (slum house) HHLDSIZE4 4

HHLDSIZE5 5
HHLDSIZE6 6
HHLDSIZE7 7
HHLDSIZE8 8 +

Table 5   Individual-level control 
variables used in PopGen GEND Gender AGEP Age-group

GEND1 Male AGEP1 0–9 years
GEND2 Female AGEP2 10–14 years

AGEP3 15–19 years
WRKST Working status AGEP4 20–29 years
WRKST1 Employed AGEP5 30–49 years
WRKST2 Unemployed AGEP6 50–59 years
WRKST3 Student AGEP7 60 + years

Fig. 2   Distribution of the AARD values
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Extraction of unscaled zonal trip productions from CDR data

The CDR data for the entire observation period was first analysed to identify each user’s 
home location, which was defined as the most frequently observed cell tower at night 
(i.e. between 8 pm and 6 am). The labelled cell towers (i.e. home/others) for each user 
were then arranged according to the date and observation timestamp.

Home-based trips were extracted by considering any two consecutive CDR events 
from different cell towers, with one of those being the home cell tower. From the CDR 
data, we can note the distance between adjacent towers varies between 0.02 and 7.00 
kilometres. Most areas of Dhaka are densely populated and about 75% of the towers 
have an adjacent distance of less than 0.5 kilometres (90% have an adjacent distance 
of less than 1 kilometre). Furthermore, a previous study in Dhaka found that the mean 
walking trip distance is about 0.45 km (JICA 2010). Therefore, a lower distance thresh-
old of 0.5 km between subsequent towers was considered as the optimum for minimising 

Fig. 3   Distribution of the individual-level estimates

Fig. 4   Distribution of the household-level estimates
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the number of very short trips within the neighbourhood and false trips due to tower 
jumps.2

An upper threshold of 24 h or midnight (whichever came first) was specified based on 
the assumption that a user typically travels from and back to home within the same effec-
tive day. Consequently, if the first and the last CDR events for the day were not at the home 
cell tower, corresponding raw trips were added (Çolak et al. 2015). This led to the unscaled 
zonal trip productions shown in Fig. 1.

Scaling the CDR trip productions

The home cell towers derived from the CDR data were mapped to the zones with the aid of 
a GIS software (QGIS Development Team 2018). The total trips for each zone were then 
scaled using the ratio of the zonal population (from the census) to the number of users clas-
sified as residents of the zone from the CDR data (see Çolak et al. 2015 for details). We 
however acknowledge that this straight scaling procedure may bias the results if the CDR 
data sample is biased, for example in terms of the socio-economic status of the mobile 
phone owners.

Modelling framework

We propose an approach that combines two modelling strategies, that is, discrete choice 
modelling at the individual level and ordinary least squares at the aggregate level (shown in 
patterned text boxes in Fig. 1).

Disaggregate trip generation model (base model)

Trip generation has been found to be affected by household characteristics (e.g. household 
size, income, car-ownership, etc.) and composition (e.g. numbers of children, employed 
people, etc.) (see Bwambale et  al. 2015, 2019 for details). Discrete choice models have 
been the most preferred approach for modelling trip generation over the last few decades 
(e.g. Bwambale et  al. 2015; Pettersson and Schmöcker 2010; Agyemang-Duah and Hall 
1997). Although the ordered response choice mechanism has been the most preferred 
approach for modelling trip generation, the method was intractable in this particular study 
where model performance is being optimised at both the aggregate and disaggregate levels 
through scaling as discussed later in this paper. While less appealing from a theoretical 
point of view, the unordered response choice mechanism was found to be a more feasible 
approach and was adopted. It is important to note that the unordered response choice mech-
anism has been found to give intuitive results even in contexts with ordered choices such as 
car ownership (Bhat and Pulugurta 1998).

To implement the unordered response choice mechanism, we rely on the random utility 
theory (Marschak 1960). Let Unt be the utility of individual n making t trips. This can be 
expressed as;

2  A false trip occurs when the user is not making a trip but there is a change in the tower as the operator 
reassigns the call to a different tower (due to load management purposes).
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where Xn is a vector of the socio-demographic attributes of individual n , �t is a vector of 
the model parameters to be estimated, and �nt is the random component of utility. Since the 
individual socio-demographics are constant across the alternatives, we specify a different 
set of parameters for each trip generation level to reflect the fact that each attribute has a 
differential impact on the utility for each trip generation level.

Under the assumption that the error terms 
(
�nt

)
 are distributed independently and 

identically across alternatives and individuals using a type I extreme value distribution, 
the trip generation choice probabilities can be calculated using the multinomial logit 
(MNL) model (McFadden 1974) as expressed below;

where Pnt is the probability of individual n making t trips.
Despite the requirements of the MNL model, it may be noted that the error terms are 

not likely to be independent in the real world.
If we were to rely on the household travel survey data alone, the model parameters 

would be estimated by maximising the log-likelihood function below.

where the dummy variable Knt = 1 if and only if individual n makes t trips, otherwise 
Knt = 0.

However as mentioned earlier, fitting the model to match the trips reported in the 
household travel survey data alone can lead to biased parameter estimates due to report-
ing errors, thereby resulting in misrepresentation of the aggregate travel demand as 
reflected in Fig. 5, where the predicted aggregate zonal trips from the base model are 

(1)Unt = �
�

t
Xn + �nt

(2)Pnt =

exp
�
�

�

t
Xn

�

∑
t∗ exp

�
�

�

t∗
Xn

�

(3)LL
(
�t
)
=

∑

n

∑

t

Kntln
(
Pnt

)

Fig. 5   Distribution of the CDR trip productions
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different from those derived from the CDR data, especially towards the right hand side 
of the figure.

The relative absolute errors derived from Fig. 5 were plotted on a map to check whether 
there is a spatial correlation to the errors as shown in Fig. 6.

From Fig. 6, it is observed that there is no obvious spatial correlation to the errors. The 
magnitude of the error is largest in a single central zone. But apart from that, larger magni-
tudes are observed both in the centre of the metropolitan area, as well as, in some outskirt 
areas. For the centre, the errors are most likely caused by the relatively high number of 
either false trips in the CDR data (due to the high tower density) or unreported short walk-
ing trips in the household survey data, while for the outskirts, the errors are most likely 
caused by the missed short trips that could not be captured by the CDR data due to the low 
tower density in those areas.

Fig. 6   Spatial distribution of errors in trip productions (CDR data versus base model)
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Joint trip generation model

The priors of the parameter signs and relative magnitudes are obtained from the pre-estimated 
base model. The parameter scales are then adjusted (without changing the prior parameter 
signs). The joint model thus simultaneously optimises performance at both the aggregate and 
disaggregate levels with respect to the CDR and the household travel survey data, respectively.

As mentioned earlier, this combined approach ensures that the resulting model does not 
lose the travel behaviour sensitivities reflected in the household travel survey data, by main-
taining the sensitivities from the base model. Adjusting the parameter scales has an impact on 
the choice probabilities for each trip generation outcome, which influences the expected trip 
rates of the individuals. The framework of the joint trip generation model is described below. 
Let Ûnt be the updated utility of individual n making t trips. This can be expressed as;

where � is a vector of the scaling factors to be estimated. The � parameters are priors 
derived from the base model, and are not re-estimated in the joint framework. The specifi-
cation of the scaling factors is discussed later on.

The updated trip generation choice probability can be expressed as follows;

where P̂nt is the updated probability of making t trips by individual n.
However, to estimate the scaling factors, we need to fulfil two objectives. The first objec-

tive is to explain the reported trips for each individual in the household survey data. The sec-
ond objective is to ensure that the aggregated zonal trip productions are close to those derived 
from CDR data. Both outcomes have a probability attached to them and the simultaneous esti-
mation maximises the joint probability of the two outcomes.

To estimate the aggregate zonal trip productions, we rely on the synthetic population gen-
erated in “Population synthesis” section. As mentioned earlier, the synthetic population was 
designed to match both the person and the household-level attribute distributions during the 
fitting procedure, thus making it more reliable. We have a synthetic population of M simulated 
individuals identified as m with m = 1,… ,M , and a study area made up of Z zones identified 
as z with z = 1,… , Z . Let P̂mt denote the updated probability of making t trips by simulated 
individual m . It may be noted that P̂mt is equivalent to P̂nt if both the simulated individual 
and the actual respondent in the household survey data have the same demographics (i.e. the 
values of P̂mt depend on the calculations of P̂nt ). Now, let T̂z denote the aggregate zonal trip 
production for zone z . This can be calculated by taking the weighted average trips for each 
simulated individual, in which the updated MNL probabilities are the weights, and summing 
across the zonal synthetic population as follows;

where the dummy variable Ymz = 1 if and only if simulated individual m belongs to zone z , 
otherwise, Ymz = 0 . The objective is to ensure that T̂z is as close as possible to the corrected 
CDR trip productions for zone z . If �z denotes the corrected CDR trip productions for zone 
z , the relationship between �z and T̂z can be expressed as follows;

(4)Ûnt = 𝛼𝛽
�

t
Xn + 𝜀nt

(5)P̂nt =

exp
�
𝛼𝛽

�

t
Xn

�

∑
t∗ exp

�
𝛼𝛽

�

t∗
Xn

�

(6)T̂z =

M∑

m=1

[
Ymz

(
T∑

t=1

(
t ∗ P̂mt

)
)]
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where �z is an error term which we assume follows a normal distribution with a mean of 
zero, �z ∼ N

(
0, �2

)
 . P(�z) is then the likelihood of observing the CDR trip productions for 

zone z , and, from Eq. 7, this can be expressed as follows;

P(�z) clearly depends on P̂nt given that T̂z is a function of P̂mt , which depends on the calcu-
lations of P̂nt as explained earlier. For each survey respondent in zone z , we need to max-
imise the probability of the chosen alternative and ensure that the probabilities of all the 
alternatives maximise P(�z) . Let to

n
 denote the number of trips observed for individual n in 

the household survey data, such that P̂nto gives the logit probability of the observed choice 
for individual n . The overall joint likelihood (L) of the observed choices and the aggregate 
CDR trip productions across individuals is calculated as follows;

where the dummy variable Hnz = 1 if and only if survey respondent n belongs to zone z.
This is based on the assumption that P̂nt and P(�z) are independent. This is not unrea-

sonable given the sources of potential errors are very different (reporting errors in case of 
the HHS and coarse resolution in case of the CDR) and there is no obvious source of cor-
relation among the two probabilities. Since products are difficult to differentiate, we obtain 
the log-likelihood (LL) by applying logarithms to Eq. 9 resulting in Eq. 10.

Three parameter scaling scenarios are tested, and these are;

Model 1 This specification applies the same � scaling factor to the utility models of the different trip 
generation levels (see Eq. 4), i.e. �

t
= �,∀t . The updated utility models have the same relative 

variable sensitivities as in the base model, albeit with different parameter scales
Model 2 This specification applies a different �

t
 scaling factor to the utility model of each trip generation 

level. The updated utility models maintain the base model relative variable sensitivities for 
each particular trip generation level, however, the variable sensitivities across the different trip 
generation levels are adjusted with different parameter scales, and hence the relative values 
across levels change from the base model

Model 3 This specification applies a different �
x
 scaling factor to each explanatory variable X (e.g. gender, 

age-group, and working status), however, �
x
 does not change across the different trip generation 

levels. The updated utility models maintain the base model attribute-level relative sensitivities 
for a particular variable across the different trip generation levels, however, the inter-variable 
relative sensitivities are adjusted with different parameter scales

(7)𝜑z = T̂z + 𝜔z
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1

√
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Model evaluation framework

The performance of the joint models is evaluated in terms of both the temporal and the 
spatial transferability as presented in Figs. 6 and 7, respectively.

In terms of temporal transferability, the joint models associated with each parameter 
scaling scenario are estimated using the zonal aggregate CDR trip productions for week 1. 
The prediction capacities of the estimated joint models, as well as the base model are then 
compared in terms of the root mean square errors with respect to the zonal aggregate CDR 
trip productions for week 2 (see Fig. 7).

In terms of spatial transferability, the study area zones are randomly divided into two 
groups. The base and the joint models are then estimated using the data for one group of 
zones and applied to the other group of zones (not used for estimation). The prediction 
capacities of the models are then compared in terms of the predictive joint log-likelihoods, 
and the root mean square errors with respect to the aggregate CDR trip productions of the 
application zones (see Fig. 8).

Modelling results

This section presents the final model specification, as well as the model estimation and 
validation results.

Variable specification

The dependent variable is the number of individual home-based trips (irrespective of the 
trip purpose). This is because we could not reliably infer the purposes of the CDR trips. 
Based on distributions in the data, the trip generation levels were grouped into 0, 1–2, 3–4, 
and 5 + trips per day. The explanatory variables considered for possible inclusion in the 
model are those that were used for population synthesis. The household-level variables (i.e. 
household size and type) were however not included in the final model as they led to unrea-
sonable parameter signs, potentially due to their weak influence on individual trip-making 

Base model 
using travel survey data for 

all zones

Scaled CDR trip 
productions by zone 

for week 1

Joint model 
(parameter re-scaling)

Model 1

Model 2

Model 3

Scaled CDR trip 
productions by zone 

for week 2 
(not used for estimation)

Compare the RMSE of the 
aggregate zonal trip 

productions

Fig. 7   Temporal transferability framework
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decisions.3 The final model specification thus contains the gender, the age-group, and the 
working status of the individuals, coded as dummy variables.

For model identification purposes, the parameters associated with the zero trip genera-
tion level were treated as the base (for all explanatory variables). Furthermore, male non-
workers in the 30–49 age-group were treated as the base demographic group, and their 
preferences are entirely explained by the alternative specific constants. Thus, the model 
parameter estimates represent the differential impact on utility with respect to the zero trip 
generation level and the base demographic group.

Estimation results

Base model

We first estimated the base model to assess whether the parameter estimates are in line 
with the expected travel behaviour. The model results are presented in Table 6.

The alternative specific constants capture the underlying differential impact on utility 
with respect to the zero trip generation level. All the estimates are negative, and their mag-
nitude increases with respect to the trip generation level. Keeping all other factors constant, 
this reflects a general tendency to make fewer trips, especially by the base category (i.e. 
male, non-workers, aged 30–49 years).

The parameter estimates for females represent the differential impact on utility with 
respect to males. For 1-2 trips, we obtain a positive parameter estimate, while for the 

Fig. 8   Spatial transferability framework

3  The larger household sizes in Dhaka can often be attributed to the number of support staff members 
(e.g. cooks, cleaners, gardeners, housekeepers etc.) who stay and work full-time in the household. This is a 
potential contributing factor to the weak correlation between the numbers of people in a household and trip 
generation, which we appreciate is different in a more European/North American context.
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Table 6   Base model results

Variable Parameter t-statistic

Alternative specific constants (ASCs)
1–2 trips − 0.2069 − 7.46
3–4 trips − 1.0408 − 24.56
5 + trips − 3.0859 − 31.19
Dummies specific to gender (base category is males)
Females
 1–2 trips 0.0870 3.94
 3–4 trips − 0.2841 − 7.95
 5 + trips − 0.2654 − 3.15

Dummies specific to working-status (base category is non-workers)
Workers
 1–2 trips 0.4630 17.23
 3–4 trips 0.9252 23.05
 5 + trips 1.1482 12.38

Students
 1–2 trips 1.4079 46.47
 3–4 trips 0.9381 17.13
 5 + trips − 0.5333 − 2.65

Dummies specific to age-group (base category is the 30–49 years age-group)
Age 1–9 years
 1–2 trips − 1.6354 − 50.69
 3–4 trips − 3.1065 − 36.73
 5 + trips − 3.5549 − 9.46

Age 10–14 years
 1–2 trips − 0.8143 − 19.49
 3–4 trips − 1.7635 − 22.52
 5 + trips − 1.9201 − 6.00

Age 15–19 years
 1–2 trips − 0.6539 − 16.22
 3–4 trips − 0.9669 − 15.71
 5 + trips − 1.0077 − 5.71

Age 20–29 years
 1–2 trips − 0.1457 − 5.67
 3–4 trips − 0.3249 − 9.58
 5 + trips − 0.3009 − 4.02

Age 50–59 years
 1–2 trips − 0.1423 − 4.12
 3–4 trips − 0.2552 − 5.92
 5 + trips − 0.3721 − 3.81

Age 60 + years
 1–2 trips − 0.2494 − 5.63
 3–4 trips − 0.3531 − 6.14
 5 + trips − 0.4853 − 3.47

Measures of fit
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higher trip generation levels, we obtain negative parameter estimates. The proportion of 
women working in the garments industry, one of the leading sectors in Dhaka, is 64–90% 
(ADB and ILO 2016). This probably explains the positive parameter sign for 1–2 trips. 
Otherwise, males are more likely to make a higher number of trips compared to females, 
probably due to the average higher income levels of the former (BBS 2012) and socio-
cultural factors.

The parameter estimates for the working status variables (i.e. workers and students) 
represent the differential impact on utility with respect to non-workers. As observed, the 
parameters for workers are positive, and their magnitudes increase with respect to the trip 
generation level, an indication that workers generally make more trips compared to non-
workers. On the other hand, the parameter estimates for students are positive for 1–2 and 
3–4 trips, and negative for 5 + trips. This shows that students make more trips compared to 
non-workers only up to a reasonable level expected for school going individuals.

Similarly, the parameter estimates for the age-group variables represent the differen-
tial impact on utility with respect to the 30–49 years age-group. As observed, the param-
eter estimates for all the other age-groups are negative, an indication that they generally 
make fewer trips compared to the base age-group (30–49 years). The active working age of 
white-collar workers in Bangladesh typically ranges between 29 and 60 years (i.e. the latest 
age for completing tertiary education and the retirement age respectively (BBS 2012)). It 
is therefore reasonable that persons in the 30–49 years age-group are more active travellers 
due to their economic vibrancy.

Finally, it is observed that the overall model (in terms of the likelihood ratio), as well 
as all the parameter estimates (in terms of the t-statistics) are statistically significant at the 
99% level of confidence (see Ben-Akiva and Lerman 1985 for details).

Joint models

As earlier mentioned, the parameters of the base model were fixed in the joint modelling 
framework, and only the scaling factors were estimated. Table  7 presents the estimated 
scaling factors and the measures of fit for all the three models for comparison purposes. 
Positive scaling factors were obtained for all the three models, an indication that the result-
ant coefficients in the scaled joint models have the same signs as those in the base model.

A comparison of the joint convergence log-likelihoods shows that Model 3 gives the 
best performance, followed by Model 2, and then Model 1. This is attributed to the flexibil-
ity of the parameter scaling framework. An important point to note is that all the three joint 
models perform better than the base model in terms of the joint log-likelihood.

Table 6   (continued)

Variable Parameter t-statistic

 Number of observations 65,419
 Log-likelihood at zero − 90,689.99
 Log-likelihood at convergence − 64,859.90
 Number of parameters 30
 Adjusted rho-square 0.2845
 Likelihood ratio 51,660.10
 P value of the likelihood ratio 0.0000
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As earlier mentioned, during model optimisation, we are basically dealing with a trade-
off between disaggregate and aggregate model performance. Thus, the disaggregate log-
likelihood of the joint models is a little worse than that of the base model. However, if the 
base model parameters are directly used to estimate the joint log-likelihood, it is observed 
that the model yields the worst performance.

The p-values of the likelihood ratios of the joint models with respect to the base model 
are all less than 0.01, an indication that the improvements in performance are statistically 
significant at the 99% confidence level beyond the advantages offered by the additional 
parameters (see Ben-Akiva and Lerman 1985 for details).

Model evaluation in terms of transferability

The models based on the full sample have been presented in the previous section. To evalu-
ate the stability and the predictive performance of the joint models as well as the base 
model, we compared their temporal and spatial transferability following the evaluation 
framework described in “Model evaluation framework” section. Tables 8 and 9 present the 
measures of fit in terms of the temporal and the spatial transferability, respectively.

From Table 8, it is observed that the temporal transferability of the joint models is gen-
erally higher than that of the base model in terms of the joint log-likelihoods and the root 
mean square errors (RMSE) with respect to the zonal CDR trips. Among the three joint 
models, Model 3 offers the best transferability, however, Model 2 gives the best prediction 
at the disaggregate level in both the estimation and the application contexts.

For spatial transferability, we tested both directions of model transfer. It may be noted 
that the general interpretation of the base model parameters for each group of zones did not 
change. From Table 9, it is again observed that the joint models are generally more trans-
ferrable compared to the base model in terms of the joint log-likelihoods and the root mean 
square errors for both directions.

In this particular case, it is observed that Model 2 gave the best disaggregate prediction 
for the zone group 1–2 transfer direction, while Model 1 gave the best disaggregate predic-
tion for the reverse transfer direction.

An important point worth mentioning is that the superior performance of the base model 
at the disaggregate level is expected as it was designed to fit the travel survey data alone, 
but as mentioned earlier, this could be prone to reporting errors and hence less dependable.

Table 8   Temporal transferability

Measure Base model Model 1 Model 2 Model 3

Week 1 (estimation)
 LL (disaggregate level) − 64,859.90 − 66,024.40 − 65,940.80 − 67,850.40
 LL (aggregate level) − 805,642.50 − 719,566.80 − 719,396.20 − 716,695.30
 Joint LL − 870,502.40 − 785,591.20 − 785,337.00 − 784,545.70

Week 2 (application)
 LL (disaggregate level) − 64,859.90 − 66,024.40 − 65,940.80 − 67,850.40
 LL (aggregate level) − 804,545.50 − 717,793.90 − 717,596.20 − 715,031.60
 Joint LL − 869,405.40 − 783,818.30 − 783,537.00 − 782,882.00
 RMSE w.r.t CDR trips 43,342.84 13,547.09 13,527.84 13,328.49
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From the results, it is clear that Model 3 gives the best overall spatial and temporal 
transferability, however, the disaggregate performance of Models 1 and 2 as highlighted 
above shows that these parameter scaling approaches offer some benefits as well. These 
results present initial efforts to exploit the benefits of both household travel survey and 
mobile phone data to optimise the performance of travel behaviour models, and there is 
a need for further research using data from different contexts to investigate the different 
parameter scaling approaches in further detail.

Model comparison in forecasting

To test the sensitivity of the models to forecasting, the base model and the different joint 
models have been applied to the 2019 household survey data and the predictive measures 
of fit for the different models have been compared. The following three performance indi-
cators have been used in this regard:

•	 Root Mean Square Error (RMSE), which has been obtained by comparing the modelled 
and the actual total trip productions associated with the 2019 sample data for each TAZ 
using the base and joint model parameters (pre-estimated using the 2010 data).

•	 Average probability of correct prediction, which has been obtained by computing the 
mean probability of success for the 2019 sample data using the pre-estimated base and 
joint model parameters (pre-estimated using the 2010 data).

•	 The predictive adjusted-rho square, which has been obtained using the adjusted rho-
square equation below for the pre-estimated base and the joint models;

Table 9   Spatial transferability

Measure Base model Model 1 Model 2 Model 3

Zone group 1 (estimation)
 LL (disaggregate level) − 26,102.10 − 26,712.45 − 26,652.76 − 27,724.63
 LL (aggregate level) − 321,381.60 − 290,869.40 − 290,725.20 − 288,898.10
 Joint LL − 347,483.70 − 317,581.85 − 317,377.96 − 316,622.73

Zone group 2 (application)
 LL (disaggregate level) − 38,859.38 − 39,701.58 − 39,352.09 − 41,303.51
 LL (aggregate level) − 491,580.30 − 429,017.00 − 428,604.80 − 426,638.20
 Joint LL − 530,439.68 − 468,718.58 − 467,956.89 − 467,941.71
 RMSE w.r.t CDR trips 50,626.73 13,375.06 13,274.68 13,161.58

Zone group 2 (estimation)
 LL (disaggregate level) − 38,688.76 − 39,227.43 − 39,333.92 − 40,185.59
 LL (aggregate level) − 482,400.40 − 428,113.30 − 427,818.70 − 426,238.10
 Joint LL − 521,089.16 − 467,340.73 − 467,152.62 − 466,423.69

Zone group 1 (application)
 LL (disaggregate level) − 26,219.53 − 26,689.06 − 26,786.11 − 27,445.95
 LL (aggregate level) − 315,772.10 − 289,862.10 − 289,890.20 − 288,799.10
 Joint LL − 341,991.63 − 316,551.16 − 316,676.31 − 316,245.05
 RMSE w.r.t CDR trips 38,776.13 13,702.57 13,758.49 13,602.58
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where k is the number of model parameters, LL(F) and LL(0) are the values of the log-
likelihood function at convergence and at zero respectively.

Table 10 summarises the calculated predictive measures of fit on the 2019 forecasting 
sample for the base model and the different joint models. 

From Table 10, it is observed that overall the joint models generally perform better than 
the base model in forecasting at both the aggregate and disaggregate levels. Among the 
three joint models, it is observed that Model 3 gives the best performance in terms of both 
the Root Mean Square Error and the average probability of correct prediction, while giv-
ing the least performance in terms of the predictive adjusted rho-square. However, from a 
forecasting point of view, aggregate performance is more critical, and Model 3 would offer 
more benefits.

Summary and conclusions

This paper started by highlighting the reporting errors and sampling bias associated with 
household travel survey data, and how these could lead to biased model parameters (e.g. 
Rolstad et al. 2011; Groves 2006). The paper outlines the possible consequences of such 
issues in the context of trip generation, where the estimated models would misrepresent the 
distribution of the aggregate travel demand across zones.

Although traditional travel surveys are increasingly being replaced by smartphone based 
surveys, which alleviate the issue of misreporting of trips, issues with sample representa-
tiveness and size remain, as well as the issue of encouraging respondents to provide a suf-
ficiently long stream of data. On the other hand, while mobile phone call detail record 
(CDR) data is widely available, large in size and more representative, it is lacking informa-
tion on core causal variables.

The paper demonstrates the feasibility of a joint modelling framework to find the best fit 
at the joint level (i.e. between the aggregate and disaggregate levels) by combining house-
hold travel survey, census, and CDR data. The census data is crucial in creating a bridge 
between the two other data sources. The joint modelling framework operates by adjust-
ing the parameter scale(s) of a pre-estimated base model to jointly optimise the prediction 
accuracy with respect to the reported trips in travel survey data and the zonal aggregate trip 
productions derived from CDR data. Three different approaches of parameter scaling were 
investigated (i.e. uniform, alternative specific, and variable specific scaling corresponding 
to joint models 1, 2, and 3 respectively). All the three joint models were found to have 
higher temporal and spatial transferability, as well as better forecasting performance com-
pared to the base model which relies on household travel survey data alone, thus making 

(11)�2
adj

= 1 −
LL(F) − k

LL(0)

Table 10   Predictive measure of fit on the 2019 forecasting sample

Measure Base model Model 1 Model 2 Model 3

Root Mean Square Error (RMSE) 228.6346 218.5843 218.5505 214.0239
Average probability of correct prediction 0.4269 0.4553 0.4537 0.4679
Predictive adjusted rho-square 0.3548 0.3836 0.3810 0.3806
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them more reliable. Although variable specific scaling (Model 3) produced the best overall 
results, there is a need for further research using data from different contexts to investi-
gate if this finding is universally applicable. In particular, in this case, we did not have any 
independent measure to confirm that either of the data represented the ground truth which 
prompted us to give equal weight to the two types of data. This may not be the case in all 
contexts. More work is also needed on how to specify the joint likelihood combining the 
information from the two types of data and investigating the impact of the distribution of 
the error term, potential spatial correlation, etc.

Although the proposed framework has been tested in the context of trip generation, it 
has potential benefits in improving the modelling of the other transport choices (such as 
mode choice, route choice, departure time choice etc.). We conclude that the results of 
this study serve as a proof-of-concept that mobile phone data can be fused with traditional 
data sources to improve the temporal and spatial transferability of models. This approach 
is particularly important in the context of developing countries where reliable traditional 
data sources are scarce, and models making use of low-cost passive data to enhance their 
temporal and spatial transferability are invaluable.
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