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Purpose: To assess the use of image registration for correcting respiratory motion 

in free breathing lung T1 mapping acquisition in patients with idiopathic pulmonary 

fibrosis (IPF).

Theory and Methods: The method presented used image registration to synthetic 

images during postprocessing to remove respiratory motion. Synthetic images were 

generated from a model of the inversion recovery signal of the acquired images that 

incorporated a periodic lung motion model. Ten healthy volunteers and 19 patients 

with IPF underwent 2D Look-Locker T1 mapping acquisition at 1.5T during inspira-

tory breath-hold and free breathing. Eight healthy volunteers and seven patients with 

IPF underwent T1 mapping acquisition during expiratory breath-hold. Fourteen pa-

tients had follow-up scanning at 6 months. Dice similarity coefficient (DSC) was 

used to evaluate registration efficacy.

Results: Image registration increased image DSC (P < .001) in the free breathing 

inversion recovery images. Lung T1 measured during a free breathing acquisition 

was lower in patients with IPF when compared with healthy controls (inspiration:  

P = .238; expiration: P = .261; free breathing: P = .021). Measured lung T1 was 

higher in expiration breath-hold than inspiration breath-hold in healthy volunteers 

(P < .001) but not in patients with IPF (P = .645). There were no other significant 

differences between lung T1 values within subject groups.

Conclusions: The registration technique significantly reduced motion in the Look-

Locker images acquired during free breathing and may improve the robustness of 

lung T1 mapping in patients who struggle to hold their breath. Lung T1 measured 

during a free breathing acquisition was significantly lower in patients with IPF when 

compared with healthy controls.
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1 |  INTRODUCTION

Parametric lung T1 (longitudinal relaxation time) map-

ping has the potential to characterize pathophysiological 

changes in the tissue of the lung.1 Idiopathic pulmonary 

fibrosis (IPF) is a progressive lung condition where fibrosis 

occurs within heterogeneous regions of the lung, resulting 

in alveolar-capillary gas exchange limitation, decreased 

lung volume, and reduced function of the lung. T1 map-

ping may be able to characterize regional tissue changes 

within the lung2 and in combination with oxygen enhance-

ment can demonstrate regions of poor ventilation and per-

fusion matching.3,4 Therefore, T1 mapping may be able to 

assist in diagnosing and characterizing the rate of deteri-

oration of the lungs of patients with IPF without the use 

of invasive biopsy or ionizing radiation. This is particu-

larly pertinent in IPF as the established pulmonary func-

tion tests (functional vital capacity and carbon monoxide 

diffusing capacity) have limited sensitivity to longitudinal 

pathophysiological changes and limited prognostic value.5 

Previous studies by Stadler et al at 1.5T in patients with IPF 

using a 2D inversion recovery gradient echo Look-Locker 

approach, have shown a mean lung T1 of 1.00 ± 0.10  s 

at inspiration and 1.28 ± 0.17  s at expiration (echo time  

[TE] = 1.4 ms).1 Healthy volunteers have been shown to 

have a mean T1 of 1.12 ± 0.12  s at inspiration and 1.33 

± 0.17 s at expiration (TE = 1.4 ms)6 using the same se-

quence. The work of Mirsadraee et al at 3T, using a steady 

state sampled MOLLI sequence has shown fibrotic regions 

of the lung to have a significantly higher T1 than non- 

fibrotic regions of the lung.2 The differences seen between 

lung T1 in IPF in the studies by Stadler et al and Mirsadraee 

et al may be due to the changes to T1 values in lung tissue, 

blood and fibrosis with field strength, the different contrast 

weighting of the sequences used to map T1 and variation 

in region of interest placement. Therefore, further work is 

needed at both field strengths to establish the pattern of 

changes in lung T1 in patients with IPF.

Patients with respiratory disease such as IPF, experi-

ence breathlessness and may, therefore, struggle to main-

tain breath-holds, and may demonstrate diaphragmatic drift 

throughout imaging leading to inaccuracies in the resultant 

lung T1 maps. Navigated free breathing acquisitions can 

be used to circumvent the acquisition time restriction of 

a breath-hold and allow free breathing lung T1 mapping 

and can also permit simultaneous T2
* mapping and 3D data 

acquisition.7,8 However, scan efficiency is reduced as only 

a fraction of the scan time is used for image acquisition, 

and this reduces clinical utility considerably. In addition, 

there may still be some misregistration between images ac-

quired in this manner if the acquisition window is large. 

Whole lung T1 is also known to be dependent on lung in-

flation6 and free breathing occurs at tidal volume, whereas 

inspiratory and expiratory breath-holds occur within the in-

spiratory and expiratory reserve. Therefore, free breathing 

lung T1 values may be expected to fall between inspiratory 

and expiratory breath-hold values. However, small changes 

in the oxy/deoxhemoglobin concentration due to breath-

hold may also result in differences in blood T1 (and, there-

fore, whole lung T1) when acquired during breath-hold and 

free breathing.

A fast, efficient method for free breathing lung T1 map-

ping may improve patient comfort, by removing the need 

for breath-hold and reducing the time the patient is on the 

MRI scanner, and also improve T1 accuracy, by reducing 

misregistration in cases where patients’ breath-hold drifts. 

Look-Locker inversion recovery imaging is a fast and effi-

cient method of single-slice T1 mapping, which generally 

requires a breath-hold for the duration of 16 image acqui-

sitions with different inversion time which typically lasts  

7 seconds.9 Using image registration during postprocessing 

to correct for motion in lung T1 mapping images would 

allow for efficient and comfortable lung T1 mapping. To 

acquire multiple breath-hold Look-Locker slices, addi-

tional time is needed for the patient to recover from the 

breath-holds. However, with a registered free breathing ap-

proach, this additional time could be removed resulting in 

faster multi-slice acquisition.

Image registration between Look-Locker images is chal-

lenging due to considerable changes in image contrast be-

tween images acquired at different inversion times (Ti), which 

is caused by the different relaxation times (T1) of the tissues 

within the image. When registering inversion recovery im-

ages using a simple frame-to-frame registration the contrast 

differences at each Ti could result in registration errors, as 

demonstrated in cardiac inversion recovery MOLLI images 

by both Xue at al,10 who compared frame-to-frame regis-

tration to a non-rigid registration algorithm using the local 

cross-correlation as the similarity metric and Tao et al,11 who 

compared frame-to-frame registration to a non-rigid registra-

tion algorithm with a mutual-informational based similarity 

metric.

One method to overcome the current image registration 

limitations caused by the contrast differences in acquired 

images is to use a data-driven signal model to create syn-

thetic images. Synthetic image based registration tech-

niques have been used successfully in dynamic contrast 

enhanced MRI in the body12-15 as well as in cardiac T1 

mapping images.10,16 However, these methods have not yet 

been applied to lung T1 mapping. In this work, a synthetic 

image based registration method for motion correction is 

presented to allow free breathing lung T1 mapping using 

a conventional 2D Look-Locker acquisition sequence. The 

method is evaluated, alongside breath-hold T1 mapping 

with the same sequence in patients with IPF and healthy 

subjects.
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2 |  THEORY

The method presented uses two key techniques: (1) a combined 

respiratory and inversion recovery signal model (CRIR) to se-

lect three spatially aligned acquired images; (2) a simplified in-

version recovery model to produce synthetic images for image 

registration, using those three selected spatially aligned images. 

Acquired images are then co-registered to the synthetic images, 

and then, used to calculate a registered T1 map. A schematic 

work flow and explanation of the steps is presented in Figure 1.

2.1 | Simplified inversion recovery model

The relaxation model used to compute the synthetic images 

is adapted from a method developed for cardiac inversion re-

covery MR images which uses a two parameter model (see 

Equation 1), a manual cardiac segmentation and undergoes 

iterative improvement of the synthetic images.16

where S is signal, t is time, and A and T1
* are parameters to be fit.

The approach implemented in our work does not  

require a segmentation and uses a single parameter model 

(see Equation 2) where the third image input into the model  

(St3 which is determined using the CRIR model, see Figure 1  

“Data-driven image selection”) is used as a surrogate for a 

fully recovered image. This provides a more robust initial 

fit and removes the necessity of time-costly iterations and  

manual segmentation.

Three spatially aligned images (alignment assessed on 

diaphragmatic position) are input into the synthetic image 

model (Equation 2) and a non-rigid pair-wise image regis-

tration between the synthetic images and the corresponding 

acquired images is performed.

For this method to be applicable for free breathing acqui-

sitions, an algorithm automatically selects images with a sim-

ilar respiratory state from the free breathing acquisition by 

fitting the image data to the CRIR model. The model is based 

upon the concept that the total signal from a fixed region of 

interest (ROI) in the body will be effected by both the inver-

sion recovery behavior of the protons in this region of tissue 

(1)S (t)=A(1−2e
−t∕T

∗
1 )

(2)S (t)=S
t3(1−2e

−t∕T
∗
1 ).

F I G U R E  1  Image registration and T1 mapping process diagram. Data driven image selection is followed by model based image registration 

and T1 mapping. (1) Data driven image selection: the image is split into horizontal ROIs (1.2). Mean signal at each time point is calculated from 

the ROIs, and is then fit to the CRIR model (1.3). After fitting, the respiratory rate and phase coefficients (ν and P2 respectively) from the ROI 

with the highest amplitude (P1) are selected. The ν and P2 coefficients are then used to determine three images, which occur at a similar respiratory 

rate (1.4). (2) Model based image registration: Signal polarity is restored using a multi-fitting approach (2.2). The three images selected during 

the data driven image selection are then input into a simplified inversion recovery model to create synthetic images (2.2). The acquired images are 

then registered pair wise to the synthetic images (2.4). (3) T1 mapping. After restoring signal polarity to the registered images using a multi-fitting 

approach (3.1), T1 mapping is then performed (3.2).
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and also any changes in the ratio of the different tissues (lung 

above diaphragm and abdominal tissue below diaphragm) 

in the ROI due to respiration (see Supporting Information 

Figure S1, which is available online. Curve fitting then de-

termines the respiratory rate, ν, which is subsequently used to 

select aligned images

2.2 | Combined respiratory and inversion 
recovery model derivation

The CRIR model predicts the mean signal of a ROI with 

a fixed position within the field of view (FOV) of the ac-

quired images, see Supporting Information Figure S1. 

Within a given ROI, different tissues move in and out of 

the ROI due to respiration, causing the number of pixels  

(n), which correspond to a specific tissue within the ROI to 

change with time. If we consider two tissue compartments 

A and B that correspond for example to the lung and liver 

respectively, the inversion recovery signal from a ROI is 

given by:

where k is a constant, nA and nB are the number of pixels cor-

responding to tissue A and tissue B whose densities are ρA and 

ρB respectively.

During respiration the amount of pixels corresponding to 

tissue A and tissue B in the ROI will change. This can be ap-

proximated using a sinusoid:

where α and β are the linear amplitude coefficients of the two 

periodic functions, κ1 and κ2 are constants, v is the respiratory 

rate and Φ is the phase factor where ∅
1
 and ∅

2
 are out of phase 

by π. The π phase shift between ∅
1
 and ∅

2
 occurs because the as 

tissue A increases, tissue B decreases such that tissue B is at a 

minimum when tissue A is at a maximum.

For simplicity in this model, it is assumed that changes to 

the relaxation times of the tissue compartments due to respi-

ration (T1A,B(t) and T2A,B(t)) are much smaller than changes 

in the proportions of the specific tissues compartments in 

the ROI due to respiration and can, therefore, be neglected. 

Proton density may also change with time due to lung paren-

chyma compression and can be written as:

Therefore, Equations (4)-(7) can be substituted into 

Equation (3) to account for the movement of the tissues due 

to respiration, giving:

Equation (8) can be further simplified by the assumption 

that the signal from the lung (tissue A) is much smaller than 

the signal from the tissue below the diaphragm, for example, 

liver (tissue B). In addition, it is assumed sub-diaphragmatic 

tissue is not compressed during respiration. Therefore:

which can then be rewritten as an equation with five free 

parameters:

This simplified model and its associated assumptions is 

set in place only for the purpose of selecting images for the 

construction of synthetic images as an intermediary for the 

improved spatial registration of the acquired images with dif-

ferent Ti.

3 |  METHODS

3.1 | Subjects

All subjects were scanned with informed consent and ethi-

cal approval from the UK Research Ethics Committee. The 

19 adult patients (mean age 70.3 ± 7 years, 74% male) with 

IPF were recruited from a specialist interstitial lung disease 

clinic, and 10 healthy volunteers (mean age 29.9 ± 5 years, 

70% male) with no history of interstitial lung disease were 

recruited as controls. IPF was diagnosed based on an mul-

tidisciplinary team approach, and all IPF patients will have 

been diagnosed within 24 months of visit 1 MRI. All healthy 

volunteers and patients with IPF underwent 2D Look-Locker 

imaging in inspiration breath-hold, and during free breath-

ing. About 8/19 patients and 8/10 healthy volunteers also un-

derwent 2D Look-Locker imaging during breath-hold after 

expiration (approximately functional residual capacity). Ten 

patients with IPF also had 3D ultrashort echo time (UTE) im-

aging during the same examination. All patients had same-

day pulmonary function tests and clinical CT data (acquired 

within the past 18 months) was also available.

(3)S (t)= kn
A
�

A

(

1−2e

(

−
t

T1A

))

+kn
B
�

B

(

1−2e
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Thirteen of the patients with IPF had follow-up 2D 

Look-Locker imaging during both breath-held inspiration 

and free breathing at 6 months after their initial MRI scan. 

All patients had same-day pulmonary function tests during 

follow-up.

One healthy volunteer (female, age 28) underwent multi-

slice free breathing Look-Locker imaging to demonstrate 

the applicability of the technique to multi-slice acquisition. 

One healthy volunteer (male, age 34) also underwent 10 

free-breathing, 10 inspiration breath-hold, and 10 expira-

tion breath-hold Look-Locker acquisitions for repeatability 

testing, with the volunteer repositioned between repeated 

acquisitions.

3.2 | Pulmonary function tests

Forced vital capacity (FVC), carbon monoxide transfer 

factor (TLCO), and carbon monoxide transfer coefficient 

(KCO) were measured during pulmonary function tests 

on the same day as MRI. TLCO and KCO were calcu-

lated using the Global Lung Initiative (GLI) reference 

equations.17

3.3 | MRI acquisition parameters

A whole body 1.5T GE HDx scanner (GE Healthcare, 

Waukesha, WI) and eight-channel cardiac array coil were 

used for each 2D Look-Locker image acquisition. A coronal 

imaging slice was positioned through the descending aorta. 

The Look-Locker sequence comprises a global 180° inver-

sion pulse followed by 16 gradient echo readout images.9 

Imaging parameters were as follows: inversion time (TI): 

229 ms; repetition time (TR): 3.2 ms; TE: 0.9 ms; flip angle: 

7°; phase × frequency: 128 × 128; slice thickness: 15 mm; 

pixel bandwidth: 244.14 kHz; FOV: 440 mm; overall acqui-

sition time = 7 s. Breathing instructions for free breathing 

acquisitions were relaxed tidal breathing. 3D UTE imaging 

was performed using a radial gradient echo sequence with 

prospective gating on expiration.18 TE/TR: 0.078/2.9 ms; flip 

angle: 4°; bandwidth 256 kHz; FOV: 400 mm. 60000 radial 

projections are acquired and matrix reconstructs to a 256 × 

256 × 256 matrix resulting in a resolution of 1.56 isotropic.

3.4 | Synthetic image creation

Three images with close image alignment were determined 

using the CRIR parameters, ν and φ, and were input into 

the simplified inversion recovery model (Equation 10). The 

images were chosen automatically using an algorithm and 

correspond to the first image acquired and the subsequent 

two images that occur in the nearest respiratory state, deter-

mined by calculating the periodic term sin
(

vt+�
)

 for each 

image. The condition that one of the latter two images must 

fall within the first seven acquired images is incorporated in 

order to ensure that the steep part of the inversion curve is 

effectively sampled for tissues with a short Ti.

The three input images were then fed into the one param-

eter simplified inversion recovery model, (see Equation 2), to 

create a set of spatially aligned synthetic images with similar 

contrast to the acquired images.

3.5 | Image registration

Image registration was performed using software19 written in 

C and run from Matlab 2018. A diffeomorphic transforma-

tion was used, which was continuous and with one-to-one 

mapping. The similarity measure combines a sum of squares 

term and smoothing constraint, which reduces sensitivity to 

variations in signal intensity. If subjects did not successfully 

hold their breath during a breath-held scan, images also un-

derwent image registration prior to T1 mapping, using the 

same method. If a subject does not hold their breath, the ef-

fect of respiration on the signal will not be a simple sinu-

soid. Depending upon the response of the patient (ie, whether 

breath-hold is let go or drifts, and at what time during image 

acquisition) the signal might instead be better estimated 

using a combination of models. However, for this work the 

simple sine curve has been used. All images also then under-

went successive image-to-image registration using the same 

registration software, for comparative purposes.

3.6 | Image analysis and statistics

After synthetic image creation, the magnitude data of all im-

ages were registered pairwise to their corresponding magni-

tude synthetic images. Signal polarity was restored using a 

conventional multi-fitting approach after image registration, 

following which T1 maps are calculated using damped linear 

least squares curve fitting to:

with the Look-Locker T1 correction:

Lung T1 was calculated by manually segmenting 

the two lungs, avoiding the heart and major blood ves-

sels, and calculating an average of the right and left lung 

T1 values. To assess the change in mean lung T1 with 

(11)S (t)=C−De
−t∕T

∗
1

(12)T
1
=T

∗

1

(

D

C
−1

)

.
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respiratory state, the difference between free breathing 

lung T1 and inspiration breath-hold lung T1 was calcu-

lated as: ΔT
1(fb−insp)=T

1
(free breathing)−T

1
(inspiration) 

Similarly, ΔT
1(exp−insp)=T

1
(expiration)−T

1
(inspiration) and 

ΔT
1(exp−fb)=T

1
(expiration)−T

1
(free breathing) .

The image registration and T1 mapping process was  

fully automated in Matlab on a 64 bit Windows 8.1 Pro 

workstation.

In patients who also underwent 3D UTE image acquisi-

tion during their MRI examination, a coronal slice through 

the descending aorta was identified from the 3D UTE im-

ages. The UTE image was used as a guide to draw ROIs on 

the T1 maps in regions corresponding to fibrotic and non- 

fibrotic lung. Fibrotic and non-fibrotic lung ROIs were drawn 

at a similar height within the slice. Mean T1 from fibrotic and 

non-fibrotic regions was calculated.

All statistical analysis was performed and presented using 

SPSS 24 (SPSS, Chicago, IL). Data are presented as mean 

± SD. Box plots were presented as the median value the box 

representing interquartile range and the whiskers represent-

ing 1.5 × interquartile range. For intrasubject comparisons, 

Wilcoxon signed-rank tests were used to test differences 

between variables. For intersubject comparisons, Mann-

Whitney U-tests were used.

3.7 | Image registration efficacy

For a qualitative assessment of motion, each set of breath-

held images were rated based on a looping video of the 

acquired images. If the diaphragm did not appear to move 

across the images the breath-hold was considered successful, 

if the diaphragm did move across the images the breath-hold 

was considered unsuccessful. In the cases of unsuccessful 

breath-hold, images were categorized as either demonstrat-

ing diaphragmatic drift (a gradual drifting of the diaphragm 

position during the acquisition time) or a complete sudden 

release of breath-hold.

All acquired images (inspiration, expiration, and free 

breathing) were segmented manually using ITK-SNAP, in-

cluding all of the lung including major vessels but excluding 

the heart itself if visible. Then the registration transfor-

mation from the corresponding image was applied to the 

segmentation.

Dice similarity coefficient (DSC) is a global alignment 

measurement and was calculated for each set of segmenta-

tions, before and after image registration: 

where M and N are two segmentations. DSC is calculated 

for each segmentation M, with respect to the reference 

segmentation, N. In this paper, DSC was averaged over all 

images, and over all images acting as segmentation N, see 

Equation (14). This is because no single image represents 

the ground truth of registration. The averaged DSC rep-

resents how well all images are aligned to all other images. 

where i and j are images acquired at different Ti. For breath-

held acquisitions where additional registration was required, 

unregistered DSC was used for DSC comparisons.

4 |  RESULTS

4.1 | Imaging feasibility

All healthy volunteers successfully held their breath during 

inspiration breath-hold scans, however two of eight healthy 

volunteers demonstrated diaphragm drift during expiration 

breath-hold scans. In patients with IPF, 9/19 did not suc-

cessfully hold their breath during the inspiration acquisition 

(7/19 demonstrated diaphragm drift, 2/19 completely let go 

of breath-hold), and 4/8 did not successfully hold their breath 

during the expiration acquisition (2/8 demonstrated dia-

phragm drift, 2/8 completely let go of breath-hold).

Free breathing imaging was successful in all subjects and 

T1 maps could be calculated successfully with the proposed 

approach in all subjects.

4.2 | Motion correction

After image-to-image registration free breathing DSC sig-

nificantly decreased (unregistered DSC = 0.92 ± 0.03, reg-

istered DSC = 0.89 ± 0.03, P < .001) due to the registration 

errors introduced by the contrast differences between images, 

see Supporting Information Video S1.

DSC of free breathing images was significantly increased 

after image registration using synthetic images (registered 

DSC = 0.94, P < .001). In Figure 2, free breathing images 

before and after registration are presented, as well as plots 

of maximum inferior-superior lung length measured on each 

image in Matlab 2016b. All DSC data were skewed (unreg-

istered inspiration DSC skewness: −1.8 ± 0.4;registered in-

spiration DSC skewness: −1.8 ± 0.4; unregistered expiration 

DSC skewness: 1.5 ± 0.06; registered expiration DSC skew-

ness: −1.36 ± 0.4; registered free breathing DSC skewness: 

−0.97 ± 0.4).

Inspiration breath-hold DSC was significantly higher 

than registered free breathing DSC (inspiration DSC = 0.95 

(13)DSC=
2 area (M ∩ N)

area (M)+area (N)
.

(14)DSC=
∑

i=1:16

∑

j=1:16

2 area
(

Mi∩Nj

)

area
(

Mi

)

+area
(

Nj

)

1

16∗16
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± 0.03, registered free breathing DSC = 0.94 ± 0.02, P = 

.007). There was no significant difference between expiration 

breath-hold DSC and registered free breathing DSC (expiration  

DSC = 0.95 ± 0.02, P = .363). Figure 3 demonstrates box 

plots of the DSC for breath-hold and free breathing images in 

healthy volunteers and patients with IPF.

F I G U R E  2  Example of images from a patient with IPF. A, Shows time points 1, 6, 11, and 16 from the Look-Locker images before 

registration. B, Shows time points 1, 6, 11 and 16 from the Look-Locker images after registration using synthetic images. C, Lung length was 

measured from apex to base as shown by the white arrow. Lung length measured before registration was plotted for each time point. D, Lung length 

measured after registration was plotted for each time point. White dotted line reference line on (A) and (C) shows diaphragm position in image 1.

F I G U R E  3  Mean DSC for inspiration breath-hold, expiration breath-hold, and free breathing before and after image registration. Mean DSC for 

healthy volunteers was 0.96 ± 0.02 for inspiration breath-hold; 0.96 ± 0.02 for expiration breath-hold; 0.92 ± 0.03 for unregistered free breathing; 

and 0.95 ± 0.02 for registered free breathing. Mean DSC for patients with IPF was 0.95 ± 0.02 for inspiration breath-hold; 0.95 ± 0.02 for expiration 

breath-hold; 0.92 ± 0.02 for unregistered free breathing; and 0.95 ± 0.02 for registered free breathing. O denotes outliers, * denotes far outliers
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There was a small, but statistically significantly increase 

of DSC in inspiration breath-hold images after image regis-

tration using synthetic images (unregistered DSC = 0.95 ± 

0.03, registered DSC = 0.95 ± 0.02, P = .017). In the two 

cases where inspiration breath-hold was completely released 

during imaging, DSC increased from 0.94 ± 0.02 to 0.96 ± 

0.01. Overall, there were no significant differences in DSC 

in expiration breath-hold images after registration using syn-

thetic images (unregistered DSC = 0.95 ± 0.03, registered 

DSC = 0.95 ± 0.02, P = .638). However, in the two cases 

where expiration breath-hold was let go, DSC increased from 

0.931 ± 0.004 to 0.947 ± 0.005.

During multi-slice Look-Locker free-breathing imag-

ing acquisition, full lung coverage was achieved with eight 

slices of thickness 15 mm in a total acquisition time of 56 

seconds. The two most posterior slices showed poor image 

registration at the base of the lung, resulting in T1 errors 

at the base of the lung in the corresponding T1 maps. An 

example of a posterior slice and a central slice are shown in 

Supporting Information Video S2 to demonstrate this. The 

multi-slice T maps are presented with box plots represent-

ing mean and interquartile range of T1 values for each slice 

in Figure 4.

4.3 | T1

In healthy volunteers, lung T1 was significantly higher dur-

ing inspiration breath-hold when compared with expira-

tion breath-hold (inspiration T1 = 1.15 ± 0.09; expiration  

T1 = 1.22 ± 0.10, P = .018). These results are presented in 

Figure 5, and examples of T1 maps in patients with IPF and 

healthy volunteers are shown in Figure 6. However, patients 

with IPF showed no significant difference in mean lung T1 

between the respiratory states imaged (inspiration T1 = 1.11 

± 0.07, expiration T1 = 1.15 ± 0.11, P = .260), see Table 1.

The mean lung T1 from the multi-slice free breathing 

Look-Locker acquisition was 1.21 ± 0.20 s, with a range of 

1.01-1.41  s. Slices positioned in the middle of lung (slices 

3-6) had a mean T1 of 1.11 ± 0.19 s with a range of 1.01-

1.23  s, see Figure 4. Lung T1 repeatability was evaluated 

in one volunteer who underwent 10 image acquisitions in 

each of: inspiration breath-hold, expiration breath-hold, and 

during free breathing respectively. Inspiration breath-hold ac-

quisitions resulted in a mean lung T1 of 1.09 ± 0.04 s (range 

1.04-1.16 s, mean whole lung SD of 0.24 ± 0.01 s), expira-

tion breath-hold resulted in a mean lung T1 of 1.14 ± 0.02 s 

(range 1.08-1.17 s, mean whole lung SD of 0.17 ± 0.01), and 

F I G U R E  4  Box plots showing the distribution of whole lung T1 values from a multi-slice Look-Locker free-breathing imaging acquisition in 

a 28-year-old female volunteer. Mean lung T1 for each slice was as follows: Slice 1 T1 = 1.33 ± 0.13 s; slice 2 T1 = 1.41 ± 0.13 s; slice 3 T1 = 1.23 

± 0.16 s; slice 4 T1 = 1.12 ± 0.19 s; slice 5 T1 = 1.01 ± 0.20 s; slice 6 T1 = 1.06 ± 0.19 s; slice 7 T1 = 1.28 ± 0.13 s; slice 8 T1 = 1.09 ± 0.19 s. 

Mean whole lung T1 was 1.21 ± 0.2 s.
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free breathing resulted in a mean lung T1 of 1.12 ± 0.08 s 

(range: 1.02-1.24  s, mean whole lung SD of 0.19 ± 0.02). 

These results are presented in Figure 7.

T1 was significantly lower in patients with IPF than in 

healthy volunteers when acquired during free breathing 

(healthy volunteers free breathing T1 = 1.21 ± 0.14; pa-

tients with IPF free breathing T1 = 1.08 ± 0.09, P = .028). 

ΔT
1(fb−insp), ΔT

1(exp−fb) and ΔT
1(exp−insp) were significantly 

different between healthy volunteers and patients with IPF 

(P = .019, P = .015 and P = .015 respectively). Intrasubject 

SD was significantly higher in patients with IPF than in 

healthy volunteers for T1 maps acquired during inspiration 

breath-hold (healthy volunteers instrasubject SD = 0.22 ± 

0.12 s, patients with IPF intrasubject SD = 0.25 ± 0.012,  

P = .028). There was not a significant difference in intrasu-

bject SD of lung T1 between patients with IPF and healthy 

volunteers for T1 maps acquired during expiration (healthy 

volunteers instrasubject SD = 0.20 ± 0.02 s, patients with 

IPF intrasubject SD = 0.23 ± 0.1 s, P = .343) or free breath-

ing (healthy volunteers intrasubject SD = 0.20 ± 0.01, pa-

tients with IPF intrasubject SD = 0.23 ± 0.1, P = .086), see 

Table 1.

F I G U R E  5  Example T1 maps in acquired during inspiration, expiration and free breathing in a healthy volunteer and a patient with IPF. At 

the base of the lung in both T1 maps acquired during free breathing, a small amount of residual motion can be seen in the T1 map. Where this has 

occurred, this area has been avoided when drawing ROIs.

F I G U R E  6  Bar plot showing median T1 values in volunteers and patients with IPF during inspiration breath, breath-hold, and during free 

breathing. There was a significant difference between free breathing T1 values in healthy volunteers and patients with IPF, P = .028.
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UTE images from 6/10 patients showed fibrotic regions in 

the coronal slice through the descending aorta. In inspiration 

breath-hold T1 maps, regions of fibrosis had a mean T1 of 1.11 ±  

0.10  s, regions without fibrosis had a mean T1 of 1.13 ±  

0.10  s, and the whole lung T1 of these patients was  

1.16 ± 0.03  s. In T1 maps acquired during free breathing, 

regions of fibrosis had a mean T1 of 1.14 ± 0.10 s, regions 

without fibrosis had a mean T1 of 1.15 ± 0.10 and whole 

lung T1 of 1.12 ± 0.07  s. Three of six patients with UTE 

images showing fibrotic regions also had expiration breath-

hold T1 maps. In expiration, fibrotic lung regions had a 

mean T1 of 1.14 ± 0.10, regions without fibrosis had a T1 of  

1.13 ± 0.07 s and whole lung T1 in those three patients was 

1.14 ± 0.01 s. Figure 8 shows an example of region of interest 

placement on a UTE image in a patient with IPF, and corre-

sponding breath-held and free breathing T1 maps.

There was no difference in the intrasubject SD of T1 val-

ues between expiration breath-hold and the free breathing 

acquisitions (P = .433); however, the intrasubject T1 SD was 

significantly smaller in free breathing when compared with 

inspiration breath-hold.

Inspiration breath-hold lung T1 was significantly higher 

in female volunteers when compared with males (P = .022); 

however, the trend in difference between males and females 

was seen in expiration or free breathing did not meet signif-

icance (expiration: P = .053; free breathing: P = .079). The 

mean lung T1 in female healthy volunteers was 1.24 ± 0.06 s 

during inspiration, 1.32 ± 0.07 s during expiration and 1.30 ±  

0.08  s during free breathing. The mean lung T1 in male 

healthy volunteers was 1.11 ± 0.06  s during inspiration,  

1.17 ± 0.07 s during expiration, and 1.17 ± 0.14 s during free 

breathing.

Healthy 

volunteers

Patients 

with IPF

P-value for difference between healthy 

volunteers and patients with IPF

Inspiration breath-hold

T1 (s) 1.15 ± 0.09 1.11 ± 0.07 0.233

Intrasubject SD 0.22 ± 0.12 0.25 ± 0.12 0.028*

Coefficient of 

variation (%)

4.7 6.3

Expiration breath-hold

T1 (s) 1.22 ± 0.10 1.15 ± 0.11 0.105

Intrasubject SD 0.20 ± 0.02 0.22 ± 0.02 0.343

Coefficient of 

variation (%)

8.2 9.6

Registered free breathing

T1 (s) 1.21 ± 0.14 1.08 ± 0.09 0.028*

Intrasubject SD 0.20 ± 0.01 0.23 ± 0.1 0.086

Coefficient of 

variation (%)

11.6 8.33

P-values

P value between 

inspiration and 

expiration T1

0.018a 0.260b -

P value between 

inspiration and 

free breathing 

T1

0.059a 0.161b 

P value between 

expiration and 

free breathing

0.310a 0.484a 

Note: Due skewed data and low numbers, P-values for comparisons between inspiration, expiration and free 

breathing T1 values were calculated using negative ranks or positive ranks. Comparisons between patients with 

IPF and healthy volunteered were made using Mann-Whitney U-tests.
abased on negative tanks. 
bbased on positive ranks. 

*Indicates P value < .025; 

**Indicates P value < .05. 

T A B L E  1  T1 data for images acquired 

during inspiration breath-hold, expiration 

breath-hold, and during free breathing in 

healthy volunteers and patients with IPF
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In patients with IPF, there was no significant difference 

between male and female lung T1 in any respiratory state 

(inspiration: P = .784; expiration: P = .494; free breathing  

P = .441). The mean lung T1 in female patients with IPF was 

found to be 1.10 ± 0.08 s during inspiration, 1.11 s during ex-

piration (n = 1) and 1.21 ± 0.07 s during free breathing. The 

mean lung T1 in male patients with IPF was found to be 1.11 

± 0.06 s during inspiration, 1.12 ± 0.05 s during expiration 

and 1.09 ± 0.06 s during free breathing.

There was no significant correlation between age and  

lung T1.

4.4 | PFTs

Patients with IPF had a mean forced expiratory volume in  

1 s (FVC) of 87.6% of predicted volume, mean diffusing ca-

pacity of the lungs for carbon monoxide (TLCO) of 63.4% 

of predicted volume, and transfer coefficient of the lung for 

carbon monoxide (KCO) of 84.4%. Lung T1 metrics did not 

significantly correlate with the % of predicted volume of FVC, 

TLCO, or KCO. Supporting Information Figure S2 shows ex-

ample T1 maps in a patient with IPF at visit 1 and visit 2. 

However, ΔT
1(fb−insp) did correlate with KCO (r = 0.480, P = 

.044*) as did ΔT
1(exp−insp) (r = 0.872, P = .010*), see Figure 9.

4.5 | Follow-up data

Mean lung T1 was not significantly different at 6-mo follow-up 

when acquired during inspiration (visit 1: T1 = 1.11 ± 0.08 s; 

visit 2: T1 = 1.12 ± 0.05 s, P = .597) or during free breathing 

(visit 1: T1 = 1.09 ± 0.10 s; visit 2: T1 = 1.14 ± 0.08 s, P = 

.788). Mean FVC, TLCO, and KCO were also not significantly 

different at 6-mo follow-up (visit 1: FVC = 91 ± 17%, visit 2: 

FVC = 89 ± 15%, P = .195; visit 1: TLCO = 65 ± 21%, visit 

F I G U R E  7  Box plots demonstrating 

T1 repeatability for inspiration breath-

hold, expiration breath-hold and breathing 

acquisitions in a single healthy volunteer. 

All breath-holds were successfully held.

F I G U R E  8  Inspiration breath-hold and 

free breathing T1 maps for a patient with 

IPF, and corresponding similar-slice UTE 

and Look-Locker image 1. Examples of the 

regions of interest drawn on the T1 maps 

in areas which on the corresponding UTE 

image indicate fibrotic and non-fibrotic lung 

are shown. O denotes outliers.
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2: TLCO = 61.8 ± 26%, P = .106; visit 1: KCO = 84 ± 19%, 

visit 2: KCO = 81 ± 24%, P = .182).

5 |  DISCUSSION

The presence of both diaphragm drift and the inability to 

maintain breath-hold in our IPF patient cohort suggests that 

free-breathing approaches may be a more comfortable and 

practical method of measuring lung T1 in patients who ex-

perience shortness of breath. Image registration significantly 

improved the alignment of images acquired during free 

breathing and allowed multi-slice whole lung coverage in 

around 56 s. Evaluation of Look-Locker T1 mapping repeat-

ability in a single volunteer demonstrated the best repeatabil-

ity with expiration acquisition (with breath-hold successful 

in all acquisitions) and the poorest repeatability with free 

breathing acquisition. The free breathing method proposed 

in this paper combines images from a range of lung inflation 

levels, and lung inflation level is known to affect measured 

T1.
6 It may be that the combining of images acquired at dif-

ferent lung inflation levels has resulted in a less repeatable T1 

measurement.

The registration method presented also significantly in-

creased image alignment in inspiration breath-hold images  

(P = .018). In particular, DSC increased after registration 

in all cases where breath-hold was completely released. 

Therefore, registration to synthetic images may also be useful 

in registering accidental motion in breath-held data.

The synthetic images are created from three images, 

and it cannot be guaranteed that the alignment between the 

three images input into the model are perfectly aligned, 

which may lead to some misalignment at the base of the 

lung where motion is most severe. The chances of iden-

tifying aligned images would be increased by acquiring 

multiple Look-Locker inversion recoveries and interleav-

ing spatially aligned images, although there would be an 

associated scan-time cost.

The CRIR model assumes that lung density at the di-

aphragm is significantly lower than tissue density below 

the diaphragm, and this may not hold in the presence of 

severe lung fibrosis. In this study, DSC was significantly 

improved by the image registration method and mean 

DSC postregistration was higher in patients with IPF than 

healthy volunteers, indicating that the method works well 

in the presence of the fibrosis seen in the slices imaged 

F I G U R E  9  Scatter plots showing KCO 

and change in T1 between respiratory states, 

∆T1(fb-insp) and ∆T1(exp-insp).
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in these patients. Alternative methods to detect diaphragm 

position, for example, using deep learning, may be able to 

assist in this area.

MRI-based methods of tissue characterization are desir-

able as they do not expose patients to radiation. The imple-

mentation of MRI-based tissue characterization methods, 

such as late gadolinium enhanced inversion recovery MRI20 

and T2 mapping21 has been explored in patients with IPF. 

These methods also require breath-holds and may also be 

compatible with a synthetic-image based registration method, 

such as the one presented here but adapted for models of gad-

olinium uptake and T2 recovery respectively. Additionally, 

as gated free-breathing acquisitions will have some amount 

of residual motion, the method also has the potential to be 

adapted to correct motion in gated acquisitions.

Although the majority of motion during respiration occurs 

within the coronal plane, smaller amounts of out-of-plane 

motion also occur during respiration, which have not been 

accounted for with this method. The 3D lung T1 mapping, 

which registers motion in all directions, would resolve this 

problem and is a potential area for further work. This might 

be achieved using 3D or multi-slice free breathing acquisition 

and by calculating synthetic images with a common respira-

tory state for all slices.

Our findings are consistent with the work of Stadler et al6 

showing that lung T1 is significantly higher in expiration than 

inspiration breath-hold in healthy volunteers6; however, in 

patients with IPF, this work did not find a significant dif-

ference between inspiration and expiration breath-hold T1. 

The difference in lung T1 due to respiratory state is likely 

to reflect a combination of changes that occur at different 

respiratory states, including significantly different lung per-

fusion,22 lung density,23 and in the case of breath-hold, blood 

oxygenation.24 This work is not able to isolate the effects 

of these individual mechanisms that may contribute to the 

small but significant changes in lung T1 with respiratory state 

and further work is warranted to identify these mechanisms. 

However, this work does indicate that the difference in T1 

between respiratory states may be of clinical interest in lung 

MRI of patients with IPF (as well as the lung T1 values them-

selves). More work into this area with a greater number of 

patients is warranted.

Lung T1 acquired during free breathing was found to be 

significantly lower in patients with IPF when compared with 

healthy volunteers, but was not found to be significantly 

lower using breath-hold manoeuvres. This indicates that free 

breathing T1 imaging could be more sensitive to pathophys-

iological changes than breathold T1 imaging. This could be 

due to sensitivity of the method to changes in lung infla-

tion. Although all measures of mean lung T1 were lower in 

patients with IPF when compared with healthy volunteers, 

only the lung T1 acquired during free breathing was signifi-

cantly different between the two groups. This is consistent 

with previous work by Stadler et al where two separate stud-

ies showed mean lung T1 to be lower in patients with IPF 

than healthy volunteers.1,6 The work of Mirsadraee et al has 

shown fibrotic lung regions to show a significantly higher 

T1 than non-fibrotic lung regions at inspiration breath-hold 

at 3T using a MOLLI sequence.2 The preliminary results in 

this work show a lower mean T1 in fibrotic regions at inspi-

ration breath-hold than the mean T1 in non-fibrotic regions. 

However, due to small numbers the statistical significance 

of these preliminary reporting cannot be calculated. The dif-

ferences between our preliminary reporting and the work of 

Mirsadraee et al may be due to the changes in T1 values in 

fibrosis, lung tissue and blood with field strength and the fact 

that a MOLLI sequence was used. Further work characteriz-

ing the T1 of fibrotic and non-fibrotic tissue is needed at both 

field strengths.

In healthy volunteers, lung T1 was found to be signifi-

cantly higher in females than in males (P < .001), which is 

consistent with previous findings.25 Studies have shown that 

females have a higher blood T1 than males.26 This may be 

explained by lower hematocrit in women,27 as decreased he-

matocrit levels increase blood T1.
24 This work emphasizes 

the importance of gender being taken into account when eval-

uating lung T1 changes.

PFTs did not indicate changes between visit 1 and visit 2.  

PFTs have been shown to have limited sensitivity in longi-

tudinal assessment of IPF. Hyperpolarized gas MRI have 

shown to be sensitive to longitudinal changes in lung micro-

structure and gas exchange in patients with IPF in patients 

without significant changes in TLCO.28 Therefore, due to the 

limited sensitivity of PFT measures, an absence of changes 

in PFTs does not necessarily indicate an absence of changes 

in the lung.

There was not a statistically significant longitudinal 

change in lung T1 between visit 1 and visit 2. This may be 

due to a lack of change within the population, as indicated 

by the PFTs and the relatively short time-frame for follow-up 

assessments. Additionally, there were small patient numbers 

in the follow-up study.

6 |  CONCLUSIONS

The use of spatially aligned synthetic images as an inter-

mediary registration tool was successful in significantly re-

ducing respiratory motion in free breathing acquisition of 

inversion recovery Look-Locker images. The resultant lung 

T1 measured during a free breathing acquisition was sig-

nificantly lower in patients with IPF when compared with 

healthy controls. The change in T1 at different respiratory 

states, ΔT
1(fb−insp), ΔT

1(exp−fb) and ΔT
1(exp−insp), were also sig-

nificantly different in patients with IPF when compared with 

healthy controls. The method proposed may improve the 
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robustness and clinical utility of lung T1 mapping in patients 

who struggle to hold their breath.
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the Supporting Information section.
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FIGURE S1 Diagram of a region of interest (ROI) with a 

fixed position within the FOV, with two tissues A and B 

moving in and out of the ROI

FIGURE S2 Examples of T1 maps from a patient at the ini-

tial assessment and 6-month follow-up, during free breathing 

and inspiration breath-hold

VIDEO S1 Looping video of a healthy volunteer’ Look-

Locker images prior to registration (left), registered using 

image-to-image registration (middle) and registered using 

image to synthetic images (right) from a patient with IPF

VIDEO S2 Looping video of Look-Locker images prior to 

registration (left) and registered using image to synthetic  

images (right) for two difference slice positions from a 

healthy volunteer
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