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Abstract This paper presents a planner that enables robots

to manipulate objects under changing external forces. Par-

ticularly, we focus on the scenario where a human applies

a sequence of forceful operations, e.g. cutting and drilling,

on an object that is held by a robot. The planner produces

an efficient manipulation plan by choosing stable grasps on

the object, by intelligently deciding when the robot should

change its grasp on the object as the external forces change,

and by choosing subsequent grasps such that they minimize

the number of regrasps required in the long-term. Further-

more, as it switches from one grasp to the other, the planner

solves the bimanual regrasping in the air by using an alter-

nating sequence of bimanual and unimanual grasps. We also

present a conic formulation to address force uncertainties

inherent in human-applied external forces, using which the

planner can robustly assess the stability of a grasp config-

uration without sacrificing planning efficiency. We provide

a planner implementation on a dual-arm robot and present

a variety of simulated and real human-robot experiments to

show the performance of our planner.

Keywords Manipulation Planning · Forceful Human-Robot

Collaboration · Task-Oriented Grasping

1 Introduction

Most manipulation planning focuses on dealing with geo-

metric constraints. In this work, we are interested in the sce-
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(a) A graphical user interface (Left) and a dual-arm robot (Right)

(b) Grasp configuration 1 (c) Intermediate config. for regrasp

(d) Grasp configuration 2 (e) Grasp configuration 3

Fig. 1 The human is cutting a circular piece off from a board with the

assistance of a robot system.

nario where a robot manipulates an object not only under ge-

ometric constraints, but also under the application of chang-

ing external forces. Take the cutting task in Fig. 1, where

a human is cutting a circular piece off from a rectangular

board with the assistance of a robot system (Fig. 1(a)). Be-

fore the task, the human indicates the operation type (cut-

ting) and the desired cutting pattern (a circle) using a graph-
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(a) The object slides due to insuf-

ficient frictional forces

(b) The object bends due to exces-

sive torque

Fig. 2 Task failures during cutting (a) and drilling (b).

ical interface (Fig. 1(a)-Left). During the cutting task, the

human applies external forces on the board which change

position, direction, and even magnitude along the circular

path. To assist the human to perform the task, the robot

changes its grasp on the object multiple times (Fig. 1(b)-

1(e)) to position the object at expected pose(s) and keep it

stable against the changing cutting forces. In this paper, we

propose a planner that enables the robot to manipulate ob-

jects under changing external forces like this.

This kind of human-robot interaction can be very useful

in manufacturing applications, where human workers need

to apply a sequence of forceful operations like polishing,

cutting and welding on workpieces, or in carpentry where

sequential forceful operations like drilling and inserting are

widely observed. To achieve this level of interaction, our

planner needs to solve three key problems:

First, our planner produces efficient manipulation plans

by minimizing the number of times the robot needs to change

its grasp on the object, namely regrasp. For example in Fig. 1,

the robot uses three different grasp configurations to keep

the object stable and accordingly changes its grippers’ po-

sitions on the object only two times (counting each gripper

separately) during the whole task. This is also a capability

demonstrated by humans in sequential manipulation tasks:

we regrasp when we need to, but we are also able to choose

grasps which are useful for long durations during a task.

This capability poses two closely related challenges to

the planner: grasp planning and regrasp minimization. Specif-

ically, the planner needs to decide not only how to grasp

the object, but also when to regrasp the object during the

course of interaction. A good choice of robot grasp on the

object may enable the robot to stabilize the object against

multiple sequential external forces, and thus reduce the need

of regrasping throughout the interaction, while a bad grasp,

however, would lead to frequent regrasps and therefore task

interruptions. Even worse, an inappropriate grasp may not

be able to stabilize the object against some external forces,

thus bringing about task failures and risks during execution.

For example, the object may slip through the gripper fin-

gers during a cutting operation (Fig. 2(a)) due to insufficient

frictional forces between gripper fingers and object surface.

Similarly, a drilling operation may exert excessive torque

around the grippers due to a bad choice of grasp (Fig. 2(b)).

Second, our planner plans each regrasp. A regrasp re-

quires the robot to release its grippers off the object and then

to grasp the object at different positions. However, when the

robot releases a gripper, the object may become unstable

under external forces, e.g. gravity. Even if we assume the

human in Fig. 1(b) stops applying cutting forces during re-

grasps, the object may still become unstable due to gravity.

For example, to regrasp the object from the configuration in

Fig. 1(b) to the one in Fig. 1(d), if the robot directly releases

its right gripper from the object as shown in the small fig-

ure at the right bottom of Fig. 1(c), a heavy object may slip

within the remaining gripper. Alternatively, the robot can

first move the object to an intermediate pose before releas-

ing one gripper, so that the remaining one can still hold the

object stable until the robot completes the regrasp. Fig. 1(c)

shows such an intermediate pose, at which the object is sta-

ble even when the right robot gripper releases from it.

Third, our planner takes a robust approach to efficiently

assess the stability of a grasp configuration with the pres-

ence of force uncertainties. The primary step towards manip-

ulation planning under changing external forces is to model

the external forces. A forceful operation, such as cutting a

board, ideally, exerts a determinate external force on a tar-

get object. However, in practical applications such a human-

applied forceful operation would inevitably deviate from its

expected direction, which brings about force uncertainties

and thus challenges in finding appropriate robot grasps to

keep the target object stable. In this sense, to guarantee ef-

fective and robust planning, our planner chooses grasps which

can keep the object stable not only under the expected op-

eration force, but also under all possible deviated operation

forces. To achieve this, our planner requires a model of the

forces to be applied as input in advance.

This work is a significantly extended and improved ver-

sion of our previous work on manipulation planning under

changing external forces (Chen et al., 2018b). Briefly, we

build our planner on the following key contributions:

– A graph-based formulation of manipulation planning un-

der changing external forces, which is referred to as the

operation graph hereafter, and a planning approach which

can simultaneously (i) produce a sequence of grasp con-

figurations to keep the object stable, and (ii) minimize

the need of regrasping during manipulation (Sec. 5.1).

– An algorithm to plan stable regrasps in the air by using

multiple cooperative manipulators. Different from most

existing work in regrasp planning (reviewed in Sec. 2),

we focus on regrasping without an extra support struc-

ture. This is achieved by reasoning about the object’s

stability under gravity while moving the object to go
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through an alternating sequence of intermediate uniman-

ual and bimanual grasps (Sec. 5.2-5.4).

New contributions in this version includes:

– A conic model for external forces with the presence of

force deviations and a new theorem with detailed proof,

which formulates and significantly simplifies the stabil-

ity check using the conic model ( Sec. 4).

– A graphical user interface which ties in human task spec-

ification, on-demand manipulation planning and robot-

assisted fabrication together (Sec. 6).

– A new set of simulated and real-robot experiments with

an increased number and variety of forceful tasks to ver-

ify the performance of our planning framework (Sec. 7).

2 Related Work

This work is mainly related to three areas which have been

well studied in the literature: grasp analysis, multi-step ma-

nipulation planning and regrasping and forceful human-robot

collaboration.

2.1 Grasp Analysis

The literature of grasp analysis investigates the question of

how stable a grasp is. General methods using the concept

of force-closure/form-closure answer whether a grasp would

be able to resist external wrenches acting along arbitrary di-

rections. The grasp wrench space (Mishra et al., 1987; Borst

et al., 2004), for example the volume of its largest inscribed

sphere (Ferrari and Canny, 1992), can be used as a metric to

measure the general quality of a grasp configuration.

The task-oriented grasping literature (Dang and Allen,

2012; El-Khoury et al., 2015; Nikandrova and Kyrki, 2015)

studies the problem of grasping an object for a particular

task, an important part of which is modelling the particu-

lar external wrench expected on the target object during the

task. For example, Li and Sastry (1988) presents the task

wrench space as a metric to measure how good a grasp is

under task-relevant external wrenches. Other work in this

area proposes faster and more robust ways to compute task-

based metrics (Borst et al., 2004; Haschke et al., 2005; Lin

and Sun, 2015). In general, given an external wrench, a set of

contact points on the object, and contact-models (Salisbury

and Roth, 1983) (which provide constraints on the directions

and magnitudes of the wrenches that can be applied at the

contacts), the question of whether the set of contacts would

be able to resist the external wrench can be formulated as a

linear matrix inequality problem (Han et al., 2000). Grasp

analysis in the case of compliant contact has also been in-

vestigated through modelling the contact between a finger

and the object as a spring (Cutkosky and Kao, 1989).

While the grasp analysis literature focuses on the sta-

bility of a grasp on a target object, our work is also related

to cooperative manipulation, which focuses on the problem

of multiple manipulators cooperatively manipulating a com-

mon object (Takase, 1974; Zheng and Luh, 1989). To exert

a resultant wrench on the object, one can solve a set of lin-

ear equations to find the force/torque efforts required at the

manipulator joints (Uchiyama and Dauchez, 1988, 1992).

We build on the formulations of grasp stability and co-

operative manipulation to propose our grasp stability check

(Sec. 4.1), which involves checking the force/torque limits

at both the grip points and the manipulator joints.

2.2 Multi-Step Manipulation Planning and Regrasping

In a typical problem of multi-step manipulation planning,

a robot manipulates an object through geometric obstacles

where the robot needs to ungrasp and regrasp the object mul-

tiple times. The need to regrasp objects was recognized even

in the earliest manipulation systems (Lozano-Pérez et al.,

1987; Tournassoud et al., 1987). Later, Siméon et al. (2004)

presented a planner via random sampling that solves the

problem using an alternating sequence of transfer and tran-

sit actions. More recently, planners have been proposed to

solve the planning problem in the case of multiple manipula-

tors for assembly-like tasks (Lertkultanon and Pham, 2018;

Wan and Harada, 2016; Dogar et al., 2019).

Most existing work on manipulation planning focuses on

dealing with geometric constraints, generating collision-free

robot motions to manipulate target objects. Our planner goes

beyond geometric constraints, taking into account the force

feature, which can be required in a large variety of sequential

manipulation tasks. In our task, for example, the robot is

required not only to move a target object to desired goal

position(s) under geometric constraints, but also to keep the

object stable under changing external forces.

Our work is also related to regrasp planning, especially

the case of dual-arm or multi-arm regrasping. Regrasp plan-

ning involves finding a connected path over a sequence of

sub-manifolds in the composite configuration space. Roughly,

the basic flow of regrasp planning follows the pattern of

first building a manipulation graph (Alami et al., 1990) and

then searching the graph for regrasp sequences. Early stud-

ies (Rohrdanz and Wahl, 1997; Stoeter et al., 1999) em-

ployed grasp-placement tables to generate a sequence of

motions for regrasping. More recent works propose some

other graph-based representations, such as the regrasp graph

(Wan and Harada, 2016, 2017). Most existing studies on re-

grasp planning use object placements on extra supports for

regrasping, such as support surfaces (Wan and Harada, 2016,

2017; Chavan-Dafie and Rodriguez, 2018) and other com-

plex structures (Cao et al., 2016; Ma et al., 2018).
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(a) A raw wooden board (b) Drilling eight holes (c) Cutting off four legs (d) Inserting four pegs

Fig. 3 The table assembly task consists of a continuous (e.g. cutting) or discrete (e.g. drilling) sequence of forceful operations on a target object.

Different from the regrasping work mentioned above,

our work specifically focuses on the planning problem where

the robot can not place the object down on an extra support

surface, but only use its manipulators to cooperatively re-

grasp the object under external forces, e.g. gravity.

Our problem can also be interpreted as an instance of

multi-modal manipulation planning (Bretl, 2006; Hauser and

Latombe, 2010; Lee et al., 2015), where each modality cor-

responds to a bimanual or unimanual grasp. In developing a

planner, we follow a similar strategy of first identifying in-

tersections among these different grasp modalities/manifolds,

and then planning motions to connect them. Our problem

can also be interpreted as a constrained set-cover problem

(Slavı́k, 1996; Feige, 1998), where the planner needs to find

a minimal sequence of grasp configurations to keep the tar-

get object stable under changing external forces in order. To

address the sequential nature inherent in the force sequence,

we formulate a weighted directed graph to search for the op-

timal grasp sequence efficiently in Sec. 5.

2.3 Forceful Human-Robot Collaboration

We are also interested in addressing multi-step manipula-

tion planning in a human-robot collaboration setting. Exist-

ing work in forceful human-robot collaboration mostly fo-

cuses on the control problem (Kosuge and Kazamura, 1997;

Rozo et al., 2016; Abi-Farraj et al., 2017), solving for nec-

essary stiffness of manipulator joints as an external force is

applied, and assumes the object to be already stably grasped

by the robot. We approach the problem from the manipula-

tion planning point of view and address the decision of what

grasps to use and when/how to switch between these grasps.

Other work in planning for human-robot collaboration

exists which mostly focuses on object transportation (Rozo

et al., 2016), handover (Sisbot and Alami, 2012; Strabala

et al., 2013; Maeda et al., 2017), or other applications where

robots attempt to avoid colliding with humans in the shared

workspace (Luo et al., 2018). To the best of our knowledge,

our work is the first one to take a planning approach to solve

the collaboration problem where the human applies sequen-

tial changing forces on an object.

2.4 Other Work on Robotic Assembly

There is also recent work focusing on assembly planning.

Lipton et al. (2017, 2018) present a system for robot-assisted

carpentry. The system uses a team of mobile robots to fab-

ricate human-customised parts with standard carpentry tools

and assumes two specialized stands to stabilize lumbers against

cutting forces. In another recent work by Moriyama et al.

(2019), a sampling-based assembly planner was proposed

to generate stable assembly pose under gravitational con-

straint. The main difference in our work is that we consider

changing external forces applied on an object manipulated

by a multi-arm robot.

3 Problem Formulation

This section presents the definitions and fundamentals of the

planning problem discussed in this work.

3.1 Problem Background

In this work, we refer to a complete forceful interaction as

a forceful task, which consists of a continuous or discrete

sequence of forceful operations. An example is the circular

cutting task shown in Fig. 1, which we discretize into a se-

quence of cutting operations tangential to the circle path.

Another example is the table assembly task illustrated in

Fig. 3, which requires the human to apply eight drilling op-

erations on a wooden board to create holes (Fig. 3(b)), a

continuous sequence of cutting operations to get chair legs

(Fig. 3(c)), and four inserting operations (Fig. 3(d)) to as-

semble the legs. In Sec. 6, we present a graphical user in-

terface, using which human users can easily specify such

forceful tasks, i.e. sequences of forceful operations, in an

interactive manner.
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We define a forceful operation F as a generalized force

(force/torque)1 f w.r.t. a tool frame, applied at a pose p on

a target object w.r.t. an object frame, which is at a desired

pose T ∈ SE(3) w.r.t. a robot frame during the course of

the operation. That is, a forceful operation can be specified

as F = (f , p,T). Accordingly, a forceful task, comprising a

sequence of forceful operations, can be represented as

{Fi}
m
i=1 = {(f i, pi,Ti)}

m
i=1 (1)

where m indicates the number of involved operations. For

example, as illustrated in Fig. 4, we treat the circular cutting

task as a sequence of 20 cuttings via discretization.

We assume the robot has two manipulators, and each

manipulator is equipped with a parallel gripper2. Let Cl,

Cr be the configuration space of the left and right arm re-

spectively, and Co ⊆ SE(3) be the object’s configuration

space. The system’s composite configuration space C can

be then defined as their Cartesian product C =Cl×Cr×Co,

while each composite configuration q∈C can be denoted as

q = (ql, qr, T), where ql ∈ Cl, qr ∈ Cr, and T ∈ Co.

We define a robot grasp g, using the relative pose(s) of

gripper(s) on the target object. Specifically, a bimanual grasp

(gl, gr) specifies poses of both left and right grippers, while

the unimanual grasps (gl), (gr) specify pose of only left and

right gripper respectively.

Note that there is redundancy in this definition. Specifi-

cally, a system configuration q = (ql, qr, T) can be mapped

to its corresponding grasp configuration g via forward kine-

matics. In this sense, the composite configuration space C

can be regarded as a collection of lower-dimensional grasp

manifolds, in which each manifold M (g) corresponds to a

particular robot grasp g on the object.

3.2 Overview of Problem

Fig. 4 illustrates our planning problem in detail using the

circular cutting task (Fig. 1).

The robot is supposed to position and stabilize a target

object under the application of a sequence of forceful op-

erations {Fi}
m
i=1. Given a single forceful operation F, the

planner can find a feasible configuration q by first searching

for a kinematically valid configuration q and then checking

the force stability of the system, i.e. whether the robot and

object are stable under the operation force f at the config-

uration q. This problem has been widely discussed in the

literature on grasp stability (Mishra et al., 1987; Borst et al.,

1 Later in Sec. 4.1, we present a more realistic model where f is a

distribution of a set of possible generalized forces that can be applied

during an forceful operation, instead of a single idealized force.
2 This is for clarity of explanation and because the robot we use in

our experiments has two arms. However, our formulation is general

and can be easily extended to systems with more manipulators.

2004; Ferrari and Canny, 1992) and cooperative manipula-

tion (Uchiyama and Dauchez, 1988, 1992). We explain in

detail how we perform the stability check in Sec. 4.

Then, given a forceful task consisting of a sequence of

forceful operations {Fi}
m
i=1, the planner can simply find one

feasible grasp configuration qi for each operation Fi ∈{Fi}
m
i=1

and accordingly, impose one configuration switch, or broadly,

a regrasp, between every two sequential operations. In this

case, the robot would need to perform two regrasps (one re-

grasp for each gripper for a dual-arm robot) for each opera-

tion Fi and thus at least 2m regrasps in total for whole task.

Alternatively, the robot can make the utmost of one con-

figuration q against multiple forceful operations in a row,

which, as a result, would reduce the need of regrasping.

This, regrasp minimization, imposes an additional but prac-

tically necessary requirement for efficient and smooth ma-

nipulation. In this work, we explicitly address this as a main

objective, building planners to find stable manipulation plans

with a minimal number of regrasps.

We say a system configuration q is stable against a se-

quence of k forceful operations {Fi}
k
i=1 if, at q, the robot and

object are stable under any operation in {Fi}
k
i=1. Further, we

say a sequence of configurations
{

q j

}n

j=1
is stable against a

sequence of forceful operations {Fi}
m
i=1, if the configura-

tions in
{

q j

}n

j=1
cover all forceful operations in {Fi}

m
i=1 in

order, i.e. if q1 is stable against {F1,F2, ...,Fk}, q2 is sta-

ble against {Fk+1,Fk+2, ...,Fl}, and so on, until qn is stable

against {Fs+1,Fs+2, ...,Fm}, where 1≤ k < l < ... < s < m.

For example, the three configurations {q1, q2, q3} shown

in Fig. 4 are stable against the 20 circular cutting opera-

tions (q1 is stable against F1 to F8. q2 is stable against F9

to F12. q3 is stable against F13 to F20). Note that different

configurations correspond to different grasps on the object.

In this sense, regrasp minimization can be achieved by find-

ing a minimal sequence of configurations (i.e. a minimal n)
{

q j

}n

j=1
, stable against the operations {Fi}

m
i=1.

In addition, the robot needs to move the object to go

through the planned configurations in
{

q j

}n

j=1
successively,

using collision-free and stable trajectories
{

t j

}n

j=1
. Specif-

ically, each trajectory t j moves the system from q j−1 to q j

(q0 is the initial system configuration), which corresponds

to a constrained regrasping task.

In this context, we define a manipulation query as a force-

ful task consisting of a sequence of forceful operations {Fi}
m
i=1

to be applied on the object, together with a starting system

configuration q0. Then, the manipulation planning problem

under changing external forces can be stated as:

Given the description of manipulation system and a ma-

nipulation query ({Fi}
m
i=1 , q0), find a minimal sequence of

grasp configurations
{

q j

}n

j=1
and stable connecting trajec-

tories
{

t j

}n

j=1
to position and stabilize the object under force-

ful operations in {Fi}
m
i=1 in order.
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A circular cutting task {Fi}
20
i=1

f 1

f 10

Initial system configuration q0

(a) Inputs ({Fi}
m
i=1 , q0) (b) Outputs ({q j}

n

j=1
, {t j}

n

j=1
)

Fig. 4 Overview of the approach. (a) A circular cutting task is represented as a sequence of 20 cutting operations {Fi}
20
i=1 tangential to the desired

circle. (b) Layers of our planning approach.

3.3 Overview of Approach

The primary step towards efficient object manipulation un-

der sequential forceful operations is modelling and check-

ing the stability of forceful operations. We present how we

model and perform the stability check of forceful operations

with and without the presence of force deviations in Sec. 4.

– Idealized forceful operations and stability check: We for-

mulate an idealized operation model for forceful oper-

ations that can be applied exactly as expected. Using

the idealized operation model, we formulate the stability

check as a linear programming problem in Sec. 4.1.

– Deviated forceful operations and stability check: We for-

mulate a spherical cone model to address forceful oper-

ations with the presence of force deviations. Further, we

propose a polyhedral cone approximation and prove a

theorem simplifying the stability check using the spher-

ical cone model in Sec. 4.2.

Having a model of forceful operations as planning input,

we illustrate how our planner solves a manipulation query

in Fig. 4 with four layers and present details of each layer

in Sec. 5. Here we present a brief overview and explain how

these layers fit together:

– Stable configurations: Given an input manipulation query

({Fi}
m
i=1 , q0), the planner first identifies a sequence of

configurations
{

q j

}n

j=1
which are stable against {Fi}

m
i=1,

and minimize the number of regrasps during manipula-

tion. In Fig. 4, the three configurations {q1,q2,q3} shown

in the top layer is such an example sequence.

The configurations generated by this layer are discrete

over the configuration space. The lower layers of the

planner try to generate a sequence of stable motion tra-

jectories
{

t j

}n

j=1
to connect every two subsequent con-

figurations in
{

q j

}n

j=1
starting from q0, which corre-

sponds to a sequence of constrained regrasping tasks.

This layer is explained in detail in Sec. 5.1.

– Connectivity of grasps: Given any two subsequent con-

figurations qs, qt ∈
{

q j

}n

j=1
produced by the previous

layer (e.g. q1 and q2 in Fig. 4), the planner identifies a

sequence of intermediate grasps {gi}
ng

i=1, which moves

the robot grippers from the grasp gs in qs to the grasp gt

in qt (denoted as g1 and gng
respectively in {gi}

ng

i=1).

The grasp sequence acts as an abstract plan to guide

the subsequent search. The second layer in Fig. 4 shows

such an example grasp sequence {gs, g′, gt}. It connects

the grasps in configurations q1 and q2 of the previous

layer. Note that there might be other feasible grasp se-

quences, which go through different intermediate grip-

per contacts as shown in Fig. 10. This layer is explained

in detail in Sec. 5.2.

– Sampling stable intersections of grasp manifolds: Given

any two neighbouring grasps gi, gi+1 ∈{gi}
ng

i=1, the plan-

ner identifies a set of candidate stable regrasping con-

figurations by sampling within the intersection of their

grasp manifolds M (gi)
⋂

M (gi+1) (illustrated as the blue

points in Fig. 4). These configurations are checked for

stability against object gravity such that at each config-

uration in the set, the transition from gi to gi+1 can be

performed stably. The second configuration in the third
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Fig. 5 Ideally, a forceful operation F would generate a determinate

force f onto a target object along/about an expected operation axis.

layer of Fig. 4 is such an example. Note that the object

is deliberately tilted from its initial pose, such that at the

configuration both unimanual and bimanual grasps can

hold the object stable under object gravity. That is, the

configuration is a stable transition/regrasping configura-

tion from grasp gi to grasp gi+1. This layer is explained

in detail in Sec. 5.3.

– Connectivity of manifold intersections: After obtaining a

sequence of stable regrasping configurations in the inter-

sections of the sequence of grasp manifolds, the fourth

layer performs collision-free and stability-constrained mo-

tion planning within these manifolds, namely generat-

ing a sequence of stable and collision-free trajectories
{

t j

}n

j=1
(illustrated as the red solid lines in Fig. 4). This

layer is explained in detail in Sec. 5.4.

Overall, the layered structure enables the planner to min-

imize the number of regrasps at the top layer. The plan-

ner takes some form of lazy planning (Bohlin and Kavraki,

2000; Sánchez and Latombe, 2003; Hauser, 2015): It gen-

erates high-level plans in upper layers to provide significant

search guidance to lower layers, leaving the time-consuming

motion planning to the final layer. If lower layers fail to find

a plan, the planer goes back to higher layers to generate new

and different high-level plans.

4 Force Modelling and Stability

This section presents our mathematical formulations of force-

ful operations, and explains in detail how the planner effi-

ciently checks the force stability of a candidate configura-

tion q under a certain forceful operation F, while with the

presence of force uncertainties. We refer to this process as

stability check herein.

4.1 Idealized Operations Modelling and Stability Check

In this section, we present an idealized operation model for

forceful operations that can be applied exactly as expected.

Later in the following section, we introduce a conic opera-

tion model to address forceful operations with the presence

of force deviations.

Idealized Operation Model: Ideally, a forceful operation F,

e.g. cutting and drilling as illustrated in Fig. 5, qualitatively

involves moving a certain tool(object) along/about an ex-

pected operation axis (depicted as blue axes in Fig. 5) to

interact with a target object. Accordingly, if applied as ex-

pected, the operation F would produce a determinate opera-

tion force f onto the target object along/about the expected

operation axis.

In this sense, the forceful operation F can be simply

modelled as a single generalized force f applied on the target

object. For example, ideally, a cutting operation (Fig. 5(a))

would generate a force along a cutting axis along the cutting

direction. Similarly, a drilling operation (Fig. 5(b)) would

generate a drilling force together with a rotational torque

along/about an axis perpendicular to the object surface.

Herein, we refer to this formulation F : (f , p, T) as the

idealized operation model. It assumes the operation F to be

exactly applied along/about an expected operation axis, at a

pose p on the target object, ideally modelling F as a single

generalized point in the wrench space.

Stability Check with Idealized Operation Model: Stability

check refers to checking if a grasp configuration q (along

with its corresponding grasp g) is stable against a certain

forceful operation F. Specifically, we are interested in check-

ing whether:

– The robot manipulators are able to provide sufficient stiff-

ness to keep the robot and target object stable against F.

This requires the planner to check whether the required

torques τ at manipulator joints exceed the torque limits.

– The grippers are able to provide sufficient wrenches f g

at grip points to stabilize the target object in hand. This

requires the generalized external force (force/torque) ap-

plied by F onto the object is inside the grasp wrench

space (Mishra et al., 1987), namely the set of all exter-

nal wrenches g can resist.

Consider a generalized force f g,i acting at the gripper of

the i-th manipulator, the required torques τi at manipulator

joints can be derived by τi =JT

i f g,i, where Ji is the Jacobian

matrix of i-th manipulator at a configuration q.

Furthermore, the symmetric formulation by Uchiyama

and Dauchez (1988, 1992), generalized the above model to

multiple manipulators cooperatively holding a common ob-

ject, describing the kinematic and static relationships be-

tween an external force f applied at the object and its coun-

terparts acting at manipulator joints.

The symmetric formulation, however, leaves the forces

f g at grip points unconstrained. For the case of parallel plate

grippers we use in this work, as illustrated in Fig. 6-right, we



8 Lipeng Chen et al.

p

f

gl

Σrobot

ql qr

τl τr

Σobject

Σtool

Px

Pz

Py

Rz
Rx

Ry

Fig. 6 Left: The planner checks if a candidate grasp configuration q

is able to provide a solution of torques τ at manipulator joints and

wrenches f g at grip points to keep the target object stable against a

forceful operation F. Right: We approximate the grasp wrench space

of a grasp g with an axis-aligned box in the 6D wrench space.

approximate the grasp wrench space of a gripper-object sys-

tem with a 6D axis-aligned box in the wrench space. Specif-

ically, we take the maximum forces/torques along/about the

three principal axes (XY Z) that are resistible at grip point as

its limits f max
g,i , f min

g,i , where f max
g,i =

[

P+
x ,P

+
y ,P

+
z ,R

+
x ,R

+
y ,R

+
z

]T

i

and f min
g,i =

[

P−x ,P
−
y ,P

−
z ,R

−
x ,R

−
y ,R

−
z

]T

i
are the vectors of es-

timated upper and lower limits at the i-th grip point. P
+/−
x/y/z

and R
+/−
x/y/z

are the force and torque limits respectively.

Imposing the additional constraints onto above formula-

tions, we model the stability check as finding a distribution

of τ and f g that satisfies:

{

JTf g = τ

Wf g =−R(p)f
(2a)

τmin ≤ τ ≤ τmax, f min
g ≤ f g ≤ f max

g (2b)

where

– J = diag(J1, . . . ,Jn) is the composite Jacobian matrix

at configuration q;

– f g =
[

fTg,1, f
T

g,2, . . . , f
T

g,n

]T

and fTg,i is the generalized force

acting at i-th gripper;

– τ =
[

τT

1 ,τT

2 , . . . ,τT
n

]T
and τi is the joint torque distri-

bution of i-th manipulator;

– W = [W1,W2, . . . ,Wn] (usually termed as the grasp ma-

trix (Mishra et al., 1987; Borst et al., 2004; Ferrari and

Canny, 1992)) is a (6×6n) matrix mapping forces at

robot grippers to a resultant wrench onto the object w.r.t.

the robot frame;

– τmax/min are the upper and lower joint torque limits re-

spectively;

– f
max/min
g are the estimates of upper and lower wrench

limits at grip points respectively (i.e. our estimate of

grasp wrench space).

– R(p) transforms the external force f from the tool frame

to the common robot frame.

Eq. 2 models stability check of an idealized forceful op-

eration as a linear programming, and thus can be solved, e.g.

(a) Drilling deviation (b) Cutting deviation

Fig. 7 The operation force f may deviate from the expected operation

axis by a certain angle.

using the Simplex method, to see if there exists any feasible

solution of torques τ at manipulator joints and wrenches f g

at grip points. If it fails, we regard the configuration q (and

its corresponding grasp g) unstable against the operation F.

4.2 Deviated Operations Modelling and Stability Check

Conic Operation Model: Obviously, the idealized model is

only applicable to cases where forceful operations can be

precisely applied as expected. However, a forceful opera-

tion in actual applications will inevitably deviate from its ex-

pected operation axis to some extent, especially for human-

applied forceful operations. For example, as illustrated in

Fig. 7(a), for a drilling operation, rather than an idealized

force along the expected drilling axis, the actual applied

force can deviate towards any direction within a certain cone.

Fig. 7(b) shows a similar observation of a cutting operation.

We take such force uncertainties into account, formulat-

ing a spherical cone model to address deviations in forceful

operations. As shown in Fig. 8, geometrically, the force de-

viation is bounded by a spherical cone (illustrated as the grey

cone) centred with the expected operation force f (the dark

solid vector along the +z axis), while the actual operation

force can be any force within the cone.

Stability Check with Conic Model: The spherical cone mod-

els a forceful operation F as a continuous set of forces that

can possibly be applied by the operation, while the shape

of the cone can be extracted from experimental data. How-

ever, such a continuous conic model poses a challenge for

stability check. Specifically, to check if a candidate configu-

ration q is able to keep an object stable under an operation F,

all possible deviated forces within the continuous spherical

cone must be checked for the sake of robustness, for which

a naive discretization approach would be computationally

extremely expensive.

To reduce the computational complexity but without de-

generating robustness of stability check using the spherical



Manipulation Planning under Changing External Forces 9

Spherical cone

Polyhedral cone

(0, 0, fz)

fx

fy

Σtool

Expected force

Primitive force

Z

X

Y

X

Y

Fig. 8 The spherical cone models the distribution of an operation force

f under deviations. The polyhedral cone circumscribes the spherical

cone, approximating it with a limited number of primitive forces.

cone model, we propose to approximate the spherical cone

with a nF-edged circumscribed polyhedral cone (illustrated

as the outer polyhedron in Fig. 8).

As shown in Fig. 8, the polyhedral cone circumscribes

and bounds the spherical cone, including all deviated forces

in the spherical cone. It also contains a small set of addi-

tional forces (the space between the polyhedral cone and the

spherical cone) due to the geometric relation between two

cones, which makes the polyhedral cone conservative by en-

larging the actual force distribution. This is advantageous in

the sense of producing no false positives, while the cost we

pay may be false negatives.

More importantly, the polyhedral cone is a convex cone

rooted at the origin. Then, given a forceful operation F, any

deviated force f ′ within its corresponding spherical cone, in-

cluding the idealized operation force, can be denoted as a

linear combination of the nF edge forces
{

f̂ 1, ..., f̂ nF

}

(illus-

trated as the red edge vectors in Fig. 8) of its corresponding

polyhedral cone:

f ′ = ∑
nF
i=1ki f̂ i and ∑

nF
i=1ki ≤ 1, ki ≥ 0 (3)

Here we refer to
{

f̂ 1, ..., f̂ nF

}

as primitive forces for the op-

eration F. Then, we can easily define:

Theorem 1 Give a forceful operation F, if a grasp configu-

ration q is stable against all its primitive forces
{

f̂1, ..., f̂nF

}

,

then the configuration q is stable against any possible devi-

ated force f′ within its corresponding spherical cone, i.e. the

configuration q is stable against the operation F.

Proof Consider a grasp configuration q and a determinate

external force f , in Sec. 4.1 we formulate the stability check

problem as a linear programming in Eq. 2. For the sake of

simplicity, here we denote the linear mapping from opera-

tion force f to robot solution f̃ =
(

τ , f g

)

(i.e., manipulator

joint torques τ and grasp wrenches f g ) as

f̃ = LP(f), f̃ min ≤ f̃ ≤ f̃ max (4)

where LP denotes the linear mapping in Eq. 2(a) and f̃ min,

f̃ max denote robot limits in Eq. 2(b). Herein, we assume

f̃ min ≤ 0 and f̃ max ≥ 0 for simplicity.

Then, given a forceful operation F, if q is stable against

all its primitive forces, the planner can find a solution f̃ i for

each primitive force f̂ i meeting Eq. 4 (i = 1,2, ...,nF).

In this context, for any force f ′ = ∑
nF
i=1 kif̂ i within the

spherical cone, we can always find a robot solution f̃
′
=

∑
nF
i=1 ki f̃ i that satisfies:

f̃
′
= ∑

nF

i=1
ki f̃ i = ∑

nF

i=1
kiLP(f̂ i) = LP(∑

nF

i=1
ki f̂ i) = LP(f ′)

and

f̃ min ≤∑
nF

i=1
ki f̃ min ≤ f̃

′
= ∑

nF

i=1
ki f̃ i ≤∑

nF

i=1
kif̃ max ≤ f̃ max

That is, the configuration q can provide a solution f̃
′
meeting

Eq. 4. In other words, the configuration q is stable against

any force f ′ within the spherical cone.

This theorem dramatically simplifies the stability check

using the spherical cone model but with guaranteed robust-

ness. Specifically, give a forceful operation F and a grasp

configuration q, rather than checking all forces within a con-

tinuous spherical deviation cone, the planner can check only

a limited number of primitive forces
{

f̂ 1, ..., f̂ nF

}

. If all nF

stability checks succeed, according to Theorem 1, the con-

figuration q is stable against any force in the spherical cone

and thus can be returned as a feasible configuration. In con-

trast, if any of the nF stability checks fails, the planer can

stop and return q as unstable without further checking.

The number nF can be chosen empirically. Note that,

a larger nF would make the polyhedral cone closer to the

spherical cone. However, this may require more time for sta-

bility check, since for a forceful operation F and a candidate

configuration q, in the worst case, stability check involves

checking all nF primitive forces. A smaller nF, in contrast,

would make the polyhedral cone more conservative by con-

taining additional forces outside the spherical cone. This

might lead to the loss of feasible solutions, since the poly-

hedral cone imposes a relatively stronger constraint by cov-

ering additional forces into stability check. In this sense, the

choice of nF is more or less a trade-off between planning ef-

ficiency and the loss of feasible solutions due to conservative

approximation. In Sec. 7.1, we present experiment results to

show how the choice of nF will affect the planning process.

5 Planning

This section presents details of our planner layer by layer as

illustrated in Fig. 4.
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Fig. 9 We build an operation graph to search for a minimal sequence of configurations
{

q j

}n

j=1
stable against {Fi}

m
i=1 .

5.1 Generating
{

q j

}n

j=1
Stable against {Fi}

m
i=1

The planner starts by generating a minimal sequence of grasp

configurations
{

q j

}n

j=1
that are stable against {Fi}

m
i=1 (il-

lustrated as the sequence of three grasp configurations in the

top layer of Fig. 4).

Given a forceful operation F, theoretically, there exists

a set of configurations in the configuration space C , i.e. a

stable region, in which all configurations are stable against

the operation F. For example, in Fig. 9(a), we show two sub-

sequent drilling operations F1 and F2 of the table assembly

task in Fig. 3, while the red and green regions in the con-

figuration space C illustrate such stable regions for them

respectively (red region for F1 and green region for F2). In

this sense, finding a sequence of system configurations sta-

ble against {Fi}
m
i=1 can be regarded as finding a sequence of

configurations to visit all stable regions for the operations in

{Fi}
m
i=1 in order.

Further, there might be intersections between these sta-

ble regions. Within each intersection, any configuration would

be stable against the corresponding multiple operations. For

example, the configuration qb in Fig. 9 is stable against both

F1 and F2, since qb lies inside the intersection of stable re-

gions for the operations F1, F2. We use these intersections

to minimize the number of regrasps in the sequence.

Specifically, to create such a minimal sequence of con-

figurations
{

q j

}n

j=1
, our planner first samples a set of candi-

date configurations in C . To sample configurations that are

likely to be stable against a variety of operations, i.e. config-

urations in the intersections, the planner starts by sampling

grasps uniformly on the object. Then, using such a sam-

pled grasp configuration g and the desired object pose T, the

planner solves inverse-kinematics problem, which may out-

put multiple achievable solutions, and randomly picks one

configuration q.

For each sampled configuration q, the planner identifies

the operations in {Fi}
m
i=1 that the configuration q is stable

against. We then build an operation graph Go using these

stable configurations as shown in Fig. 9(b). The operation

graph is an acyclic directed weighted graph. Specifically, in

the operation graph, each column corresponds to a forceful

operation. That is, the nodes in the i-th column are sampled

configurations that are stable against the operation Fi. Fur-

ther, we define a link between every two nodes in neighbour-

ing columns, and associate the link with a weight using the

number of gripper moves required from one configuration to

the other. For example, the weight for the link between the

node qb in the first column and the node qb in the second

column is zero, since they correspond to a same configura-

tion and thus no regrasp is required. Similarly, if two con-

figurations differ only by one gripper contact on the object,

the weight for their corresponding link is set to be one (e.g.

qb and qc). Otherwise, the weight would be two for a dual

arm robot. Note that one can come up with other weighting

schemes, e.g. one that takes the overall motion trajectories

for regrasping into account.

At this point, our problem in this layer is formulated as a

graph search problem. Given a manipulation query, the ex-

pected output is a path that starts from one node in the left-

most column for operation F1 and ends with a node in the

rightmost column for operation Fm.

By searching the operation graph Go, e.g. using Dijk-

stra’s algorithm, the planner can generate a candidate se-

quence
{

q j

}n

j=1
with the least number of gripper moves

based on the current set of samples. Hereafter, we call this

planner the min-regrasp planner.

We provide the pseudo-code for this layer of the planner

in Alg. 1 in the procedure PlanStableSequence. In line 1,

the planner constructs the operation graph Go as described

above. In line 2, the planner searches the graph (e.g. us-

ing Dijkstra’s algorithm) for a candidate sequence
{

q j

}n

j=1
.

Then the planner iterates over every subsequent pair of con-

figurations in
{

q j

}n

j=0
(line 4), attempting to plan a regrasp

between them, which is explained below. If the regrasp plan-

ning fails between any two configurations (line 6), the plan-

ner removes the failing link from the graph in Fig. 9(b) (line
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Fig. 10 A grasp graph Gg: Each node in the grasp graph represents a

bimanual or a unimanual grasp.

7), and then re-searches the graph to generate a new candi-

date sequence (line 8).

Note that, building the whole operation graph Go requires

knowing all forceful operations {Fi}
m
i=1 beforehand. How-

ever, there may be cases for which the forceful operations

are revealed progressively, e.g. one by one. In such cases,

the operation graph Go can be constructed as the next oper-

ation(s) is specified, and then be searched greedily. We call

this version the greedy planner.

In this layer, the planner generates a minimal sequence

of grasp configurations
{

q j

}n

j=1
to keep the target stable un-

der the application of forceful operations {Fi}
m
i=1. Hereafter,

the planner generates collision-free and stable regrasping

trajectories
{

t j

}n

j=1
to connect every two subsequent grasp

configurations in
{

q j

}n

j=0
(q0 is the initial system configu-

ration), while t j corresponds to a contained regrasping task

from q j−1 to q j.

5.2 Connectivity of Grasps

Given any two subsequent configurations qs, qt ∈
{

q j

}n

j=1

generated above, rather than directly searching in the high-

dimensional composite configuration space for a regrasp-

ing motion trajectory, the planner first generates a grasp se-

quence to guide and constrain the following search into a

limited sequence of grasp manifolds.

Specifically, the planner starts by finding a sequence of

grasps {gi}
ng

i=1 on the object, which moves the system from

the grasp gs to the grasp gt, where gs, gt are the grasps at

configurations qs ,qt and denoted as g1 and gng
in the se-

quence {gi}
ng

i=1 respectively. For example, to regrasp from

q1 to q2 in the top layer of Fig. 4, the robot must go through

a subsequence of intermediate grasps (e.g. {g′}) to switch

from the grasp gs to the grasp gt on the object.

In the case of dual-arm system used in this work, these

intermediate grasps are either bimanual or unimanual. We

represent the connectivity of these grasps as a grasp graph

Gg as illustrated in Fig. 10. Each node in the graph Gg rep-

resents a grasp on the object. A bimanual and a unimanual

grasp are connected if the unimanual grasp is contained by

the bimanual grasp. For example, we say a bimanual grasp

(gl, gr) contains a unimanual grasp (gl), since they share a

common left gripper contact on the object. Building such a

grasp graph requires the generation of feasible grasps on the

object, which can be pre-specified or can be generated using

a general grasp planner, e.g. Miller and Allen (2004).

Then, the planner searches the grasp graph Gg to get a

sequence of grasps {gi}
ng

i=1, which connects the grasps gs

and gt (denoted as g1 and gng
respectively in the sequence

{gi}
ng

i=1) with an alternating sequence of bimanual and uni-

manual grasps. Fig. 10 highlights in red the shortest grasp

sequence to move from the grasp gs to the grasp gt. Note

that there might be other longer feasible grasp sequences in

the graph as well.

The grasp sequence {gi}
ng

i=1 acts as an abstract plan to

guide and constrain the following motion planning into a

limited sequence of grasp manifolds {M (gi)}
ng

i=1 (illustrated

as the three foliations in the bottom of Fig. 4). In Alg. 1, the

procedure PlanRegrasp outlines this process. On lines 1-2,

the planner builds the grasp graph Gg and searches it to ob-

tain a sequence of grasps {gi}
ng

i=1 as described above.

The lower layers of the planner then try to plan the mo-

tion from qs to qt through the planned grasps in {gi}
ng

i=1 (line

3). If the planner returns with a failure to connect any two

grasps gi and gi+1 in {gi}
ng

i=1 (line 4), then it removes the link

between these grasps (line 7), and perform the search again

to generate a new grasp sequence (line 8). If the connection

is successful, the planner returns the motion trajectory t (line

10) for regrasping.

5.3 Sampling Stable Intersections of Grasp Manifolds

Given a grasp sequence {gi}
ng

i=1 generated in above layer,

the following layers of the planner attempt to generate stable

regrasping motions within the grasp manifolds {M (gi)}
ng

i=1.

However, the grasp sequence {gi}
ng

i=1 provides necessary but

not sufficient condition of the connectivity of their corre-

sponding grasp manifolds.

Specifically, to regrasp from gi to gi+1, the planner needs

to find at least one transition/regrasping configuration q within

the intersection of their grasp manifolds M (gi)∩M (gi+1)

(illustrated as the blue points in Fig. 4), such that the con-

figuration q can be both kinematically feasible and stable

against the object gravity. Particularly in our task, the tran-

sition from a bimanual grasp to a unimanual grasp may fail,

as the object might become unstable against object gravity

if the robot directly releases one gripper from the object. In-

stead, the second configuration in the third layer of Fig. 4

shows a stable regrasping configuration, at which the robot
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deliberately tilts the object pose before releasing its right

gripper for regrasping, such that the remaining gripper can

still hold the object stable (as the object gravity will be par-

tially resisted by the griper structure).

Our planner searches for such stable regrasping config-

urations in the intersection of their grasp manifolds M (gi),

M (gi+1) by random sampling. Specifically, in Alg. 1, the

procedure SampleIntersection samples a set of k such con-

figurations. To find one such configuration, the planner first

samples an object pose in the robot’s reachable space (line

4). Then, it solves the inverse-kinematics for the bimanual

grasp at the sampled object pose to get a fully-assigned con-

figuration q (line 5). The planner checks (line 6) whether

both grasps gi and gi+1 are stable against gravity at q, using

the stability check described in Sec. 4.1. The stable config-

uration q is then saved as a candidate regrasping connection

in the final solution path (line 7).

5.4 Connectivity of Sequence of Manifold Intersections

In this layer, given two configurations qs and qt, and stable

configurations sampled at the intersections of a sequence of

manifolds (i.e. the grasp manifolds corresponding to {gi}
ng

i=1),

the planner attempts to generate a collision-free and stable

trajectory t that connects qs to qt through these manifolds

(illustrated as the red connected line segments in Fig. 4).

In Alg. 1, the procedure Connect implements this pro-

cess as depth-first-search. Given a current configuration qs

and a sequence of grasps {gi}
ng

i=1 (where g1 is the grasp

in qs), the planner samples the intersection of the first two

grasp manifolds in the sequence for a set of stable configu-

rations S (line 7). Then it tries to plan a motion from qs to a

sampled configuration q∈S (line 9). Note that this is a mo-

tion plan within a single manifold and thus can be solved by

existing closed-chain or single-arm motion planners. How-

ever, the object motion must be also stable against gravity,

for which the constrained motion planners (Berenson et al.,

2011; Jaillet and Porta, 2013) can be used. If the motion

planning succeeds, the trajectory is returned along with a re-

cursive call to the depth-first-search. Lines 1-6 handle the

simple case where qs and qt are already in a same manifold.

6 A Graphical User Interface

Before presenting experiments to show the performance of

our planner, we present a graphical user interface to close

the loop of robot-assisted forceful manipulation.

Using the interface, 1) A human user can easily specify

forceful tasks, i.e. sequences of operations on selected ob-

jects; 2) The robot connected to the interface assists the user

in performing customized tasks by stably manipulating the

selected objects and providing operation instructions.

Algorithm 1 Manipulation Planning under Changing Forces

PlanStableSequence({Fi}
m
i=1 ,q0):

1: Go ← Sample stable configurations in C and build an operation

graph as shown in Fig. 9(b)

2:
{

q j

}n

j=1
← GraphSearch(Go)

3:
{

q j

}n

j=0
← Insert q0 to the beginning of

{

q j

}n

j=1

4: for each subsequent q j and q j+1 in
{

q j

}n

j=0
do

5: t j+1← PlanRegrasp(q j,q j+1)
6: if PlanRegrasp failed then

7: Go← Remove failing edge from graph Go

8: Go to line 2

9: return (
{

q j

}n

j=1
,
{

t j

}n

j=1
)

PlanRegrasp(qs,qt):

1: Gg← Sample grasps and build graph in Fig. 10

2: {gi}
ng

i=1← GraphSearch(Gg,qs,qt)

3: t← Connect(qs, {gi}
ng

i=1, qt)
4: if Connect failed or t is None then

5: if maximum number of attempts reached then

6: return failure

7: Gg← Remove failing edge from graph Gg

8: Go to line 2

9: else

10: return t

Connect
(

qs, {gi}
ng

i=1, qt

)

:

1: if ng = 1 then

2: t←MotionPlan(qs,qt) using grasp gng

3: if MotionPlan successful then

4: return t

5: else

6: return failure

7: S← SampleIntersection(g1,g2)
8: for each q in S do

9: t←MotionPlan(qs,q) using grasp g1

10: if MotionPlan successful then

11: return t+Connect(q, {gi}
ng

i=2, qt)

12: return failure

SampleIntersection(g, g′) :

1: One of g and g′ must be bimanual. Assuming g.

2: S←{}
3: while S contains less than k elements do

4: x← Sample pose for object

5: q← Solve IK with object at x and grippers at g

6: if q is stable against gravity with both g and g′ then

7: Add q to S

8: return S

Fig. 11 illustrates the overall work-flow of the robot-

assisted manipulation with the user interface using the cir-

cular cutting task. First, the human user specifies a desired

forceful task by choosing a tool(s) (e.g. a cutter or a drill)

to draw on a selected object. For example in Fig. 11, the

human first selects a cutter and a rectangular board, and

then draws a circle on the board to specify the circular cut-

ting task (Fig. 11-Task Specification). Once receiving con-

firmation, the interface triggers a planning process (with our

planners acting as the underlying planners) to generate ef-
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Fig. 11 The work-flow of human-robot collaboration in performing collaborative forceful tasks with the graphical user interface.

ficient manipulation plans as discussed in previous sections

(Fig. 11-Manipulation Planning).

After planning, the interface controls the robot to assist

the human in performing the specified forceful operations,

as well as providing operation instructions to the human ac-

cording to the manipulation plan (Fig. 11-Fabricating).

Specifically, during manipulation, the robot assistant ma-

nipulates the target object to the planned configurations in

sequence and stabilizes it under the application of forceful

operations. At each planned configuration, the interface in-

structs the human user to apply a subsequence of resistible

forceful operations by visually displaying the subsequence

in both the interface and the robot head monitor (Fig. 11-

Operations to Be Applied). After completing the instructed

operations, the human presses a Regrasp button provided by

the interface to command the robot to go the next planned

configuration(s) (Fig. 11-Regrasp). The regrasp button is how

the human notifies the system that the subsequence of force-

ful operations are applied (In the future, we aim to improve

the system by automatic perception of human operations).

In this manner, the interface connects the robot assistant and

the human users to perform forceful tasks interactively. In

the next section, we present real robot experiments using the

interface.

7 Experiments and Analysis

We present a variety of experiments in this section to verify

the performance of our proposed planners.

Experimental Setting: We applied our planners to the Baxter

robot from Rethink Robotics. Baxter has two 7-DOF ma-

nipulators, each equipped with a parallel plate gripper. We

tested our planners in OpenRAVE (Diankov and Kuffner,

2008) for simulated experiments.

For Alg. 1, we used the NetworkX (Hagberg et al., 2008)

for graph construction and search, and BiRRT (Kuffner Jr

and LaValle, 2000) for motion planning. In our implemen-

tation, we set the maximum number of attempts to be 3 for

the procedure PlanRegrasp and the number of samples to be

20 for the procedure SampleIntersection.

We measured the grip force/torque limits (as explained

previously in Sec. 4.1) of a Baxter gripper griping a foam

board. Specifically, along each principal axis, we applied an

incremental amount of forces and torques on the foam board

that is gripped by the Baxter gripper, to find the point when

the object started to slide between the parallel gripper plates

or when the object tilted more than 5o due to finger struc-

ture deformation. In this manner, we tested the grip limits

as f max
g,i = [13 N,40 N,100 N,0.5 Nm,0.1 Nm,0.15 Nm] and

f min
g,i =[−13N,−40N,−13N,−0.5Nm,−0.1Nm,−0.15Nm]3.

Experiments Overview: We conducted three categories of

experimental studies, including:

– Modelling Forceful Operations: We collected experimen-

tal data to capture the conic distributions of forceful op-

erations involved in our experiments and studied the ef-

fect of using conic model on stability check (Sec. 7.1);

– Simulated Experiments: We tested our planner on a va-

riety of forceful tasks to verify its performance in terms

of minimizing the number of regrasps, planning stable

regrasps and time efficiency (Sec. 7.2);

– Real Experiments: We did a set of real human-robot ex-

periments to further study the feasibility of our planner

in real forceful human-robot applications. We used the

graphical user interface presented in Sec. 6 for task spec-

ification and robot-assisted fabrication (Sec. 7.3).

3 Along the +z direction, the object can rest against the gripper

palm, therefore the planner adopted a large force limit (100 N) for P+
z .
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(a) The distribution of a cutting force.
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(b) The distribution of a drilling force.
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(c) The distribution of a puncturing force.

Fig. 12 We collected experimental data from 30 operation trials to build data-driven conic models for forceful operations in our experiments. The

red polyhedral cones are the extracted models. The red dots inside the cones are the force data over one operation trial.

7.1 Modelling Forceful Operations

We tested our planners on three types of forceful opera-

tions, cutting, puncturing and drilling on rigid foam boards

as shown in Fig. 12. We collected experimental data to cap-

ture their force distributions in the wrench space.

As discussed in Sec. 4.1, using the idealized model:

– A cutting operation applies a pure cutting force along an

expected cutting axis;

– A puncturing operation applies a pure intruding force

along an expected puncturing axis;

– A drilling operation applies a rotational torque about an

expected drilling axis plus a drilling force along the axis.

Therefore, the idealized model requires identifying the max-

imum operation forces to extract values of parameters fz and

τz from experimental data.

While for the conic model, we need to determine their

conic deviation ranges, i.e. extracting values of parameters

fx/y/z and τx/y/z. To do this, we applied each type of op-

erations 30 times separately, collecting force data using a

6D force/torque sensor (FT150 from Robotiq) as shown in

Fig. 12. During each trial, we recorded the force and torque

values at different time steps at the rate reported by the sen-

sor. This means, for each operation trial, we collected be-

tween 400-500 force data points. For each category, we com-

pute the polyhedral cone as discussed in Sec. 4.1 which con-

tains the force distributions over all time steps over the 30

operation trials. In Fig. 12, each sub-figure shows the dis-

tribution of operation forces in one operation trial4. The red

polyhedral cone in the lower right of each sub-figure is the

corresponding polyhedral cone model (nF = 4) extracted for

from all force data of 30 trials.

4 In Fig. 12 we show the force distribution of one operation trial for

the sake of visual clarity, but the models are extracted from data of 30

trials.

Table 1 Numbers of candidate configurations remaining stable after

being checked using the conic model with different nF.

Cutting Drilling Puncturing

Idealized Model 50 50 50

Conic Model
nF = 4 35 40 43

nF = 8 40 42 46

Specifically, for cutting operations, we measured fz =

45N, fx = 4N and fy = 6N. For drilling operations, fz =

19N, fx = 6N and fy = 6N. The torque generated by drill bit

rotation is much smaller than the one generated by drilling

force, thus we simply neglect it and assume τx=τy=τz=0Nm.

For puncturing operations, fz=16N, fx=2N and fy=2N.

Effect of Conic Model on Stability Check: To test the effect

of conic model on stability check, for each type of opera-

tions above, we test 20 forceful operations evenly distributed

on the object surface. For each forceful operation, we first

generate 50 stable configurations using the idealized model

(i.e. 50 different complete robot configurations grasping the

object stably against the idealized force). We then check the

stability of these configurations again using the conic model

(50 ∗ 20 for the 20 operations, giving a total of 1000 stabil-

ity checks for each operation type) with nF = 4 and nF = 8

respectively.

The numbers of configurations remaining feasible out of

the 50 configurations (which are feasible using the idealized

model) are shown in Table 1. Note that the number of feasi-

ble configurations for nF = 8 is larger than for nF = 4. This

is reasonable, since for a forceful operation, a larger nF will

make the polyhedral cone approximation closer to its real

spherical cone distribution.

In the following experiments, we used the conic model

for robust stability check and set the number of primitive

forces nF = 4 in modelling involved forceful operations.
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Fig. 13 A grasp sequence by the min-regrasp planner for a random-puncturing task. The dark points indicate the puncturing operations planned to

be applied during the current grasp. The arrows indicate regrasp actions.

Fig. 14 A grasp sequence by the greedy planner for a V-puncturing task. The dark points indicate the puncturing operations planned to be applied

during the current grasp. The arrows indicate regrasp actions.

7.2 Planning Performance in Simulated Experiments

In simulated experiments, we implemented our planner on

three categories of forceful tasks, including

– Random-Puncturing: Each random-puncturing task con-

tains 10 puncturings randomly distributed on the surface

of a foam board. An example is shown in Fig. 13;

– V-Puncturing: Each task consists of 40 puncturing op-

erations along two random line segments meeting at a

common point. An example is shown in Fig. 14 and 15;

– Drilling&Cutting: Each task involves 4 drillings and a

subsequence of cutting operations as shown in Fig. 17.

We generated 100 random tasks for each task category above.

Analysis of Number of Regrasps: First, we compared the per-

formance of our planners, min-regrasp and greedy, with a

random planner in reducing the number of regrasps. The

random planner acts as a baseline approach. For the first

forceful operation, the random planner performs sampling

in the configuration space until it finds the first stable con-

figuration against the operation. Then, for any subsequent

operations, it first checks whether the current configuration

is still stable. If not, it falls back to random sampling.

Table 2 shows the average number of regrasps gener-

ated by the three planners over 100 random forceful tasks.

For the random-puncturing tasks, the random planner gen-

erates almost a new grasp and thus one bimanual regrasp

for every forceful operation (maximum 20 regrasps for 10

operations). The min-regrasp dramatically reduces the num-

ber of regrasps (5.4 regrasps on average for 10 operations,

an example solution is shown in Fig. 13). The greedy plan-

Table 2 Numbers of regrasps (with standard deviations in parentheses)

of three planners on three categories of tasks.

Random-

Puncturing

V-

Puncturing

Drilling&

Cutting

Random 19.7(0.7) 52.9(10.1) 5.8(2.1)

Greedy 8.2(2.1) 5.3(1.9) 3.1(0.8)

Min-Regrasp 5.4(1.3) 1.6(0.6) 2.0(0.5)

ner also performs well in reducing regrasps (8.2 regrasps on

average).

Similarly, for the V-puncturing tasks, the random plan-

ner generates plans with a large number of regrasps (52.9

regrasps for the 40 operations of a V-puncturing task on av-

erage), while the min-regrasp planner just needs 1.6 regrasps

on average (an example solution is shown in Fig. 15). The

greedy planner also shows a much better performance com-

pared with the random planner, but still worse than the min-

regrasp planner. For example, as shown in Fig. 14, one solu-

tion generated by the greedy planner requires the grippers to

climb along the edges of the board up and down frequently

to follow the movement of the puncturing operations, while

the min-regrasp planner comes up with a plan of just two

regrasps in Fig. 15. Similar results can also be found for the

drilling&cutting tasks.

We also counted the number of samples the random plan-

ner needed before it found a stable grasp. On average, the

random planner needed 41.1 samples for each forceful oper-

ation above, showing that planning is necessary, since ran-

dom grasps have little chance of being feasible.
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Fig. 15 A plan by the min-regrasp planner for a V-puncturing task

which contains two regrasps.

Our planners are generalized to common objects, not

limited to grasping only rectangular objects. To demonstrate

this, we tested the min-regrasp planner with a sequence of

40 circular puncturing operations applied on a round board.

A plan with three grasps (two regrasps) is shown in Fig. 16.

Analysis of Planning Stable Regrasps: We also tested the

performance of our planner on light and heavy objects re-

spectively. For light objects, the robot can perform regrasps

by directly releasing and re-placing its grippers on the ob-

ject, whereas the robot might need to move a heavy object to

certain intermediate poses before regrasping. Similarly, we

ran the planner on the 100 forceful tasks for each category

as discussed above.

Fig. 18 shows an example sequence to regrasp a heavy

object. For a light object, the robot can stably grasp and

move the object using just a single gripper at most reach-

able configurations. Thus, mostly, the robot can directly re-

lease off to regrasp the object, without the need of reorient-

ing it to intermediate configurations. However, for a heavy

object, as discussed previously, the object may slip down be-

tween gripper fingers if the robot directly releases one grip-

per. That is, the robot needs to find intermediate configura-

tions at which one single gripper is still enough to keep the

object stable. In Fig. 18, the robot first transfers the object to

configurations in Fig. 18(b) and 18(d) before releasing one

gripper. After releasing, most object weight will be resisted

by the forces arising from gripper finger structure as shown

in Fig. 18(c) and 18(e), which are much larger than the fric-

tional forces between the object and finger surfaces.

Analysis of Planning Time: Table 3 shows the average plan-

ning time each layer of the planner takes, including time for

generating stable grasp sequences (StabSeq for short in Ta-

ble 3), time for generating and searching the grasp graph

combined with sampling intersections (SampInt, for short)

and motion planning (Connect, for short). As the table shows,

most time is spent on motion planing, while the time for

planning stable grasp sequences and sampling intersections

is negligible. Planning for the heavy objects takes longer

time since finding stable regrasp configurations and motion

trajectories is more difficult.

Fig. 16 A grasp sequence by the min-regrasp planner for 40 circular

puncturing operations on a round board.

In addition, it is notable that given a forceful task, the

time for motion planning (and thus the overall planning time)

is nearly proportional to the number of regrasps (which can

be found in Table 2) required in the corresponding manip-

ulation plan, not to the number of involved forceful opera-

tions, as each regrasp corresponds to a motion plan request.

For example, for a V-Puncturing task involving 40 force-

ful operations, the overall planning time is about 85 s for a

solution of 1.6 regrasps on average, while for a Random-

Puncturing task involving 10 forceful operations, the overall

planning time is about 310 s for a solution of 5.4 regrasps.

7.3 Planning Performance in Human-Robot Experiments

We did a variety of real human-robot experiments to further

verify the feasibility of our system in real applications. A

recorded video of all these experiments can be found in the

multimedia extension of this paper.

Fig. 1, 15 and 17 show the implementations of force-

ful tasks discussed above. Fig. 20 shows a solution by the

min-regrasp planner for the table assembly task discussed in

Fig. 3, which consists of a large sequence of drilling, cutting

and inserting operations. As shown, the solution involves

only 3 different grasp configurations through the whole task.

We also performed 10 human-robot experiments using

the graphical user interface introduced in Sec. 6. Before these

experiments, 10 human participants were fully explained the

usage of the interface and the robot system. Then they spec-

ified and performed preferred forceful tasks via the interface

as explained in Sec. 6. Fig. 19 shows one such experiment,

where the user customizes and then cuts a square piece off

from the board. During these experiments, we regarded an

interaction as failure if it had any unexpected interruption,

e.g. unstable operations due to inappropriate grasp. Among

these ten experiments, nine interactions succeeded with a

small number of regrasps ranging from 1 to 4. One interac-

tion failed due to a collision between the robot gripper and

the object during regrasping, which can be seen from time

13:18 to 13:24 in the video accompanying this paper. This

is mainly because of the uncertainty in the robot system and

can be improved by automatic perception of system motion.

We also collected the interaction time of each part dur-

ing interactions. Over these 10 experiments, on average, the

Task Specification took 39.5(3.5) s (standard variance is in
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(a) q1-Drilling 1&2 (b) q2-Drilling 3 (c) q2-Drilling 4 (d) q2-Cuttings

Fig. 17 A grasp sequence by the min-regrasp planner for the Drilling&Cutting task.

(a) Start config. (b) Inter. config. (c) Release (d) Regrasp (e) Release (f) Regrasp (g) Target config.

Fig. 18 Regrasping a heavy object. The robot moves the heavy object to some intermediate poses before regrasping.

Table 3 Planning time for both heavy and light objects. Times are in seconds. Standard deviations are in parentheses.

Random-Puncturing V-Puncturing Drilling&Cutting

StabSeq SampInt Connect StabSeq SampInt Connect StabSeq SampInt Connect

heavy 1.8(0.1) 12.6(0.9) 299.1(40.3) 5.1(0.5) 3.3(0.3) 77.2(11.5) 0.7(0.1) 3.5(0.2) 94.1(16.2)

light 1.6(0.2) \ 107.5(10.1) 4.9(0.6) \ 29.8(5.6) 0.8(0.1) \ 47.5(7.8)

parentheses). The Manipulation Planning took 44.5(9.3) s and

the Fabrication took 191.3(44.5) s.

8 Conclusion and Future Work

Our planning approach allows a multi-arm robotic system

to stably and fluidly interact with a human co-worker apply-

ing forceful operations on an object. Importantly, the plan-

ner minimizes the required regrasps—which in turn are per-

formed without any support surface. The proposed planners

are capable of addressing uncertainties in the forceful inter-

action, inherent to human-centred applications. The system

has been successfully assessed in different human-robot ex-

periments. We believe the planning system presented here

can be a key component in a human-robot collaboration frame-

work.

There are multiple ways the proposed methods and sys-

tem can be improved.

In the human-robot experiments, we can see sometimes

that the planner generates system configurations that are rel-

atively uncomfortable for humans. For example, the robot in

Fig. 20(a) holds the board at a configuration stable against

a large sequence of drilling and cutting operations. How-

ever, this configuration makes the human raise a heavy drill

at a laborious arm configuration. In future work, we aim

to take human comfort factors (e.g. the human kinematics

Chen et al. (2018a)) into account during planning, improv-

ing the human experience both physically and psychologi-

cally while in collaboration with the robot.

In addition, our experiments show that planning time for

such tasks can still take tens of seconds. Our quantitative as-

sessment of the simulated experiments has shown that the

time efficiency of the planner is limited mostly by the speed

of the low-level constrained motion planners, which leaves

room for improvement in future work to either speed up

these individual motion plans, or to reduce the number of

such motion plan queries, i.e. the number of regrasps.

The system presented here can also be improved such

that both the robot and the human move simultaneously to

adapt to each other’s motion. For example, in Fig. 1, while

the human cuts the board, the robot can rotate the board ac-

tively to reduce human motion, as well as improving human

comfort. This requires real-time tracking of the human op-

erations and quickly computing system configurations that

are stable against them.

A perception system can also allow us to improve the

communication and coordination between the human and

the robot. Particularly, in our setting, the robot needs to de-

tect when the human performs certain forceful operations.

In this work this is indicated by the human via a graphical
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(a) Task Specification (b) q1-Cutting top side (c) q2-Cutting bottom side (d) q3-Cutting left side (e) q3-Cutting right side

Fig. 19 Human-robot collaboration-A square cutting task.

(a) q1-Drilling four holes (b) q1-Cutting four legs (c) q2-Drilling holes for front legs

(d) q2-Inserting front legs (e) q3-Drilling holes for back legs (f) q3-Inserting back legs

Fig. 20 A solution with only 3 regrasps by the min-regrasp planner for the table assembly task in Fig. 3.

interface. Even though a satisfying level of coordination has

been achieved through the interface, we aim to integrate a

perception component into our system to further improve

the overall fluidity, e.g. using haptic feedback of the robot

grippers to detect when the human performs the planned op-

erations. Furthermore, not only the immediate perception

of human action, but also the prediction of human inten-

tion/motion (Mainprice and Berenson, 2013; Knepper et al.,

2017) can also benefit forceful human-robot collaboration.

A perception system for the object and robot motion, e.g.

a vision-based tracking system, can also be easily integrated

to improve the motion accuracy for regrasping.
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Lee G, Lozano-Pérez T, Kaelbling LP (2015) Hierarchical

planning for multi-contact non-prehensile manipulation.

In: 2015 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, IEEE

Lertkultanon P, Pham QC (2018) A certified-complete bi-

manual manipulation planner. IEEE Transactions on Au-

tomation Science and Engineering 15(3):1355–1368

Li Z, Sastry SS (1988) Task-oriented optimal grasping by

multifingered robot hands. IEEE Journal on Robotics and

Automation 4(1):32–44

Lin Y, Sun Y (2015) Grasp planning to maximize task cover-

age. The International Journal of Robotics Research 34(9)

Lipton JI, Manchester Z, Rus D (2017) Planning cuts for

mobile robots with bladed tools. In: 2017 IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

IEEE

Lipton JI, Schulz A, Spielberg A, Trueba LH, Matusik W,

Rus D (2018) Robot assisted carpentry for mass cus-

tomization. In: 2018 IEEE International Conference on

Robotics and Automation (ICRA), IEEE, pp 1–8
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