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Many complex behaviors in biological systems emerge from large populations of

interacting molecules or cells, generating functions that go beyond the capabilities of

the individual parts. Such collective phenomena are of great interest to bioengineers due

to their robustness and scalability. However, engineering emergent collective functions

is difficult because they arise as a consequence of complex multi-level feedback,

which often spans many length-scales. Here, we present a perspective on how some

of these challenges could be overcome by using multi-agent modeling as a design

framework within synthetic biology. Using case studies covering the construction of

synthetic ecologies to biological computation and synthetic cellularity, we show how

multi-agent modeling can capture the core features of complex multi-scale systems

and provide novel insights into the underlying mechanisms which guide emergent

functionalities across scales. The ability to unravel design rules underpinning these

behaviors offers a means to take synthetic biology beyond single molecules or cells

and toward the creation of systems with functions that can only emerge from collectives

at multiple scales.

Keywords: synthetic biology, multi-agent modeling, systems biology, emergence, multi-scale, bioengineering,

consortia, collectives

INTRODUCTION

Many living organisms have evolved traits to exploit the capabilities that emerge from large
interacting populations of molecules or cells, which go beyond those of the individual elements.
From bacteria forming biofilms to fight antibiotic treatments to synchronizing their behaviors
through quorum sensing during disease, emergent collective behaviors are pervasive in biology.
Likewise, the engineering of emergent collective behaviors could offer an intriguing path to artificial
biosystems with improved reliability, robustness and scalability. However, current approaches
to biological design are ill-equipped for this task as they tend to focus on a single level of
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organization and ignore potential feedbacks between different
aspects/levels of a system. A common example is the design of
transcriptional gene regulatory networks where it is assumed
that the function of the entire system can be understood solely
by the steady state input-output transcriptional response of
genetic devices (Nielsen et al., 2016). While this simplification
is useful and powerful in some cases, if the genes regulated
link to metabolic processes there is a chance that feedback
via metabolism could break circuit function. Focusing
purely on transcriptional networks makes it impossible to
capture such behaviors.

In physics, great strides have been made through techniques
from statistical mechanics to understand emergent phenomena.
These include the Ising model used to capture magnetic phase
transitions (Taroni, 2015) and the application of renormalization
to understand how physical and biological constraints might
underpin scaling laws that guide evolution (West et al., 2002;
Kempes et al., 2019). There has also been growing interest
over the past few decades in the field of complexity theory
(Nicolis and Prigogine, 1989) and whether laws might exist
that govern self-organization and emergence across diverse
types of complex system composed of many interacting parts
(Prigogine and Nicolis, 1985; Ashby, 1991; Goldstein, 1999;
West et al., 2002).

An approach to capture and explore the emergent features
of complex systems is multi-agent modeling (also termed
agent-based or individual-based modeling) (Hellweger et al.,
2016). This considers key components of a system as explicit
entities/agents and allows for large and diverse interacting
populations of these (Figure 1A). Specifically, a multi-agent
model consists of autonomous agents that represent the
lowest level components of the system. Common types of
agent in biological systems include molecules, cells and whole
multicellular organisms. Each agent is assigned a specific set
of rules governing how it interacts with other agents and the
local environment. The way these rules are modeled is flexible
with the option to use basic finite state-machines, Boolean
logic governing stimuli-response relationships, or more complex
representations like differential equation models (e.g., capturing
the biochemical reaction networks within a cell). Populations
of these agents are then placed in a simulated environment
that encompasses physical processes of relevance to the system.
In biology, this might include the diffusion of chemicals, the
flow of fluids, and the mechanical forces that cells can exert on
one another. Again, the way that these environmental processes
are modeled can vary, resulting in a final model that could
potentially combine stochastic, deterministic, dynamic, discrete
and continuous representations for different aspects of a system.
The integration of such diverse modeling approaches allows
for the most appropriate form of representation to be used
for each aspect and helps simplify the specification of the
multi-scale system, but often comes at the cost of reduced
analytical tractability. Even so, multi-scale modeling has been
shown capable of discovering some of the core ingredients
needed for collective behaviors to emerge (Hellweger et al.,
2016; Gorochowski and Richardson, 2017), but its use to date in
synthetic biology has been limited (Gorochowski, 2016).

Here, we aim to highlight some of the key areas of synthetic
biology where multi-agent modeling offers a unique way to
tackle longstanding problems (Figure 1B). While the examples
we cover are diverse, they all share a core characteristic: the
emergence of behaviors in the systems cannot be explained by
looking solely at their basic parts in isolation. This essence
makes such systems special yet difficult to engineer via traditional
means. We propose to extend bioengineering methods to
encompass principles gleaned from multi-agent models and
use them to guide the design of synthetic biological systems
displaying emergent phenomena. We end by discussing some
of the practical challenges when using multi-agent modeling
in synthetic biology and future directions for the marriage
of these fields.

UNDERSTANDING THE EMERGENCE OF
LIFE

When considering emergent phenomena, the quintessential
example is the emergence of life. Putting aside the difficulty
of defining precisely what life is, the ability of living systems
to self-replicate and create order/information out of chaos is
an inspiration for many engineers. Bottom-up synthetic biology
attempts to build chemical systems that display life-like behaviors
using a minimal set of components. The hope is that these
simplified systems might help us understand how life emerged
from first principles.

One attempt to reach this goal has been via the synthesis of
artificial cells (protocells) with life-like properties. This requires
the ability to bridge length scales by harnessing molecular self-
assembly to create micron-sized compartments (Bayley et al.,
2008; Li et al., 2014) and the intricate interactions between
molecules and enzymes to form biochemical reaction networks
(Hasty et al., 2002). The incorporation of these reaction networks
within protocells has also been demonstrated (Adamala et al.,
2017; Joesaar et al., 2019) and although chemically simple,
such systems display an array of dynamical behaviors including
pattern formation (Niederholtmeyer et al., 2015; Zadorin et al.,
2017) and replication via controlled growth and division (Chen
et al., 2004). By combining these systemswith additional chemical
modules and parts, this may offer a route to creating other key
behaviors of living systems.

Building on these capabilities, functionalities can be scaled
further by constructing systems composed of populations of
protocells or through interacting natural and artificial cellular
communities (Lentini et al., 2014; Adamala et al., 2017; Tang
et al., 2018). While such extensions offer a promising platform
for probing emergent behaviors using simple self-contained
chemical units, it is difficult to know what parameters to
engineer into these systems and the level of complexity required
to drive a desired collective behavior. This is where multi-
agent modeling, in combination with more traditional models
of chemical reaction systems, could lead to a quantitative
understanding of the key elements needed for the emergence of
life-like behaviors. In particular, multi-agent models would allow
for the rapid exploration of potential systems using physically
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FIGURE 1 | Multi-agent modeling can support the design of emergent collective functions in synthetic biology. (A) Key components of a multi-agent model.

Populations of autonomous agents following user-prescribed rules are placed in a virtual environment that simulates relevant physical processes (e.g., physical

collisions, chemical diffusion, movement, and fluid flows). Simulations of multi-agent models can be used to derive design principles that capture the basic

ingredients (e.g., specific patterns of interactions) needed for a particular emergent behavior. (B) Potential applications of multi-agent modeling within synthetic

biology and the underlying agents (bottom, dashed boxes) used to generate specific emergent collective behaviors: (top left) exploring how to create life-like

behaviors from basic chemical components with sender protocells (blue) able to spatially propagate a signal to receiver protocells and bacteria (gray when inactive,

red when active) using a small diffusive chemical (small blue dots); (top middle) understanding the developmental programs used during morphogenesis as a step

toward the creation of synthetic multi-cellular life; (top right) improving scale-up of microbial fermentations by accounting for heterogeneity across a bioreactor and

designing engineered microbes able to robustly function under these conditions.

realistic parameters until the right combination of parts was
found that resulted in a desired emergent functionality.

Historically, mathematical models developed using
differential equations have proved effective for understanding
the dynamics of minimal chemical systems (Rovinskii and
Zhabotinskii, 1984) and are widely and successfully used
for modeling all types of biological system (Ellner and
Guckenheimer, 2011; Raue et al., 2013). Furthermore, the
application of bifurcation analysis to these dynamical models
enables the rigorous characterization of emergent phenomena
such as bi-stability, symmetry breaking, non-linear oscillations,
chaos, and pattern formation (Kuznetsov, 2004). However,
while it is possible to use partial differential equations (PDEs)
to capture spatial aspects of a system, the high levels of
heterogeneity in the complex environments of many biological
system (e.g., cellular tissues) and the ability of both agents and
the rules to change over time, can make practical use of PDEs
a challenge (Hellweger et al., 2016; Perez-Carrasco et al., 2016;
Glen et al., 2019).

In comparison, multi-agent modeling is able to explicitly
capture such variation and consider simplified rules to express
internal chemical reactions altering specific characteristics
of each component. Due to the chemical simplicity and
programmability of minimal protocells, this abstraction is a good
fit, allowing iterative refinement of model and experimental
system. For example, due to the limited number of possible
chemical reactions present in a minimal system, comprehensive
direct measurements can be made to create highly predictive

rules for how a protocell’s chemical state will change over
time. These can then drive simulations of accurate protocell
behaviors in a multi-agent model to explore the specific
combination of reactions required for the emergence of
higher population-level functionalities. This two-way cycle of
development would be difficult, if not impossible, when using
natural cells where complex evolutionary baggage masks those
features essential for emergence.

DISTRIBUTED COMPUTATION DURING
DEVELOPMENT

Living cells continually monitor their environment and adapt
their physiology in order to survive. This requires the processing
of information gathered from sensors to make suitable changes
to gene expression. Synthetic biology enables us to reprogram
cells by writing our own genetic programs to exploit the
cells’ computational capabilities in new ways (Greco et al.,
2019; Grozinger et al., 2019). So far, the majority of research
in biological computation has revolved around the concept
of genetic circuits and attempted to repurpose tools and
methodologies from electronic circuit design (Nielsen et al., 2016;
Gorochowski et al., 2017) and automatic verification (Dunn et al.,
2014). While this approach has enabled the automated design
of cellular programs able to perform basic logic, much of the
information processing in native biological systems is distributed,
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relying on collective decision making (e.g., quorum sensing) and
interactions between large numbers of cells.

This feature is most evident in developmental biology where
robust genetic programs must ensure that a complex multi-
cellular organism emerges from a single cell. Cell growth,
differentiation, migration and self-organization are coordinated
by a developmental program with dynamics at both the intra-
and inter-cellular levels. These enable the generation of precise
deterministic patterns from stochastic underlying processes
(Glen et al., 2019). In contrast to simple logic circuits, the
complexity of the molecular interactions and mechanical forces
underpinning these processes motivate the use of multi-agent
modeling to better understand how developmental programs
work in morphogenetic systems. In particular, multi-agent
models are able to capture the role of cellular heterogeneity,
proliferation and morphology, mechanical and environmental
cues, movement of cells as well as the integration of multiple
processes at diverse scales and the feedback between these
(Montes-Olivas et al., 2019). Such models have helped deepen
our understanding of early mammalian embryogenesis (Godwin
et al., 2017), as well as the formation of vascular networks (Perfahl
et al., 2017) and other complex structures and organs, including
the skin, lung (Stopka et al., 2019), kidney (Lambert et al., 2018),
and brain (Caffrey et al., 2014).

Although such work has provided insights into the
computational architecture of native developmental programs,
it has been difficult to apply this information to the creation
of de novo morphogenetic systems because of a limited toolkit
of parts available to build such systems. Synthetic biology may
help solve this issue by facilitating the engineering of simplified
multi-cellular systems (Velazquez et al., 2018) that implement
developmental programs encompassing distributed feedback
regulation (Ausländer and Fussenegger, 2016) and cell-to-cell
communication (Bacchus et al., 2012), to better understand
how these factors can be used to contribute to emergent
self-organization (Morsut et al., 2016).

COLLECTIVE PHENOMENA DRIVING
DISEASE

Many of the challenges treating diseases result from the
malfunction of emergent multi-cellular properties, be it
carcinogenesis (Deisboeck and Couzin, 2009; Ward et al., 2020),
viral infection (Jacob et al., 2004), bacterial biofilm formation
(Wu et al., 2020) or microbiome imbalances (Shreiner et al., 2015;
Kumar et al., 2019). Multi-agent modeling of these conditions has
helped demystify how the collective behavior of large numbers
of diverse cells and their interactions with each other and their
environment can lead to negative clinical outcomes.

Cancer is a complex multi-scale disease that includes
environmental factors, genetic mutations and clonal selection,
and complex interactions with the immune and vascular system.
As a result, computational models of cancer need to account
for many of these factors considering the heterogeneity and
interactions of single cells, yet contain sufficient numbers of
them to predict emergent phenomena at a tumor scale (Metzcar

et al., 2019). Using this approach, multi-agent models have been
used to help understand metastasis (Waclaw et al., 2015) and
show that cancer cells with stem cell-like properties can be a key
determinant in cancer progression with fatal consequences (Scott
et al., 2016, 2019).

Beyond understanding the emergence of some diseases, multi-
agent models can also identify novel ways of fixing their
dynamics by considering how to disrupt cellular behaviors,
and their interactions in space and time (Waclaw et al., 2015;
Gallaher et al., 2018). Treatments themselves can even be
designed to have collective emergent properties. For example,
bacteria have already been engineered to use quorum sensing
to trigger their delivery of drugs (Din et al., 2016) or they
can be controlled using magnetic fields to penetrate cancerous
tissue (Schuerle et al., 2019). Other collective behaviors used in
cancer nanomedicine include self-assembly of nanoparticles to
anchor imaging agents in tumors, disassembly of nanoparticles
to increase tissue penetration, nanoparticles that compute the
state of a tumor, nanoparticle-based remodeling of tumor
environments to improve secondary nanoparticle transport,
or nanoparticle signaling of tumor location to amplify the
accumulation of nanoparticles in tumors (Hauert et al., 2013;
Hauert and Bhatia, 2014).

The emergent properties inherent in many diseases, and
the potential to harness such behaviors for new treatments,
highlight the need for multi-scale modeling tools. Moreover, with
the rapidly expanding field of “systems medicine,” integrated
modeling pipelines able to predict multi-scale disease dynamics
and assess novel synthetic biology treatments via large-scale
simulation and machine learning are positioned to revolutionize
many areas of medicine (Stillman et al., 2020).

CHALLENGES IN SCALING-UP
BIOTECHNOLOGY

The ability for synthetic biology to reprogram cellular
metabolisms offers an opportunity to convert cheap substrates
(or even waste) into valuable chemicals and materials via
microbial fermentation (Nielsen and Keasling, 2016). To make
this economically viable, large bioreactors are often used.
However, while our use of fermentation stems back millennia
(McGovern et al., 2004), we still struggle to reliably scale-up
many processes from shake flasks in the lab to industrial-sized
bioreactors (Lee and Kim, 2015).

A major reason for this problem is the increasing difficulty
and power consumption of mixing or aerating reactors as
their volume increases, causing pockets to form where nutrient
concentration, temperature, oxygen, pH and other factors differ
(Alvarez et al., 2005). As a microbe travels through the bioreactor,
it becomes exposed to a wide variety of environments, each
causing changes in its physiology. Because the path of each
cell is unique, a population of cells will display a wide variety
of physiological states. This differs from lab-scale experiments
where environments are well-mixed and homogeneous, and
causes predictions made from these conditions to significantly
deviate from those observed during scale-up.
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Capturing the combined environmental and cellular
variability present in a large bioreactor is difficult using standard
differential-equation models. In contrast, multi-agent models are
able to explicitly capture and link gene regulation, metabolism,
and the cells’ local environment (Nieß et al., 2017; Haringa
et al., 2018), as well as differences between individual cells and
how cells change over time (González-Cabaleiro et al., 2017). In
particular, hybrid models in which continuous descriptions of
complex physical processes like fluid flows have been coupled
with multi-agent models to allow for the efficient simulation
of these systems. This approach can accurately predict the
emergence of population heterogeneity and overall production
rates and help guide bioreactor design to further improve yields
(Haringa et al., 2018). Some attempts have also been made to use
control engineering principles to design cellular systems able to
adapt to fluctuating environments (Hsiao et al., 2018). To date,
these attempts have mostly focused on the basic genetic parts and
regulatory motifs (e.g., negative feedback) needed to implement
control algorithms (Ceroni et al., 2018; Aoki et al., 2019; Pedone
et al., 2019; Bartoli et al., 2020). Moving forward, multi-agent
models offer a means to make simulations of these systems more
realistic by accurately capturing how individual cells and their
complex environment change over time.

Another challenge faced during large-scale fermentation is
the opportunity for mutants to arise or unwanted microbes
to contaminate a process and out-compete their engineered
counterparts (Kazamia et al., 2012; Louca and Doebeli, 2016).
Multi-agent models of these complex environments and local
competition when multiple types of organism are present, could
help support the development of evolutionarily stable strategies
(ESSs) that prevent the replacement of an engineered population
by competitors (Schuster et al., 2010).

ENGINEERING SYNTHETIC ECOLOGIES

At an even larger organizational level, synthetic biologists
have begun to explore how to engineer interactions between
communities to enable the future construction of synthetic
ecologies (Ben Said andOr, 2017).With climate change, pollution
and many other factors leading to the degradation of ecological
systems, understanding how these systems emerge and function
is crucial. Such knowledge would allow for effective restoration
strategies (Solé et al., 2015) and potentially offer means to
terraform other planets like Mars for future human inhabitation
(Conde-Pueyo et al., 2020).

These applications require an understanding of how diverse
organisms interact to create stable communities (Widder et al.,
2016). This is difficult because the interactions that take place
at the level of a population are governed by choices made
by single organisms (Kreft et al., 2017). By using multi-agent
modeling to rapidly test combinations of cell types, behaviors
and interactions, and synthetic biology tools to engineer real-
world microbial communities, it might become possible to design
and test hypotheses regarding the principles for robust ecosystem
design. For example, multi-agent modeling has been used to help
understand how signaling and mutual cooperation can stabilize

microbial communities (Kerényi et al., 2013). Furthermore, from
a synthetic biology perspective many of the tools needed to
engineer these systems already exist, e.g., biological parts able to
implement cooperation (Shou et al., 2007), signaling (Bacchus
et al., 2012), targeted death (Fedorec et al., 2019), and collective
decision making (e.g., quorum sensing).

Beyond engineering interactions between organisms, spatial
structure can also play a crucial role in the functionalities of
microbial communities. Multi-agent modeling has demonstrated
the significant impact that spatio-temporal organization can have
on soil microbes and the success of auxotrophic interactions
(Jiang et al., 2018). Such interactions are particularly important
for engineering minimal functional synthetic communities as
plant seed treatments and for vertical farming under defined
conditions. In this context, whether or not a single cell or
division of labor is the evolutionarily stable solution depends on
the metabolic flux through the system, with high flux favoring
division of labor (Kreft et al., 2020). Extending this modeling
approach further to consider the thermodynamics of microbial
growth and redox biochemistry could help ensure that resultant
systems are ecologically and evolutionarily stable (Zerfaß et al.,
2018). Alternatively, external control of the environment could be
used to forcibly maintain a desired community structure (Treloar
et al., 2020). In all cases, a combination of multi-agent modeling
and engineerable biological systems provides a unique means to
unravel how these complex systems function.

External feedback control has been proposed as another
approach to control of cellular communities. By employing real-
time single cell measurements (e.g., by time-lapse microscopy or
flow-cytometry) and experimental systems able to send control
signals to the cells via optogenetics (Toettcher et al., 2011) or
chemical release in microfluidics (Menolascina et al., 2014),
a computer can monitor and signal to a population of cells
in order to maintain a desired behavior (e.g., the expression
rate of a protein). More recently, it has been proposed to
implement these control algorithms directly into cells, with the
key aim of distributing tasks among different strains (Fiore
et al., 2017; McCardell et al., 2017). Multi-agent modeling can be
instrumental in the design of robust feedback mechanisms across
multicellular populations, as it can reveal non-obvious effects of
cell density, proliferation dynamics and spatial constraints on the
effectiveness of control actions (Fiore et al., 2017).

DISCUSSION

We have shown how multi-agent models can be applied to many
areas of synthetic biology. The core features of these models
provide insight into some of the basic building blocks and
mechanisms needed for collective behaviors to emerge and, we
believe, may offer a means to support the future predictive design
of collective behaviors.

A major hurdle to the widespread use of multi-agent
modeling is the need to define and simulate complex models
(Grimm et al., 2006). Although computational frameworks
have been available since the 1980s to support this process,
it is only during the past decade that tools have been
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tailored for synthetic biology applications and reached
sufficient performance (Gorochowski et al., 2012; Oishi
and Klavins, 2014; Goñi-Moreno and Amos, 2015). More
recently, the effective use of highly parallel computing
resources has expanded the complexity of biological models
that can be simulated (Rudge et al., 2012; Naylor et al.,
2017; Li et al., 2019; Cooper et al., 2020). Automated
coarse-graining of representations enable faster simulation
without impacting on the accuracy of predictions (Graham
et al., 2017), while advanced tools allow verification,
validation and uncertainty quantification for such simulations
(Richardson et al., 2020).

Improved simulations do not only speed up the time to
an answer but may open up opportunities to create new
types of computational design environments. For example,
high-performance models coupled to virtual reality allow for
multiple researchers to interactively manipulate a system and
immediately observe the outcomes of their design decisions.
Such capabilities have already begun to be used for molecular
design (O’Connor et al., 2018) and when coupled to machine
learning, offer a unique setting in which to explore complex
high-dimensional datasets that are common in biology. They
also allow for essential features to be distilled that can then be
used to guide predictive design. Furthermore, hybrid approaches
become possible where computational models dynamically
augment an experimental setup by controlling physical features
such as light (Rubio Denniss et al., 2019) or magnetism
(Carlsen et al., 2014). If agents within the experimental
system are responsive to these stimuli, then various forms of
interaction can be externally programmed and rapidly explored
to better understand the necessary conditions for a particular
collective behavior to emerge. Once a desired set of rules
for the interactions is found, the agents can be modified
to implement these autonomously, removing the need for
external control.

As synthetic biology moves beyond simple parts and circuits,
and toward large-scale/multicellular systems, the available
repertoire of design tools must also expand to support new
requirements. Multi-agent modeling is perfectly placed to
help make this leap and usher in new biological design
methods focused on the engineering of emergent collective
behaviors. Not only will this allow functionalities to span length
scales, but it will also provide a way to engineer across the

organizational levels of life through hierarchical composition of
multi-scale models, from basic molecules and cells through to
entire ecosystems.
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