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Abstract

We study a second-order linear differential equation known as the deformed cubic
oscillator, whose isomonodromic deformations are controlled by the first Painlevé
equation. We use the generalised monodromy map for this equation to give solu-
tions to the Riemann-Hilbert problems of (Bridgeland in Invent Math 216(1):69–124,
2019) arising from the Donaldson-Thomas theory of the A2 quiver. These are the
first known solutions to such problems beyond the uncoupled case. The appendix by
Davide Masoero contains a WKB analysis of the asymptotics of the monodromy map.

1 Introduction

In this paper we study the generalised monodromy map for a second-order linear
differential equation known as the deformed cubic oscillator. Our motivation derives
from a class of Riemann-Hilbert problems arising naturally in Donaldson-Thomas
theory [4], but we hope that our results will be of independent interest. We also suspect
that they can be substantially generalized.

1.1 Deformed cubic oscillator

Consider the second-order linear differential equation

y′′(x) = Q(x, �) · y(x), Q(x, �) = �−2 · Q0(x)+ �−1 · Q1(x)+ Q2(x), (1)
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where primes denote differentiation with respect to the complex variable x ∈ C, and
the terms in the potential Q(x, �) are

Q0(x) = x3 + ax + b, Q1(x) =
p

x − q
+ r ,

Q2(x) =
3

4(x − q)2 +
r

2p(x − q)
+ r2

4p2 . (2)

We view the Eq. (1) as being specified by a point of the complex manifold

M =
{
(a, b, q, p, r) ∈ C5 : p2 = q3 + aq + b and 4a3 + 27b2 �= 0, p �= 0

}
,

(3)

together with a nonzero complex number � ∈ C∗ which for now we will consider to
be fixed. We also introduce the complex manifold

S =
{
(a, b) ∈ C2 : 4a3 + 27b2 �= 0

}
, (4)

and the obvious projection map π : M → S.

Remark 1.1 The author’s interest in this topic stems from the study of a class of
Riemann-Hilbert problems arising in Donaldson-Thomas theory [4,5]. These prob-
lems are specified by a stability condition on a CY3 triangulated category, and involve
maps from the complex plane to an algebraic torus with prescribed discontinuities
along a collection of rays. In this context the space S arises as (a discrete quotient of)
the space of stability conditions on the CY3 triangulated category associated to the A2
quiver [6]. As we explain below, the monodromy map for the Eq. (1) gives solutions
to the corresponding Riemann-Hilbert problems. These are the first examples of such
Riemann-Hilbert problems (beyond the uncoupled case) for which a complete solution
is known.

The expression Q2(x) appearing in (2) is chosen to ensure that the point x = q is
an apparent singularity of the Eq. (1): analytically continuing any solution around this
point changes its sign. Thus the generalised monodromy of the equation consists only
of the Stokes data at the irregular singularity x = ∞. As we recall below, this defines
a point of the quotient space

V =
{
ψ : Z/5Z → P1 : ψ(i + 1) �= ψ(i) for all i ∈ Z/5Z

}/
PGL2, (5)

which is easily seen to be a two-dimensional complex manifold. We thus obtain a
holomorphic monodromy map

F(�) : M → V . (6)

More precisely, this map depends on a labelling of the Stokes sectors for the equation
(1), which in concrete terms amounts to a choice of fifth root of �2.
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Remark 1.2 Note that the two points of the space M

(a, b, q, p, r),

(
a, b + r�+ r2�2

4p2 , q, p + r�

2p
, 0

)
,

determine the same Eq. (1). Thus for many purposes we can reduce to the situation
when r = 0. In that case (1) coincides, up to trivial changes of variables, with an
equation which has been studied in connection with the first Painlevé equation for
many years (see [22, Chapter 4] and [28] for references). Nonetheless, it will be
important in what follows to consider the full form (2) of the potential, so that the
fibres of the map π : M → S are half-dimensional, and have the same dimension as
the monodromy manifold V .

Each point s = (a, b) ∈ S determines a meromorphic quadratic differential on P1

Q0(x) dx⊗2 = (x3 + ax + b) dx⊗2 (7)

with a single pole of order seven at x = ∞. There is a corresponding branched double
cover

p : Xs → P1, (8)

which is the projectivization of the non-singular plane cubic

X◦
s =
{
(x, y) ∈ C2 : y2 = x3 + ax + b

}
. (9)

We also introduce the associated homology groups

Ŵs = H1(Xs,Z) ∼= Z⊕2, (10)

which we equip with the standard skew-symmetric intersection form 〈−,−〉.

Remark 1.3 Given an integer g ≥ 0, and a non-empty collection of integers m =
{m1, · · · ,md}, with each mi ≥ 2, there is a complex orbifold Quad(g,m) parameter-
izing equivalence-classes of pairs (S, φ), where S is a compact Riemann surface of
genus g, and φ is a meromorphic quadratic differential on S, having simple zeroes, and
poles of the given orders mi . It is shown in [7] that to such data (g,m) there is naturally
associated a CY3 triangulated category D(g,m), and that the space Quad(g,m) arises
as a discrete quotient of the space of stability conditions on D(g,m).1 We expect that
the story we describe here (which corresponds to the case g = 0, m = {7}) extends to
this more general situation, although we do not yet understand the full details of this.

Since the dimensions of the spaces M and V are four and two respectively, we
might expect the derivative of the monodromy map (6) to have a two-dimensional

1 In fact this is a slight over-simplification: it is necessary to slightly enlarge the space Quad(g,m) by
allowing the zeroes of φ to collide with any of the poles of order mi = 2: see [7, Section 6] for details.
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kernel, and indeed in Sect. 2 we show that the map F(�) is invariant under the two
flows

−1

�

∂

∂r
+
(

∂

∂b
+ 1

2p

∂

∂ p
+ r

2p2

∂

∂r

)
, (11)

−2p

�

∂

∂q
− 3q2 + a

�

∂

∂ p
+
(

∂

∂a
−q

∂

∂b
− r

p

∂

∂q
− r(3q2+a)

2p2

∂

∂ p
− r2

2p3
(3q2 + a)

∂

∂r

)
.

(12)

Since the sub-bundle of the tangent bundle spanned by these flows is everywhere
transverse to the fibres of the map π : M → S, it defines an Ehresmann connection
on this map, which we will refer to as the isomonodromy connection.

It follows from the existence of the isomonodromy connection that the monodromy
map F(�) restricts to give local isomorphisms

F(�) : Ms → V , (13)

between the fibres Ms = π−1(s) of the projection π : M → S, and the monodromy
manifold V . What is interesting for us is that, as we will explain below, both sides of
the map (13) can be more-or-less identified with the algebraic torus

Ts = H1(Xs,C∗) ∼= HomZ(Ŵs,C∗) ∼= (C∗)2. (14)

Using these identifications allows us to do two things:

(i) We can view the isomonodromy connection as an Ehresmann connection on the
bundle over S whose fibres are the algebraic tori Ts . We give a Hamiltonian
form for this connection in Theorem 1.4, and show that it gives an example of a
Joyce structure in the sense of [5]. This structure then induces a flat, torsion-free
connection on the tangent bundle of S, which is described by Theorem 1.5.

(ii) For each point s ∈ S, we can view the monodromy map (13) as giving a
partially-defined automorphism of the algebraic torus Ts , depending in a piece-
wise holomorphic way on the parameter � ∈ C∗. This allows us in to solve a
family of Riemann-Hilbert problems of the type discussed in [4,5]. A precise
summary of this claim appears as Theorem 1.6 below.

In the next two subsections we will explain these two points in more detail.

1.2 Isomonodromy flows

The homology groups (10) form a local system of lattices over S, which induces
the Gauss-Manin connection on the vector bundle on S whose fibres are the spaces
H1(Xs,C). In concrete terms, we can construct a basis of homology classes by taking
inverse images under the double cover (8) of paths in C connecting the zeroes of
Q0(x). The Gauss-Manin connection is then obtained by keeping these paths locally
constant as Q0(x) varies.
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Let us choose a basis (γ1, γ2) ⊂ Ŵs at some point s ∈ S, and extend it to nearby
fibres using the Gauss-Manin connection. A particular case of a general result of [7]
shows that the expressions

zi =
∫

γi

√
Q0(x) dx =

∫

γi

y dx, (15)

define a local system of co-ordinates (z1, z2) on the manifold S.
Consider the bundle π : T → S whose fibres are the tori (14). There are obvious

local co-ordinates (θ1, θ2) on the fibres Ts obtained by writing

ξ(γi ) = ξi = exp(θi ) ∈ C∗ (
ξ : Ŵs → C∗) ∈ Ts,

and we therefore obtain local co-ordinates (z1, z2, θ2, θ2) on the total space T.
In Sect. 3 we introduce a holomorphic map 
 : M → T, commuting with the two

projections to S, and given in local co-ordinates (up to multiples of π i) by

θi = −
∫

γi

Q1(x) dx

2
√

Q0(x)
= −
∫

γi

(
p

x − q
+ r

)
dx

2y
. (16)

This expression is familiar in WKB analysis as the constant term in the expansion of
the Voros symbols (see Sect. 7.4 below).

In Sect. 3 we give a more geometric description of the map 
. For each point s ∈ S

we show that there is a natural embedding of the fibre Ms = π−1(s) into the space
of pairs (L,∇) consisting of a holomorphic line bundle L on the elliptic curve Xs ,
equipped with a holomorphic connection∇. The map 
 then sends such a pair (L,∇)

to its holonomy, viewed as an element of Ts .
We shall refer to the map 
 as the abelian holonomy map. It follows from the

above description that it is an open embedding. We can use it to push forward the
isomonodromy flows (11)–(12). This gives an Ehresmann connection on a dense open
subset of the bundle π : T → S. The following result shows that this connection has
precisely the form considered in [5].

Theorem 1.4 When written in the co-ordinates (z1, z2, θ1, θ2), the push-forward of

the isomonodromy flows (11)–(12) along the map 
 : M → T take the Hamiltonian

form

∂

∂zi

+ 1

�
· ∂

∂θi

+ ∂2 J

∂θi∂θ1
· ∂

∂θ2
− ∂2 J

∂θi∂θ2
· ∂

∂θ1
, (17)

where J : T → C is a meromorphic function with no poles on the locus θ1 = θ2 = 0.

When pulled-back to M using the abelian holonomy map it is given by the expression

1

2π i
· (J ◦
) = −2ap2 + 3p(3b − 2aq)r + (6aq2 − 9bq + 4a2)r2 − 2apr3

4(4a3 + 27b2)p
.
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The pencil of flat non-linear connections (17) defines a geometric structure on the
space S which is studied in detail in [5] and called there a Joyce structure.2 The author
expects such structures to exist on spaces of stability conditions of CY3 triangulated
categories in much greater generality, and Theorem 1.4 provides an interesting first
example. We call the function J the Joyce function; some of its basic properties are
discussed in Sect. 4.4 below.

The Joyce function J = J (z1, z2, θ1, θ2) is easily seen to be odd in the variables
θ1, θ2, and it follows that the flows (17) preserve the section of the bundle π : T → S

defined by setting θ1 = θ2 = 0. They therefore induce a linear connection on the
normal bundle to this section, which can in turn be identified with the tangent bundle
to S via the map

∂

∂θi

�→ ∂

∂zi

.

In this way we obtain a linear, flat, torsion-free connection on the tangent bundle of
S, given explicitly by the formula

∇ ∂
∂zi

( ∂

∂z j

)
= ∂3 J

∂θi ∂θ j ∂θ2

∣∣∣
θ=0

· ∂

∂z1
− ∂3 J

∂θi ∂θ j ∂θ1

∣∣∣
θ=0

· ∂

∂z2
.

We call it the linear Joyce connection. In Sect. 4 we prove

Theorem 1.5 The functions (a, b) are flat co-ordinates for the linear Joyce connection.

We will comment on the significance of this result after the statement of Theorem
1.6 below.

1.3 Riemann-Hilbert problem

Consider now the right-hand side of the monodromy map (13). It is well known that
the manifold V has a system of birational co-ordinate systems

XT : V ��� (C∗)2, (18)

indexed by the triangulations T of a regular pentagon. These co-ordinate systems are
usually called Fock-Goncharov co-ordinates, since they appear in a much more general
context in [14]. We recall their definition in Sect. 7. The co-ordinates corresponding
to different triangulations are related by post-composition with explicit birational
automorphisms of (C∗)2.

Let us fix a point (a, b, q, p, r) ∈ M . For generic � ∈ C∗, the horizontal trajectory
structure of the quadratic differential

�−2 · Q0(x) dx⊗2 = �−2 · (x3 + ax + b) dx⊗2 (19)

2 Since the preprint version of this paper appeared, these structures have been related to hyperkähler
geometry [8].
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determines a triangulation T (�) of a regular pentagon. This triangulation is well-
defined when � ∈ C∗ lies in the complement of the finitely-many rays on which the
quadratic differential (19) has a finite-length horizontal trajectory. Following [17] we
refer to it as the WKB triangulation.

When T = T (�) is a WKB triangulation, the algebraic torus appearing on the
right-hand side of (18) is naturally identified with the torus Ts associated to the point
s = (a, b) ∈ S. Keeping the point (a, b, q, p, r) ∈ M fixed, let us now consider the
map

X : C∗ → Ts, X(�) = XT (�)

(
F(�)(a, b, q, p, r)

)
, (20)

which sends a point � ∈ C∗ to the Fock-Goncharov co-ordinates of the monodromy
of the Eq. (1) with respect to the WKB triangulation T (�). Using our chosen basis
(γ1, γ2) of Ŵs we can identify Ts with (C∗)2 and decompose X(�) into its components

X(�) = (x1(�), x2(�)) ∈ (C∗)2, xi (�) = X(�)(γi ) ∈ C∗.

The map (20) has three important properties, which we explain in detail in Sect. 7:

(i) As � ∈ C∗ crosses a ray where the differential (19) has a finite-length horizontal
trajectory, the WKB triangulation T (�) changes, and the map X(�) undergoes
a discontinuous jump obtained by post-composing with an explicit birational
transformation of the torus Ts .

(ii) The WKB approximation can be used to show that as � → 0 along a ray in C∗

xi (�) · exp
( zi

�
− θi

)
→ 1

where the θi are given by (16). This statement is proved in the Appendix.

(iii) A homogeneity property of the potential (2) allows us to conclude that as � →∞
the functions xi (�) have a well-defined limit.

These properties are exactly the conditions required for the map X(�) to give a
solution to one of the Riemann-Hilbert problems defined in [4]. To state this more
precisely, recall first the definition of a finite BPS structure (Ŵ, Z ,�) from [4]. It
consists of

(a) A finite-rank free abelian group Ŵ ∼= Z⊕n , equipped with a skew-symmetric form

〈−,−〉: Ŵ × Ŵ → Z,

(b) A homomorphism of abelian groups Z : Ŵ → C,

(c) A map of sets � : Ŵ → Q such that �(γ ) = 0 for all but finitely-many elements
γ ∈ Ŵ, and satisfying the symmetry property �(−γ ) = �(γ ).

The group Ŵ is called the charge lattice, and the homomorphism Z the central charge.
The rational numbers �(γ ) are called the BPS invariants.
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As we explain in Sect. 6, each point s ∈ S determines such a BPS structure
(Ŵs, Zs,�s). The charge lattice is the homology group Ŵs = H1(Xs,Z) equipped
with its intersection form 〈−,−〉. The central charge Zs : Ŵs → C is defined by the
formula

Zs(γ ) =
∫

γ

√
Q0(x) dx ∈ C.

Assuming that the point s ∈ S is generic, in the sense that the image of Zs is not
contained in a line, the BPS invariants �s(γ ) ∈ Z count the number of finite-length
trajectories of the differential (7) whose lifts to Xs define the given class γ ∈ Ŵ.

It is explained in [4] how to associate a Riemann-Hilbert problem to a finite BPS
structure. This problem involves piecewise holomorphic (or meromorphic) maps into
the associated algebraic torus T, and depends on an element ξ ∈ T called the constant
term. Our final result is

Theorem 1.6 Take a point (a, b, q, p, r) ∈ M and let (Ŵs, Zs,�s) be the BPS struc-

ture determined by the corresponding point (a, b) ∈ S. Then the map (20) gives a

meromorphic solution to the Riemann-Hilbert problem for this BPS structure, with

constant term ξ ∈ Ts defined by (16).

Let us return to the abstract context of Remark 1.1, where the space S appears as a
discrete quotient of the space of stability conditions on the CY3 triangulated category
associated to the A2 quiver. The BPS structures (Ŵs, Zs,�s) considered above then
coincide with those defined by the Donaldson-Thomas theory of these stability con-
ditions. Thus Theorem 1.6 gives solutions to the Riemann-Hilbert problems defined
by the A2 quiver. It is worth noting in this context that the space V also has a natural
representation-theoretic meaning, since it coincides with the cluster Poisson variety.

When viewed from this abstract point of view, the only natural local co-ordinates
on the stability space S are the central charge co-ordinates (z1, z2). The point of
Theorem 1.5 is that it gives a way to derive the flat structure on S whose co-ordinates
are (a, b) from purely abstract considerations: one first solves the Riemann-Hilbert
problem defined by the Donaldson-Thomas invariants to obtain the pencil of non-linear
connections of Theorem 1.4, and then differentiates to obtain the linear connection of
Theorem 1.5. Unfortunately there is one crucial missing link in this chain of reasoning:
we currently have no characterisation or uniqueness result for the solution of Theorem
1.6.

Remark 1.7 The statement of Theorem 1.6 takes direct inspiration from the work of
Gaiotto, Moore and Neitzke [16,17]. In particular, the use of the Fock-Goncharov
co-ordinates for the WKB triangulation, and the resulting discontinuities in the map
(20) are exactly as described in [17, Section 7]. It is important to note however that
the picture described here is strictly different to that of [17]. Although Gaiotto, Moore
and Neitzke start with the same data of a BPS structure, they consider a somewhat
different Riemann-Hilbert problem, which has non-holomorphic dependence on the
central charge Z . Instead of our monodromy map F , they solve their Riemann-Hilbert
problem using a C∞ isomorphism between the moduli spaces of irregular Higgs
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bundles and the wild character variety V . In physical terms what we are considering
here is the conformal limit [15] of their story.

Remark 1.8 The constructions of this paper are closely related to the ODE/IM cor-
respondence. The author is unfortunately not qualified to describe this link in any
detail. It is explained in [15] and [16, Appendix E] that the Riemann-Hilbert problems
considered here can be solved, at least formally, by an integral equation known in the
integrable systems literature as the Thermodynamic Bethe Ansatz (TBA). The fact that
these TBA equations also appear in the analysis of Stokes data of ordinary differential
equations goes back in some form to work of Sibuya and Voros, but was made more
precise in the work of Dorey, Dunning, Tateo and others. We refer the reader to [10]
for a review of the ODE/TBA correspondence, and to [25,26] for more recent papers
which deal specifically with the cubic oscillator.

Plan of the paper

We begin in Sect. 2 by describing the monodromy of the deformed cubic oscillator
(1) and deriving the isomonodromy flows (11)–(12). Section 3 discusses the abelian
holonomy map (16) and derives an explicit formula in terms of Weierstrass elliptic
functions. In Sect. 4 we compute the push-forward of the the isomonodromy connec-
tion via the abelian holonomy map, which leads to a formula for the Joyce function,
and a proof of Theorem 1.4.

The second half of the paper begins in Sect. 5 with abstract material on BPS struc-
tures and their associated Riemann-Hilbert problems. This is mostly taken from [4],
although the exposition can be considerably simplified in the special case consid-
ered here. Section 6 describes the quadratic differentials that are parameterised by the
space S, and the BPS structures defined by their finite-length horizontal trajectories.
The corresponding Riemann-Hilbert problems are solved in Sect. 7 using the mon-
odromy map for the deformed cubic oscillator (1). A crucial aspect of this is the WKB
analysis used to describe the behaviour of the monodromy map as � → 0, which is
explained in detail in an Appendix written by Davide Masoero.

2 The deformed cubic oscillator

In this section we discuss the generalised monodromy data of the deformed cubic
oscillator equation (1). We explain why this consists entirely of the Stokes data at
x = ∞ and recall how this is parameterised by collections of subdominant solutions.
We then derive the isomonodromy flow in the form (11)–(12). This section contains
only very minor extensions of previously known results. Similar material can be found
for example in [27,28].

2.1 Apparent singularity

The first claim is that for any � ∈ C∗ and (a, b, q, p, r) ∈ M the Eq. (1) has an
apparent singularity at x = q. By this we mean that the analytic continuation of any
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solution around this point has the effect of multiplying it by ±1 (and in our case the
sign is −1). This statement follows immediately from the identity

(
p

�
+ r

2p

)2

= q3 + aq + b

�2 + r

�
+ r2

4p2 ,

and the following well-known Lemma.

Lemma 2.1 Fix a point q ∈ C and suppose that Q(x) is a meromorphic function

having a pole at x = q. Suppose further that the Laurent expansion of Q(x) at this

point takes the form

Q(x) = 3

4(x − q)2 +
u

x − q
+ v + O(x − q).

Then the differential equation

y′′(x) = Q(x) · y(x) (21)

has an apparent singularity at x = q precisely if the relation u2 = v holds.

Proof This is a standard calculation using the Frobenius method, and we just give a
sketch. We look for a solution to (21) of the form

y(x) =
∞∑

i=0

ci (x − q)λ+i , ci ∈ C, (22)

with c0 �= 0 and λ ∈ C. This leads to a recurrence relation

(λ+ i)(λ+ i − 1)ci = 3
4 ci + uci−1 + vci−2 + · · · (23)

which is valid for all i ≥ 0 if we define ci = 0 for i < 0. In particular, taking
i = 0, 1, 2 we obtain the relations

(λ2 − λ− 3
4 )c0 = 0, (λ2 + λ− 3

4 )c1 = uc0, (λ2 + 3λ+ 5
4 )c2 = uc1 + vc0.

(24)

The first of these gives the indicial equation, whose roots are λ = 3
2 and λ = − 1

2 .
When λ = 3

2 it is easy to see that the recursion (23) has a unique solution for each
choice of c0, and standard theory then shows that (22) defines a double-valued solution
to (21) near x = q.

When λ = − 1
2 the second equation of (24) gives c1 = −uc0, and the third equation

then implies the stated condition u2 = v. Assuming this, the recursion again has a
unique solution for each choice of c0, and we obtain another double-valued solution
to (21) near x = q. The form of these two solutions shows that (21) has an apparent
singularity. If the relation u2 = v does not hold, standard theory shows that the second
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solution to (21) has a logarithmic term, and the solutions then exhibit non-trivial
monodromy around the point x = q, which is therefore not an apparent singularity. ⊓⊔

2.2 Stokes data

The analysis of the last section shows that the monodromy data of the Eq. (1) consists
only of the Stokes data at the irregular singularity x = ∞. We now briefly recall how
this is defined. A more detailed exposition of this material can be found for example
in [2, Section 5]. The Stokes sectors are the sectors in C bounded by the asymptotic
vertical directions of the quadratic differential

�−2 · Q0(x)dx⊗2,

which are easily seen to be the rays passing through the fifth roots of −�2. General
theory [29] shows that in each Stokes sector there is a unique subdominant solution to
(1) up to scale, with the defining property that it exhibits exponential decay as x →∞
in the sector. Moreover, the subdominant solutions in neighbouring sectors are linearly
independent.

Since the space of solutions to the Eq. (1) is a two-dimensional complex vector
space, the subdominant solutions define a collection of five points of P1, well-defined
up to the diagonal action of PGL2, with the property that each consecutive pair of points
is distinct. These points are naturally indexed by the Stokes sectors of the equation,
and hence by the fifth roots of �2. Choosing one such root we can identify this set with
Z/5Z and so obtain a point in the quotient space

V =
{
ψ : Z/5Z → P1 : ψ(i + 1) �= ψ(i) for all i ∈ Z/5Z

}/
PGL2, (25)

which is easily seen to be a two-dimensional complex manifold [18]. We call the
resulting map

F(�) : M → V

the monodromy map. Note however that this is a mild abuse of notation since F(�)

really depends on a choice of fifth root of �2. The map F(�) is holomorphic because
the subdominant solutions vary holomorphically with parameters [19,29].

Remark 2.2 There is an obvious action of the group Z/5Z on the space V obtained
by precomposing the map ψ in (25) with the translations i �→ i + j of Z/5Z. It is
easy to check that it has exactly two fixed points, represented by the cyclically-ordered
5-tuples of points of P1 of the form (0, 1,∞, x, x + 1), with x ∈ C a solution to the
golden ratio equation x2 + x − 1 = 0. One way to avoid the choice of fifth root of
�2 when defining the monodromy map F(�) is to consider it as taking values in the
complex orbifold obtained by quotienting V by this action.
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2.3 Isomonodromy flow

The following result gives a pair of flows on the four-dimensional manifold M along
which the monodromy map F(�) is constant.

Proposition 2.3 For a fixed � ∈ C∗ the monodromy map F(�) is preserved by the

flows

− 1

�

∂

∂r
+
(

∂

∂b
+ 1

2p

∂

∂ p
+ r

2p2

∂

∂r

)
, (26)

−2p

�

∂

∂q
− 3q2 + a

�

∂

∂ p
+
(

∂

∂a
−q

∂

∂b
− r

p

∂

∂q
− r(3q2 + a)

2p2

∂

∂ p
− r2

2p3
(3q2 + a)

∂

∂r

)
.

(27)

Proof A straightforward calculation which we leave to the reader shows that the first
flow (26) preserves the potential Q(x, �), and hence the Eq. (1). We defer the proof
that the second flow preserves the monodromy map to the next subsection. ⊓⊔

Note that the flows of Proposition 2.3 span a two-dimensional sub-bundle of the
tangent bundle of M , which is everywhere transverse to the kernel of the derivative of
the projection map π : M → S. This is the condition that the sub-bundle defines an
Ehresmann connection on this map. We call it the isomonodromy connection.

Remark 2.4 When r = 0 the Eq. (1) reduces to the deformed cubic oscillator of [28],
and the flow (27) becomes

da

dt
= 1,

db

dt
= −q,

dq

dt
= −2p

�
,

dp

dt
= −3q2 + a

�
. (28)

Let us briefly recall the well-known Hamiltonian description of this flow, and the link
with Painlevé equations. Fix the parameter � ∈ C∗, and consider the space C4 with
co-ordinates (a, b, q, p) equipped with the symplectic form

ω = da ∧ db + � · dq ∧ dp.

Then (28) is the flow defined by the Hamiltonian

H(a, b, q, p) = q3 + aq + b − p2.

Since da/dt = 1 we can set t = a. The flow (28) then implies that

�2 · d2q

dt2 = −2� · dp

dt
= 6q2 + 2t,

which, after rescaling, becomes the first Painlevé equation.

123



On the monodromy of the deformed...

2.4 Proof of the isomondromy property

Let us complete the proof of Proposition 2.3. We must just show that the second flow
(27) preserves the Stokes data.

Proof Let us fix � ∈ C∗ and consider the potential Q = Q(x) to be also a function of
a variable t ∈ C, in such a way that the derivative with respect to t gives the flow (27).
The condition for the Stokes data to be constant [31] is the existence of an extended
flat connection of the form

∇ = d −
(

0 1
Q(x, t) 0

)
dx − B(x, t)dt, (29)

with B(x, t) a meromorphic matrix-valued function. Let us make the ansatz

B(x, t) =
(

− 1
2 A′ A

AQ − 1
2 A′′ 1

2 A′

)
,

for some function A = A(x, t), where primes denote derivatives with respect to x .
The flatness condition for the connection (29) then becomes

∂3 A

∂x3 − 4Q
∂ A

∂x
− 2

∂Q

∂x
A + 2

∂Q

∂t
= 0, (30)

an equation which goes back at least to Fuchs. We now take A = (x − q)−1. Writing
out Eq. (30) gives

4

(x − q)2 Q(x)− 2

x − q
Q′(x)+ 2Q̇(x)− 6

(x − q)4 = 0,

where dots denote differentiation with respect to t . In detail this is

4

�2(x − q)2
(x3 + ax + b)− 2

�2(x − q)
(3x2 + a)+ 2

�2
(ȧx + ḃ)+ 4

�(x−q)2

( p

x − q
+ r
)

+ 2p

�(x − q)3
+ 2

�

( ṗ

x − q
+ ṙ
)
+ 2pq̇

�(x − q)2
+ 6

(x − q)4
+ 3q̇

(x − q)3
− 6

(x − q)4

+ 3r

p(x − q)3
+ r2

p2(x − q)2
− r ṗ

p2(x − q)
+ ṙ

p(x − q)
+ r q̇

p(x − q)2
− r2 ṗ

p3
+ rṙ

p2
= 0.

The expression on the left-hand side of this equation is a rational function of x , with
possible poles only at x = q and x = ∞. To show that it is zero we consider the terms
in the Laurent expansion at each of these points, which are

(x − q)−3 : 4p

�
+ 2p

�
+ 3q̇ + 3r

p
,

(x − q)−2 : 4

�2 (q
3 + aq + b)+ 4r

�
+ 2pq̇

�
+ r2

p2 +
r q̇

p
,
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(x − q)−1 : 4

�2 (3q2 + a)− 2

�2 (3q2 + a)+ 2 ṗ

�
− r ṗ

p2 +
ṙ

p
,

x1 : 4

�2 −
6

�2 +
2

�2 ȧ, x0 : 8q

�2 −
6q

�2 +
2

�2 ḃ + 2ṙ

�
− r2 ṗ

p3 + rṙ

p2 .

These are all easily checked to vanish under the given flow

ȧ = 1, ḃ = −q, q̇ = −2p

�
− r

p
, ṗ = −3q2 + a

�
− r(3q2 + a)

2p2 ,

ṙ = − r2

2p3 (3q2 + a),

which completes the proof. ⊓⊔

3 Periods and the abelian holonomymap

In this section we first consider the period co-ordinates (z1, z2) on the space S and
the relationship with the affine co-ordinates (a, b). This is a standard calculation
with Weierstrass elliptic functions. We then consider the expression (16) from the
introduction and explain its conceptual meaning in terms of the holonomy of abelian
connections. The author learnt this interpretation from [24, Section 3].

3.1 Weierstrass elliptic functions

In what follows we shall need some basic and well known properties of the Weierstrass
elliptic functions. These functions depend on a choice of lattice


 = Zω1 ⊕ Zω2 ⊂ C.

We assume the generators ωi are ordered so that Im(ω2/ω1) > 0. Proofs of the
following claims can all be found for example in [32, Chapter 20], although the reader
should note that the generators of 
 are denoted there by 2ωi .

The Weierstrass ℘-function is a meromorphic function of u ∈ C with double poles
at each lattice point ω ∈ 
. It is even and doubly-periodic

℘(−u) = ℘(u), ℘ (u + ωi ) = ℘(u),

and satisfies the differential equation

℘′(u)2 = 4℘(u)− g2(
)℘ (u)− g3(
),

where g2(
), g3(
) ∈ C are constants depending on the lattice 
.
The Weierstrass ζ -function is uniquely characterised by the properties

ζ ′(u) = −℘(u), ζ(−u) = −ζ(u). (31)
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It has simple poles at the lattice points. This function is not quite periodic but satisfies

ζ(u + ωi )− ζ(u) = ηi , (32)

where the quasi-periods η1, η2 ∈ C∗ satisfy the Legendre relation

ω2η1 − ω1η2 = 2π i . (33)

There is an addition formula

ζ(u − v)− ζ(u)+ ζ(v) = ℘′(u)+ ℘′(v)

2(℘ (u)− ℘(v))
. (34)

Finally, the Weierstrass σ -function is uniquely characterised by the relations

d

du
log σ(u) = ζ(u), lim

u→0

(
σ(u)

u

)
= 1.

It has the quasi-periodicity property

σ(u + ωi ) = − exp
(
ηi (u + 1

2ωi )
)
· σ(u), (35)

and has simple poles at the lattice points ω ∈ 
.

3.2 Periodmap

Recall from the introduction the family of elliptic curves Xs parameterised by the
points s ∈ S. They are the projectivizations of the affine cubics

X◦
s =
{
(x, y) ∈ C2 : y2 = x3 + ax + b

}
.

As before we set Ŵs = H1(Xs,Z), and denote by

〈−,−〉: Ŵs × Ŵs → Z

the skew-symmetric intersection form. We also consider the vector bundle π : T → S

with fibres

Ts = H1(Xs,C) = HomZ(Ŵs,C) ∼= C2.

The Gauss-Manin connection defines a flat connection on this bundle. There is a
holomorphic section Z : S → T defined by sending a class γ ∈ Ŵs to

Z(s)(γ ) =
∫

γ

√
Q0(x) dx =

∫

γ

y dx ∈ C,
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which we call the period map. We claim that the covariant derivative of Z defines an
isomorphism

∇(Z) : TS → T ,

between the holomorphic tangent bundle of S and the bundle T .
Let us express all this in co-ordinates. For this purpose, fix a base-point s0 ∈ S, and

choose a basis

Ŵs0 = Zγ1 ⊕ Zγ2

satisfying 〈γ1, γ2〉 = 1. Extend this basis to nearby fibres Ŵs using the Gauss-Manin
connection. We obtain a local trivialization of the bundle π : T → S

(
θ : Ŵs → C

)
∈ Ts �→ (θ1, θ2) =

(
θ(γ1), θ(γ2)

)
∈ C2, (36)

and the section Z becomes a pair of functions on S

zi =
∫

γi

√
x3 + ax + b · dx . (37)

The claim is equivalent to the statement that these functions form a local system of
co-ordinates on S. We check this by direct calculation in Lemma 3.1 below.

3.3 Formula for the periodmap

For each point s ∈ S, we equip the elliptic curve Xs with the global holomorphic
one-form � which extends the form dx/2y on the affine piece X◦

s . The periods of this
form

ωi =
∫

γi

� =
∫

γi

dx

2y
∈ C∗

span a lattice 
s = Zω1 ⊕ Zω2 ⊂ C. The condition 〈γ1, γ2〉 = 1 ensures that
Im(ω2/ω1) > 0. The corresponding Weierstrass ℘-function defines a map

C \
s → X◦
s , u �→ (x, y) =

(
℘(u), 1

2℘
′(u)
)
,

which extends to an isomorphism of complex manifolds

C/
s
∼= Xs . (38)

Under this identification we have � = du.
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Lemma 3.1 The functions (z1, z2) give local co-ordinates on S. There are equalities

of tangent vectors on S

∂

∂a
= −η1

∂

∂z1
− η2

∂

∂z2
,

∂

∂b
= ω1

∂

∂z1
+ ω2

∂

∂z2
. (39)

2π i · ∂

∂z1
= −ω2

∂

∂a
− η2

∂

∂b
, 2π i · ∂

∂z2
= ω1

∂

∂a
+ η1

∂

∂b
, (40)

where η1, η2 denote the quasi-periods of the Weierstrass ζ -function associated to the

lattice 
s .

Proof Differentiating (37) gives

∂zi

∂a
=
∫

γi

x dx

2
√

x3 + ax + b
=
∫

γi

x dx

2y
=
∫

γi

℘(u)du = −ηi , (41)

∂zi

∂b
=
∫

γi

dx

2
√

x3 + ax + b
=
∫

γi

dx

2y
=
∫

γi

du = ωi , (42)

and hence the relations (39). Inverting these using the Legendre relation (33) gives
(40). ⊓⊔

3.4 Abelian holonomymap

Consider a point (a, b, q, p, r) ∈ M and set s = (a, b) ∈ S. We denote by w = (q, p)

the corresponding point of the elliptic curve Xs . Using the parameterization (38) of
Xs we can write

w = (q, p) =
(
℘(v), 1

2℘
′(v)
)
. (43)

for some point v ∈ C + 
s . Let us denote by ∞ ∈ Xs the point at infinity on the
elliptic curve Xs . In terms of the parameterization (38) this corresponds to 0 + 
s .
Let us introduce the meromorphic differential on Xs

̟(u)du = −
(

y + p

x − q
+ r

)
dx

2y
= −
(

℘′(u)+ ℘′(v)

2(℘ (u)− ℘(v))
+ r

)
du. (44)

A simple calculation shows that ̟(u)du has simple poles at the points∞ and w, with
residues +1 and −1 respectively, and no other poles.

Consider the degree zero line bundle L = OXs (w − ∞) on Xs . In terms of the
parameterization (38), the sections of L over an open subset are meromorphic functions
f (u) having zeroes at the points u ∈ 
s , and at worst simple poles at the points
u ∈ v + 
s . Note that for any such function f (u), the function f ′(u) − ̟(u) f (u)

has the same property. It follows that the formula

∇ = d −̟(u)du
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defines a holomorphic connection on L . Computing the flat sections of ∇ shows that
the holonomy of this connection about a loop γ in Xs is given by multiplication by
the expression

ξ(γ ) = exp

(∫

γ

̟(u)du

)
∈ C∗. (45)

Consider now the moduli space Ms of pairs (L,∇) consisting of a line bundle
L on the curve Xs , equipped with a holomorphic connection ∇. Then Ms is an
affine bundle over the space of degree zero line bundles Pic0(Xs) modelled on the
vector space C = H0(Xs, ωXs ). The Riemann-Roch theorem shows that the line
bundles OXs (w −∞) for different points w ∈ Xs are all distinct, and that all degree
0 line bundles on Xs are of this form. Since these line bundles have only trivial
automorphisms, the pairs (L,∇) defined by different points (q, p, r) of the fibre
Ms = π−1(s) ⊂ M are all non-isomorphic. It follows that the map

As : Ms → Ms, A : (q, p, r) �→ (L,∇) =
(
OXs (w −∞), d −̟(u)du

)
,

(46)

is an open embedding. The condition p �= 0 on the points of M translates into the
statement that the associated line bundle L = OXs (w −∞) is not a spin bundle, that
is, it does not satisfy L2 ∼= OX . The image of the embedding As is therefore precisely
the set of pairs (L,∇) for which the bundle L is non-spin.

For each point s ∈ S, the abelian Riemann-Hilbert correspondence shows that
taking holonomy defines an isomorphism of complex manifolds Hol : Ms → Ts .
Pre-composing with the open embedding As : Ms →֒ Ms defines an open embedding

s : Ms →֒ Ts which sends a point (q, p, r) ∈ Ms to the holonomy (45) of the pair
(L,∇) appearing in (46). Let us consider, as in the introduction, the bundle π : T → S

whose fibres are the cohomology groups

Ts = H1(Ts,C∗) = HomZ(Ŵs,C∗) ∼= (C∗)2.

Then, taking the union of the maps 
s defines an open embedding 
, which fits into
the diagram

M



π

T

π

S

and induces the open embeddings 
s : Ms →֒ Ts on the fibres. We call this map 


the abelian holonomy map.
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3.5 Explicit formula

The bundle of tori π : T → S is the quotient of the vector bundle π : T → S by the
local system of lattices

Ŵ∨s = HomZ(Ŵs,Z) ⊂ Ts . (47)

Choosing a covariantly constant basis for the lattices Ŵs as in Sect. 3.2 gives a local
trivialisation

(
ξ : Ŵs → C∗) ∈ Ts �→ (ξ1, ξ2) =

(
ξ(γ1), ξ(γ2)

)
∈ (C∗)2.

The quotient map p : T → T is expressed in co-ordinates by writing ξi = exp(θi ).
Thus the pair (θ1, θ2) of (36) can also be viewed as local co-ordinates on the bundle
T.

On the space M we can take local co-ordinates (a, b, q, r). We can also express
the co-ordinate q in terms of v using the parameterization (43) as before. Of course
the Weierstrass function ℘(v) depends implicitly on the lattice 
s , and hence on the
variables (a, b).

Lemma 3.2 In the above co-ordinates the abelian holonomy map 
 is given by

ξi = exp
(
ηiv − rωi − ωiζ(v)

)
, (48)

where ζ(v) denotes the Weierstrass zeta-function for the lattice 
s .

Proof This is a direct computation which the author learnt from [24, Section 3]:

θi = log(ξi )=
∫

γi

̟(u)du=−
[

log
σ(u − v)

σ (u)
+uζ(v)+ ur

]

γi

= ηiv − ωi (ζ(v)+ r),

where we used the addition formula (34), and the quasi-periodicity property (35). Note
that by construction the differential ̟(u) du has simple poles with integer residues,
so the expression for θi is well-defined up to multiples of 2π i , and the quantity ξi =
exp(θi ) is therefore well-defined. ⊓⊔

It will be convenient in what follows to introduce alternative local co-ordinates
(θa, θb) on the torus Ts by setting

θi = −ηiθa + ωiθb. (49)

Using the Legendre relation (33), the inverse transformation is

2π i · θa = −ω2θ1 + ω1θ2, 2π i · θb = −η2θ1 + η1θ2. (50)
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In these co-ordinates (48) takes the simple form

θa = −v = −1

4

∫ (q,p)

(q,−p)

dx

y
, θb = −ζ(v)− r = 1

4

∫ (q,p)

(q,−p)

xdx

y
− r . (51)

It is easy to see that the integrals in (51) are well-defined providing we take an inte-
gration path which is invariant under the covering involution of p : Xs → P1 defined
by (x,+y) ↔ (x,−y).

3.6 Further remarks

We record here a few further comments on the abelian holonomy map which will be
useful later.

Remark 3.3 It follows from the discussion in Sect. 3.4 that the complement of the image
of the embedding 
s : Ms →֒ Ts consists precisely of the holonomy of holomorphic
connections on the four spin bundles on Xs . These correspond to the half-lattice points

{
0, 1

2ω1,
1
2ω2,

1
2 (ω1 + ω2)

}
∈ v +
s .

Direct calculations shows that the resulting points of Ts have co-ordinates ξi =
± exp(rωi ), for some r ∈ C, with the four possible choices of pairs of signs cor-
responding to the four spin bundles. For the non-trivial spin bundles this follows from
(48) using the Legendre relation (33) and the identities

ζ
( 1

2ω1
)
= 1

2η1, ζ
( 1

2ω2
)
= 1

2η2, ζ
(

1
2 (ω1 + ω2)

)
= 1

2 (η1 + η2),

which are easily derived from (31)–(32). On the other hand, a holomorphic connec-
tion on the trivial bundle OXs takes the form d − r du, where d denotes the trivial
connection. The holonomy around the cycles γi ∈ Ŵs is then given by multiplication
by ξi = exp(rωi ).

Remark 3.4 In the introduction we defined the map 
 by an expression

ξ(γ ) = exp

(∫

γ

−Q1(x) dx

2
√

Q0(x)

)
. (52)

The meromorphic differential on Xs being integrated here

− Q1(x) dx

2
√

Q0(x)
= −
(

p

x − q
+ r

)
dx

2y
= −
(

℘′(v)

2(℘ (u)− ℘(v))
+ r

)
du, (53)

has simple poles at the points ±v +
s with residues ∓ 1
2 . It follows that the integral

of (53) against any homology class is well-defined only up to integer multiples of π i ,
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and that the exponential (52) is therefore only well-defined up to sign. The difference
between (53) and (44) is given by the form

dx

2(x − q)
= ℘′(u) du

2(℘ (u)− ℘(v))
.

Since this differential is pulled back from P1 via the double cover p : Xs → P1, its
integral around any cycle (which is only well-defined up to integer multiples of π i)
must in fact be an integer multiple of π i . Thus the expressions (45) and (52) agree up
to sign.

Remark 3.5 There are two group actions on the space M which will be important later,
and which are respected by the abelian holonomy map.

(a) There are involutions of the spaces M and T defined in local co-ordinates by

(a, b, q, p, r) ↔ (a, b, q,−p,−r), (z1, z2, θ1, θ2)↔ (z1, z2,−θ1,−θ2).

It follows from (51) and (49) that these are intertwined by the map 
.
(b) Consider the action of C∗ on the space M for which the co-ordinates (a, b, q, p, r)

are homogeneous of weights (4, 6, 2, 3, 1) respectively. Rescaling also the co-
ordinate x on C ⊂ P1 with weight 2, the formula (37) shows that the co-ordinates
(z1, z2) have weight 5, and formulae (44)–(45) that the co-ordinates (θ1, θ2) have
weight 0. The formulae (41)–(42) then show that (ωi , ηi ) have weight (−1, 1)
respectively, and thus by (50) the co-ordinates (θa, θb) have weights (−1, 1).

We shall need the following formula for the derivative of the map 
.

Lemma 3.6 The derivative of the abelian holonomy map with respect to the local

co-ordinates (a, b, q, r) on M and (a, b, θa, θb) on T is given by

�∗

(
∂

∂q

)
= − 1

2p

∂

∂θa

+ q

2p

∂

∂θb

, �∗

(
∂

∂r

)
= − ∂

∂θb

, (54)

�∗

(
∂

∂a

)
= ∂

∂a
+ κ1(v)

∂

∂θa

− κ2(v)
∂

∂θb

,

�∗

(
∂

∂b

)
= ∂

∂b
+ κ0(v)

∂

∂θa

− κ1(v)
∂

∂θb

, (55)

where we introduced the functions

κi (v) =
1

8

∫ (q,p)

(q,−p)

x i dx

y3 =
∫ v

−v

℘(u)i du

℘′(u)2 , i = 0, 1, 2. (56)

Proof The abelian holonomy map is given by the formulae (51), which can be viewed
as integrals of multi-valued 1-forms on P1. Differentiating these gives the result. ⊓⊔
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Remark 3.7 As with (51), the integrals in (56) are well-defined providing the path
of integration is invariant under (x,+y) ↔ (x,−y). This results in meromorphic
functions which are uniquely defined by the properties

κ ′i (v) =
2℘(v)i

℘′(v)2 , κi (−v) = −κi (v).

By computing the derivative of (α + β℘(v) + γ℘2(v))/℘′(v) as in (63) below, and
comparing constants, it is not hard to write κi (v) explicitly in terms of ℘(v), ζ(v) and
v. Since we will make no use of the resulting expressions, we refrain from writing out
the details.

4 The isomonodromy connection

In this section we combine the material from the previous sections to give proofs
of Theorems 1.4 and 1.5. We first use the abelian holonomy map to transfer the
pencil of isomonodromy connections to the bundle π : T → S. We then write the
transferred pencil of non-linear connections in the natural co-ordinate system (zi , θ j ).
The resulting expressions show that these connections define what is called a Joyce
structure in [5]. We then discuss the induced linear Joyce connection on S, and prove
that its flat co-ordinates are (a, b).

4.1 Rewriting the isomonodromy flow

We proved in the last section that the abelian holonomy map 
 : M →֒ T is an open
embedding, commuting with the projections to S. We can therefore use it to push-
forward the isomonodromy connection of Proposition 2.3. The following result gives
a Hamiltonian description of the resulting meromorphic Ehresmann connection.

Theorem 4.1 The push-forward of the isomonodromy connection along the open

embedding 
 : M →֒ T is spanned by vector fields of the form

∂

∂a
+ 1

�
· ∂

∂θa

+ 1

2π i
· ∂2 K

∂θa∂θb

· ∂

∂θa

− 1

2π i
· ∂2 K

∂θa∂θa

· ∂

∂θb

, (57)

∂

∂b
+ 1

�
· ∂

∂θb

+ 1

2π i
· ∂2 K

∂θb∂θb

· ∂

∂θa

− 1

2π i
· ∂2 K

∂θa∂θb

· ∂

∂θb

, (58)

with K a holomorphic function defined on the image of 
.

Proof Making a trivial linear combination of the flows of Proposition 2.3, and leaving
the variation of p = p(a, b, q) implicit, the isomonodromy connection is generated
by the vector fields

−2p

�

∂

∂q
− q

�

∂

∂r
+
(

∂

∂a
− r

p

∂

∂q
− r2(3q2 + a)− qpr

2p3

∂

∂r

)
,
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−1

�

∂

∂r
+
(

∂

∂b
+ r

2p2

∂

∂r

)
. (59)

Applying the derivative of 
 computed in Lemma 3.6 these become

1

�

∂

∂θa

+ ∂

∂a
+ μ

∂

∂θa

− ν
∂

∂θb

,
1

�

∂

∂θb

+ ∂

∂b
+ λ

∂

∂θa

− μ
∂

∂θb

,

where the functions λ, μ, ν are defined on the image of 
 by


∗(λ) = κ0(v), 
∗(μ) = κ1(v)+
r

2p2 , 
∗(ν) = κ2(v)+
qr

p2 −
(3q2 + a)r2

2p3 .

(60)

Note that the inverse to the derivative in Lemma 3.6 satisfies


−1
∗
( ∂

∂θa

)
= −2p

∂

∂q
− q

∂

∂r
, 
−1

∗
( ∂

∂θb

)
= − ∂

∂r
. (61)

Define a holomorphic function J on the image of the open inclusion 
 : M →֒ T

by

1

2π i
·
∗(J ) = − 1

4�p

(
2ap2 + 3p(3b − 2aq)r + (6aq2 − 9bq + 4a2)r2 − 2apr3),

(62)

where we set � = 4a3 + 27b2. The defining relation p2 = q3 + aq + b implies that

2p
d

dq

(αq2+βq + γ

p

)
=αq − β+ 1

p2

(
(2aα − 3γ )q2 + (2aβ + 3bα)q+(3bβ − aγ )

)
.

(63)

A slightly painful caluclation using (61) and the relation (63) repeatedly gives
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1

2π i
·
∗
( ∂ J

∂θa

)
= 1

�

(
a2

2
+ 9bq

4
−
(
9bq2 + 2a2q + 6ab

)
r

2p
+ 9br2

4

)
− r2

4p2
,

1

2π i
·
∗
(∂2 J

∂θ2
a

)
= −1

�

(−2a2q2 + 3abq + 9b2

2p
+ a2r

)
+ qr

p2
− (3q2 + a)r2

2p3
,

1

2π i
·
∗
(∂3 J

∂θ3
a

)
= −3ab

2�
− 3q2

2p2
− 2r

p
+ 3q(3q2 + a)r

p3
+ 6qr2

p2
− 3(3q2 + a)2r2

2p4
.

On the other hand, applying the operators (61) to the expressions (60), and noting the
overlap with the previous calculation, we easily obtain


∗
(

∂ν

∂θa

)
= − 3q2

2p2
− 2r

p
+ 3q(3q2 + a)r

p3
+ 6qr2

p2
− 3(3q2 + a)2r2

2p4
,

∂λ

∂θb
= 0,

(64)


∗
(

∂μ

∂θa

)
= − q

p2
+ (3q2 + a)r

p3
= 
∗

(
∂ν

∂θb

)
, 
∗

(
∂λ

∂θa

)
= − 1

2p2
= 
∗

(
∂μ

∂θb

)
.

(65)

Let us now define K = J + C , where

1

2π i
· C = 1

4�

(
abθ3

a − 2a2θ2
a θb − 9bθaθ

2
b + 2aθ3

b

)
. (66)

Comparing with (64)–(65) we see that

2π iλ = ∂2 K

∂θ2
b

, 2π iμ = ∂2 K

∂θa∂θb

, 2π iν = ∂2 K

∂θ2
a

, (67)

up to the addition of functions independent of θa, θb. But these constants of integration
must vanish because, by Remark 3.5(a), both sides of (67) are odd functions of the
θa, θb co-ordinates. ⊓⊔

4.2 Co-ordinate change

To pass from the statement of Theorem 4.1 to that of Theorem 1.4 we need to apply a
change of variables. For this purpose, let us consider the following abstract problem.
Suppose that S is a complex manifold equipped with a complex symplectic form ω.
Take a local co-ordinate system (z1, · · · , zn) on S in which this form is constant, so
that we can write

ω =
∑

i, j

ωi j · dzi ∧ dz j , (68)
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for some constant skew-symmetric matrix ωi j . The induced Poisson bracket on S is
given in these co-ordinates by the inverse matrix

{zi , z j } = ǫi j ,
∑

j

ǫi j · ω jk = δik . (69)

There is a natural co-ordinate system (z1, . . . , zn, θ1, . . . , θn) on the total space of
the holomorphic tangent bundle TS obtained by writing a tangent vector in the form∑

i θi · ∂
∂zi

. We are interested in systems of flows on TS of the form

∂

∂zi

+ 1

�

∂

∂θi

+
∑

j,k

ǫ jk

∂2 J

∂θi∂θ j

∂

∂θk

. (70)

where J : TS → C is some fixed holomorphic function.
Consider now some new co-ordinate system (w1, . . . , wn) on S which is related to

the first by a symplectomorphism, so that ω takes the same form (68). In the same way
as before, we can consider the induced co-ordinates (w1, . . . , wn, φ1, . . . , φn) on the
tangent bundle TS . Given a holomorphic function K : TS → C we can then consider
the system of flows

∂

∂wi

+ 1

�

∂

∂φi

+
∑

j,k

ǫ jk

∂2 K

∂φi∂φ j

∂

∂φk

. (71)

We would like to know when the two flows (70) and (71) on the space TS are equivalent,
in the sense that they generate the same sub-bundle of the tangent bundle.

Let ∇ denotes the flat, torsion-free, linear connection on the tangent bundle TS

whose flat co-ordinates are (w1, . . . , wn), and define

C pqr (z) = ω

(
∇ ∂

∂z p

( ∂

∂zq

)
,

∂

∂zr

)
. (72)

Note that the expression (72) is completely symmetric under permutation of the indices
p, q, r . Indeed, the assumption that the symplectic form ω is constant in the co-
ordinates zi and w j , and hence is preserved by ∇ gives

C pqr (z)− C prq(z) = ω

(
∇ ∂

∂z p

( ∂

∂zq

)
,

∂

∂zr

)
+ ω

(
∂

∂zq

,∇ ∂
∂z p

( ∂

∂zr

))

= ∂

∂z p

ω
( ∂

∂zq

,
∂

∂zr

)
= 0.

On the other hand, the fact that ∇ is torsion-free gives C pqr (z) = Cqpr (z).
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Proposition 4.2 The two flows (70) and (71) define the same Ehresmann connection

on the bundle π : TS → S precisely if

J (zi , θ j ) = K (wi , φ j )−
1

6
·
∑

p,q,r

C pqr (zi ) · θpθqθr . (73)

Proof Take a point in the total space TS with co-ordinates (zi , θ j ) and (wi , φ j ). Then

∑

i

θi

∂

∂zi

=
∑

j

φ j

∂

∂w j

�⇒ φ j =
∑

i

θi

∂w j

∂zi

.

Changing co-ordinates on the space TS from (zi , θi ) to (w j , φ j ) therefore gives

∂

∂zi

=
∑

j

∂w j

∂zi

∂

∂w j

+
∑

j,k

θk

∂2w j

∂zi∂zk

∂

∂φ j

,
∂

∂θi

=
∑

j

∂w j

∂zi

∂

∂φ j

. (74)

Consider the following linear combination of the flows (71)

∑

p

∂wp

∂zi

∂

∂wp

+ 1

�

∑

p

∂wp

∂zi

∂

∂φp

+
∑

p, j,k

ǫ jk

∂2 K

∂φp∂φ j

∂wp

∂zi

∂

∂φk

= ∂

∂zi

−
∑

j,k

θk

∂2w j

∂zi∂zk

∂

∂φ j

+ 1

�

∂

∂θi

+
∑

j,k

ǫ jk

∂2 K

∂θi∂θ j

∂

∂θk

, (75)

where we used the assumption that the change of co-ordinates from zi tow j is symplec-
tic, which, using the second relation of (74), implies that for any function f : TS → C

∑

j,k

ǫ jk

∂ f

∂θ j

∂

∂θk

=
∑

j,k

ǫ jk

∂ f

∂φ j

∂

∂φk

.

The expressions (75) agree with (70) provided that

∑

j,k,q

ǫ jqCi jk(z)θk

∂

∂θq

=
∑

j,k

θk

∂2w j

∂zi∂zk

∂

∂φ j

, (76)

for all indices i . But now we compute

Ci jk(z) = ω

(
∇ ∂

∂zi

( ∂

∂zk

)
,

∂

∂z j

)
= ω

(∑

p

∂2wp

∂zi∂zk

∂

∂wp

,
∂

∂z j

)
=
∑

p,r

ωr j

∂2wp

∂zi∂zk

∂zr

∂wp

,

and the identity (76) follows using the fact (69) that ǫ and ω are inverse matrices. ⊓⊔
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4.3 The Joyce function

We can now use Proposition 4.2 to rewrite the flows of Theorem 4.1 in the co-ordinates
(zi , θ j ). This leads to the following statement.

Theorem 4.3 When written in the co-ordinates (z1, z2, θ1, θ2), the push-forward of

the isomonodromy flows (11)–(12) along the map 
 : M → T take the Hamiltonian

form

∂

∂zi

+ 1

�
· ∂

∂θi

+ ∂2 J

∂θi∂θ1
· ∂

∂θ2
− ∂2 J

∂θi∂θ2
· ∂

∂θ1
, (77)

where J : T → C is a meromorphic function with no poles on the locus θ1 = θ2 = 0.

When pulled-back to M using the abelian holonomy map it is given by the expression

1

2π i
· J ◦
 = − 1

4�p
·
(
2ap2 + 3p(3b − 2aq)r + (6aq2 − 9bq + 4a2)r2 − 2apr3).

(78)

Proof Let us define the rescaled co-ordinates

w1 =
√

2π i · b, w2 =
√

2π i · a.

Using the expressions (39), and comparing with (50), the associated fibre co-ordinates
of (74) are

φ1 =
√

2π i · θb, φ2 =
√

2π i · θa .

Since ǫ12 = 〈γ1, γ2〉 = 1, the Poisson and symplectic forms on S are

{z1, z2} = 1, ω = −dz1 ∧ dz2.

The relations (39) then ensure that

ω = 2π i · da ∧ db = −dw1 ∧ dw2.

Making the trivial change of variables from (a, b, θa, θb) to (w1, w2, φ1, φ2) shows
that the flows of Theorem 4.1 are given by the Eq. (71). Changing variables as in
Proposition 4.2 then gives the flows in the form (77).

The formula (73) shows that on the image of 
 : M →֒ T, the required function J

differs from the function K of Theorem 4.1 by an expression which is cubic in the θi

co-ordinates. Moreover, by construction, the second derivatives of J with respect to
the θi are single-valued functions on the image of 
. These two conditions uniquely
determine J . Since the expression (62) has both the required properties, it follows that
this coincides with the required function J .
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We can view the space M as an open subset of a larger space M ′ obtained by drop-
ping the condition p �= 0. By its construction, the abelian holonomy map extends to an
open embedding 
 : M ′ →֒ T, and the expression (62) clearly defines a meromorphic
function on the open subset 
(M ′) ⊂ T. As explained in Remark 3.3, the complement
of this open subset is precisely the locus where ξi = exp(cωi ) for some c ∈ C. So it
remains to understand the behaviour of J at these points.

Let us work over a small open subset U ⊂ S. Let 0 ∈ D ⊂ C be a disc such that
the punctured disc D× = D \ {0} contains no points of 
s for any s = (a, b) ∈ U .
Consider the map

h : U × D× × C → M, (a, b, v, c) �→
(

a, b, ℘ (v), 1
2℘

′(v),−ζ(v)− c
)
.

Using the formula (48) we see that the composition g = 
◦h sends (a, b, v, c) to the
point of T with local co-ordinates θa = v and θb = c. This shows that g, and hence
also h, is an open embedding. Moreover g clearly extends to an open embedding
g : U × D × C → T. It will now be enough to show that the pull-back of the third
derivatives (64)–(65) via the map g extend holomorphically over the locus v = 0. But
indeed, if we fix (a, b) and send c and v to 0, we have

q = ℘(v) = v−2 + αv2 + O(v4), r = −v−1 − c + 1
3αv

3 + O(v5),

p = 1
2℘

′(v) = −v−3 + αv + O(v3), p−1 = −v3 − αv7 + O(v9).

The equation p2 = q3 + aq + b implies that a + 5α = 0. It follows that, ignoring
terms of total order at least 2 in c and v, the Joyce function satisfies

− 4�

2π i
(J ◦
) = 2a(p − 3qr + 3q2 p−1r2 + 2ap−1r2 − r3)+ 9b(r − qr2 p−1)

∼ 2a
(
− v−3 + αv − 3(v−2 + αv2)(−v−1 − c + 1

3αv
3)+ 2a(−v3)(v−2)

+3(v−4 + 2α)(−v3 − αv7)(v−2 − 2cv−1 + c2 − 2
3αv

2)

−(−v−3 − 3cv−2 − 3c2v−1 + αv)
)

+9b
(
− v−1 − c − (v−2 + αv2)(v−2 + 2cv−1 − 2

3αv
2)(−v3)

)

∼ 2a(−5αv − 2av)+ 9bc = 2a2θa + 9bθb.

In particular, J is holomorphic along the locus θa = θb = 0. ⊓⊔

4.4 Properties of the Joyce function

The general theory developed in [5] predicts some properties of the Joyce function,
which it is interesting to check explicitly in the example being considered here.

Proposition 4.4 The Joyce function J : T → C of Theorem 4.3 is a meromorphic

function with the following properties:
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(i) it is an odd function in the θi co-ordinates:

J (z1, z2,−θ1,−θ2) = −J (z1, z2, θ1, θ2);

(ii) it is homogeneous of degree −1 in the co-ordinates zi : for all λ ∈ C∗

J (λz1, λz2, θ1, θ2) = λ
−1 · J (z1, z2, θ1, θ2);

(iii) it satisfies the partial differential equation

∂2 J

∂θi∂z j

− ∂2 J

∂θ j∂zi

=
∑

p,q

ǫpq ·
∂2 J

∂θi∂θp

· ∂2 J

∂θ j∂θq

. (79)

Proof For part (i) consider the involution of Remark 3.5(a). It is immediate from (78)
that the Joyce function J (zi , θ j ) changes sign under this transformation. For part (ii)
we consider the C∗-action of Remark 3.5(b) which rescales the variables (a, b, q, p, r)

with weights (4, 6, 2, 3, 1) respectively. Again, it is immediate from (78) that J has
weight −5 for this action. Since the co-ordinates zi and θ j have weights 5 and 0
respectively, this proves the claim.

For part (iii) note first that the isomonodromy connection on π : M → S is by
definition the pull-back of the trivial connection on the projection map π : V × S → S

via the map

(F(�), π) : M → V × S.

In particular it is flat. Writing out the zero curvature condition

[
∂

∂z1
+ 1

�

∂

∂θ1
+ ∂2 J

∂θ1∂θ1

∂

∂θ2
− ∂2 J

∂θ1∂θ2

∂

∂θ1
,

∂

∂z2
+ 1

�

∂

∂θ2
+ ∂2 J

∂θ1∂θ2

∂

∂θ2
− ∂2 J

∂θ2∂θ2

∂

∂θ1

]
= 0

for the flows (77) shows that the partial derivative of (79) with respect to any co-ordinate
θ j vanishes. So in other words, the difference between the two sides of relation (79)
is independent of the co-ordinates θ j .

To complete the proof it will be enough to show that the two sides of (79) both
vanish on the locus θ1 = θ2 = 0. By the calculation given in the proof of Theorem
4.3

1

2π i
· ∂ J

∂θa

∣∣∣
θ1=θ2=0

= 2a2

4�
,

1

2π i
· ∂ J

∂θb

∣∣∣
θ1=θ2=0

= 9b

4�
,

so we find that

∂2 J

∂θa∂b

∣∣∣
θ1=θ2=0

− ∂2 J

∂θb∂a

∣∣∣
θ1=θ2=0

= 2π i

4�2

(
9b

∂�

∂a
− 2a2 ∂�

∂b

)
= 0.

It follows that the left-hand side of (79) vanishes on the locus θ1 = θ2 = 0. But the
right-hand side also vanishes because by part (i) J is an odd function of the θi . ⊓⊔
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4.5 The linear Joyce connection

An interesting output of the general theory developed in [5] is a flat, torsion-free
connection on the tangent bundle of the space S, which we call the linear Joyce
connection. To define it, note that by Theorem 4.3 the function J is holomorphic in a
neighbourhood of the section of the map π : T → S defined by setting θ1 = θ2 = 0.
Proposition 4.4(i) implies that the flows

∂

∂zi

+ ∂2 J

∂θi∂θ1

∂

∂θ2
− ∂2 J

∂θi∂θ2

∂

∂θ1
,

preserve this section, and it follows that their derivatives in the fibre directions are the
flat sections of a linear connection on its normal bundle. This normal bundle can in
turn be identified with the tangent bundle TS via the map

∂

∂θ1
�→ ∂

∂z1
,

∂

∂θ2
�→ ∂

∂z2
.

The resulting connection on TS is given explicitly by the formula

∇ J
∂
∂zi

( ∂

∂z j

)
= −
∑

k,l

ǫkl ·
∂3 J

∂θi ∂θ j ∂θk

∣∣∣
θ=0

· ∂

∂zl

. (80)

For more details on the general definition and properties of the linear Joyce connection
the reader can consult [5, Section 7]. The next result shows that, at least in the particular
context treated in this paper, it is a very natural object.

Theorem 4.5 The linear Joyce connection∇ J is the unique connection on S for which

the co-ordinates (a, b) are flat.

Proof The same argument used to derive the formula (80) shows that in the alternative
co-ordinates (wi , φ j ) used in the proof of Theorem 4.3, the linear Joyce connection
is given by

∇ J
∂

∂wi

( ∂

∂w j

)
= −
∑

k,l

ǫkl ·
∂3 K

∂φi ∂φ j ∂φk

∣∣∣
φ=0

· ∂

∂wl

. (81)

But applying the limiting argument used in the proof of Theorem 4.3 to the equations
(64)–(65) shows that the third derivatives of the function K vanish along the locus
φ1 = φ2 = 0. Thus the right-hand side of (81) vanishes, and the functions wi are flat
for the linear Joyce connection. ⊓⊔
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4.6 The Joyce form

Let us introduce the vector field

E = z1
∂

∂z1
+ z2

∂

∂z2
,

and consider the endomorphism of TS defined by

V (X) = ∇ J
X (E)− X .

General theory developed in [5, Section 7] shows that the bilinear form

g(X ,Y ) = ω
(
X , V (Y )

)

is symmetric, and that both this form, and the operator V , are covariantly constant with
respect to the linear Joyce connection. We call g(−,−) the Joyce form. Note that when
the Joyce form is non-degenerate, the resulting complex metric on S is necessarily
flat, since the associated Levi-Civita connection is the linear Joyce connection ∇ J .

Proposition 4.6 The operator V is given by

V

(
∂

∂a

)
= −1

5
· ∂

∂a
, V

(
∂

∂b

)
= 1

5
· ∂

∂b
,

and the Joyce form is

g = 2π i

5
· (da ⊗ db + db ⊗ da).

Proof The properties of the C∗-action used in the proof of Proposition 4.4 show that

E = z1
∂

∂z1
+ z2

∂

∂z2
= 4

5
· a

∂

∂a
+ 6

5
· b

∂

∂b
.

Using Theorem 4.5 the claims then follow directly from the definitions. ⊓⊔

5 BPS structures

In the last section it was explained that the isomonodromy connection for the family of
deformed cubic oscillators gives an example of a Joyce structure in the sense of [5]. The
remainder of the paper is devoted to showing how the monodromy map, and hence
also the isomonodromy connection, can be derived from much simpler data called
a variation of BPS structures, by solving an infinite-dimensional Riemann-Hilbert
problem.
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In this section we introduce BPS structures and their variations. These axiomatise
the wall-crossing properties of Donaldson-Thomas (DT) invariants under defor-
mations of stability parameters. We then introduce the Riemann-Hilbert problem
associated to a BPS structure. For more details on the contents of this section we
refer the reader to [4].

5.1 BPS structures

The notion of a BPS structure was introduced in [4] to axiomatise the output of
unrefined DT theory. It is a special case of Kontsevich and Soibelman’s notion of a
stability structure in a graded Lie algebra [23]. In this paper we will only need to
consider finite BPS structures, which allows us to make some significant expositional
simplifications compared to the general treatment of [4].

Definition 5.1 A finite BPS structure consists of

(a) a finite-rank free abelian group Ŵ ∼= Z⊕n , equipped with a skew-symmetric form

〈−,−〉: Ŵ × Ŵ → Z;

(b) a homomorphism of abelian groups Z : Ŵ → C;

(c) a map of sets � : Ŵ → Q;
satisfying the following properties:

(i) �(−γ ) = �(γ ) for all γ ∈ Ŵ, and �(0) = 0;

(ii) there are only finitely many classes γ ∈ Ŵ such that �(γ ) �= 0.3

A finite BPS structure (Ŵ, Z ,�) is called non-degenerate if the form 〈−,−〉 is
non-degenerate, and integral if �(γ ) ∈ Z ⊂ Q for all γ ∈ Ŵ.

5.2 The twisted torus

Let (Ŵ, Z ,�) be a finite BPS structure as above. We introduce the algebraic torus

T+ = HomZ(Ŵ,C∗) ∼= (C∗)n,

whose character lattice is Ŵ. We denote its co-ordinate ring by

C[T+] = C[Ŵ] ∼= C[y±1
1 , . . . , y±n

n ],

and write yγ ∈ C[T+] for the character of T+ corresponding to an element γ ∈ Ŵ.
We also consider the associated torsor

T− =
{
g : Ŵ → C∗ : g(γ1 + γ2) = (−1)〈γ1,γ2〉g(γ1) · g(γ2)

}
,

3 For the general notion of a (possibly non-finite) BPS structure the condition (ii) is replaced with a weaker
condition called the support property: see [4, Section 2] for details.
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called the twisted torus. The difference between T+ and T− just has the effect of
introducing signs into various formulae, and can safely be ignored at first reading.

The co-ordinate ring of T− is spanned as a vector space by the functions

xγ : T− → C∗, xγ (g) = g(γ ) ∈ C∗,

which we refer to as twisted characters. Thus

C[T−] =
⊕

γ∈Ŵ
C · xγ , xγ1 · xγ2 = (−1)〈γ1,γ2〉 · xγ1+γ2 . (82)

The torus T+ acts freely and transitively on the twisted torus T− via

( f · g)(γ ) = f (γ ) · g(γ ) ∈ C∗, f ∈ T+, g ∈ T−.

Choosing a base-point g0 ∈ T− therefore gives a bijection

θg0 : T+ → T−, f �→ f · g0. (83)

It is often convenient to choose a base-point in the finite subset

{
g : Ŵ → {±1} : g(γ1 + γ2) = (−1)〈γ1,γ2〉g(γ1) · g(γ2)

}
⊂ T−,

whose points are called quadratic refinements of the form 〈−,−〉.
A class γ ∈ Ŵ is called active if the corresponding BPS invariant �(γ ) is nonzero.

A ray R>0 · z ⊂ C∗ is called active if it contains a point of the form Z(γ ) with
γ ∈ Ŵ an active class. Given a finite and integral BPS structure, we define for each ray
ℓ = R>0 · z ⊂ C∗ a birational automorphism of the twisted torus T− by the formula

S(ℓ)∗(xβ) = xβ ·
∏

Z(γ )∈ℓ
(1− xγ )

�(γ )〈γ,β〉. (84)

The product is over all active classes γ ∈ Ŵ such that Z(γ ) ∈ ℓ. The assumption that
the BPS structure is finite ensures that this is a finite set.

5.3 Variation of BPS structures

The behaviour of DT invariants under changes in stability parameters is controlled by
the Kontsevich-Soibelman wall-crossing formula, which forms the main ingredient in
the notion of a variation of BPS structures [4]. The condition that a family of BPS
structures defines a variation is quite tricky to write down for general BPS structures,
and the finiteness condition of Definition 5.1(ii) will not usually be preserved under
wall-crossing. Nonetheless, for the very special class of BPS structures considered
in this paper, it is possible to give a straightforward formulation of the wall-crossing
formula using birational automorphisms of the twisted torus T−.
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Definition 5.2 Let S be a complex manifold. A collection of finite, integral and non-
degenerate BPS structures (Ŵs, Zs,�s) indexed by the points s ∈ S forms a variation
of BPS structures if

(a) the charge lattices Ŵs form a local system of abelian groups, and the intersection
forms 〈−,−〉s are covariantly constant;

(b) for any covariantly constant family of elements γs ∈ Ŵs , the central charges
Zs(γs) ∈ C vary holomorphically;

(c) consider an acute closed subsector � ⊂ C∗, and for each s ∈ S define the anti-
clockwise composition over active rays in �

Ss(�) =
∏

ℓ⊂�

Ss(ℓ); (85)

then if s ∈ S varies in such a way that the boundary rays of � are never active, the
birational automorphism Ss(�) of the twisted torus Ts,− is covariantly constant.

For part (c) note that the flat connection on the family of lattices Ŵs induces an
Ehresmann connection on the family of associated twisted tori Ts,−, and we are asking
that the birational automorphism Ss(�) is constant with respect to this.

5.4 Riemann-Hilbert problem

Let (Ŵ, Z ,�) be a finite BPS structure with associated twisted torus T−. Given a ray
r ⊂ C∗ we consider the corresponding half-plane

Hr = {� ∈ C∗ : � = z · v with z ∈ r and Re(v) > 0} ⊂ C∗. (86)

We shall be dealing with meromorphic functions

Xr : Hr → T−.

Composing with the twisted characters of T− we can equivalently consider functions

Xr ,γ : Hr → C∗, Xr ,γ (t) = xγ (Xr (t)).

The Riemann-Hilbert problem associated to the BPS structure (Ŵ, Z ,�) depends on
the additional choice of element ξ ∈ T−, which we refer to as the constant term. It
reads as follows:

Problem 5.3 For each non-active ray r ⊂ C∗ we seek a meromorphic function

Xr : Hr → T−,

such that the following three conditions are satisfied:
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(RH1) if two non-active rays r1, r2 ⊂ C∗ form the boundary rays of a convex sector

� ⊂ C∗ taken in clockwise order then

Xr2(�) = S(�)(Xr1(�)),

as meromorphic functions of � ∈ Hr− ∩Hr+ , where S(�) is as in (85);

(RH2) for each non-active ray r ⊂ C∗, and each class γ ∈ Ŵ, we have

exp(Z(γ )/�) · Xr ,γ (�)→ ξ(γ )

as � → 0 in the half-plane Hr ;

(RH3) for each non-active ray r ⊂ C∗, and each class γ ∈ Ŵ, there exists k > 0 such

that

|�|−k < |Xr ,γ (�)| < |�|k,

for � ∈ Hr satisfying |�| ≫ 0.

Note that in constrast to the treatment in [4] we have here allowed the functions
Xr to be meromorphic. The necessity of doing this was explained in [3]. It has the
unfortunate effect that we lose any hope to prove uniqueness of solutions. It would be
interesting to find a natural characterisation of the solutions to the Riemann-Hilbert
problem constructed in this paper.

6 Quadratic differentials

In this section we explain how the trajectory structure of the meromorphic quadratic
differentials (7) define a variation of BPS structures on the space S. This can be
described completely explicitly and corresponds to the Donaldson-Thomas theory
of the A2 quiver. We also discuss the WKB triangulation defined by a saddle-free
quadratic differential. For more details on meromorphic quadratic differentials on
Riemann surfaces we refer the reader to [7].

6.1 Quadratic differentials

Let us consider a meromorphic quadratic differential

φ(x) = ϕ(x)dx⊗2

on the Riemann surface P1 having a single pole of order 7 at the point x = ∞, and
three simple zeroes. It is easy to see [7, Section 12.1] that any meromorphic quadratic
differential of this type can be put in the form

φ(x) = (x3 + ax + b)dx⊗2 (87)
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by applying an automorphism of P1. However it will not always be convenient to do
this in what follows. Note also that care is required, since rescaling x by a fifth root
of unity preserves the form of (87) but changes the pair (a, b).

Away from the zeroes and poles of φ(x) there is a distinguished local co-ordinate
on P1

w(x) = ±
∫ x

∗

√
ϕ(u) du (88)

in terms of whichφ(x) takes the form dw⊗2. Such a co-ordinate is uniquely determined
up to transformations of the form w �→ ±w+c. By definition, the horizontal foliation
determined by φ(x) then consists of the arcs Im(w) = constant. This foliation has
singularities at the zeroes and poles of φ(x). Local computations [30] summarised in
[7, Section 3.3] show that

(i) there are three horizontal arcs emanating from each of the three simple zeroes;

(ii) there are five tangent distinguished directions at the pole x = ∞, and an open
neighbourhood ∞ ∈ U ⊂ P1 such that all horizontal trajectories entering U

approach ∞ along one of the distinguished directions.

Following [7, Section 6] we take the real oriented blow-up of the surface P1 at the
point∞ which is the unique pole of the quadratic differential φ(x). Topologically the
resulting surface S is a disc. The distinguished directions at the pole determine a subset
of five points M ⊂ ∂S of the boundary of this disc; the pair (S,M) is an example of
a marked bordered surface. The horizontal foliation of P1 lifts to a foliation on the
surface S, with singularities at the points M ⊂ ∂S and the zeroes of φ(x).

6.2 Periods and saddle connections

Let us associate to a point s ∈ S the quadratic differential

φs(x) = Q0(x)dx⊗2 = (x3 + ax + b)dx⊗2. (89)

There is a canonically associated double cover

p : Xs → P1, (90)

branched at the zeroes and pole of φs(x), on which there is a well-defined global
choice of square-root of φs(x). This is nothing but the projectivisation of the affine
elliptic curve

X◦
s =
{
(x, y) ∈ C2 : y2 = x3 + ax + b

}
.

considered before. The square-root is the meromorphic differental ydx , which has a
single pole at the point at infinity. There is a well-defined group homomorphism

Zs : H1(Xs,Z)→ C, Zs(γ ) =
∫

γ

√
φs(x) ∈ C. (91)
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Fig. 1 The separating
trajectories of a saddle-free
differential of the form (89)

We shall call a point s ∈ S generic if the image of Zs is not contained in a one-
dimensional real subspace of C.

A horizontal trajectory of φs(x) is said to be of finite-length if it never approaches
the pole x = ∞. In our situation any such trajectory necessarily connects two distinct
simple zeroes of φs(x), and is known as a saddle connection. The inverse image of a
saddle connection under the double cover (90) is a cycle γ , which can be canonically
oriented by insisting that Zs(γ ) ∈ R>0. This gives a well-defined homology class in
H1(Xs,Z). See [7, Section 3.2] for more details.4

More generally we can consider trajectories of the differential φs(x) of some phase
θ ∈ R. By definition these are arcs which make a constant angle πθ with the hor-
izontal foliation. Alternatively one can view them as horizontal trajectories for the
rescaled quadratic differential e−2π iθ · φs(x). Once again, these finite-length trajec-
tories γ : [a, b] → C define homology classes in H1(Xs,Z), with the orientation
convention being that Zs(γ ) ∈ R>0 · eπ iθ .

6.3 Walls and chambers

Given a point s ∈ S, the quadratic differential φs(x) is said to be saddle-free if it
has no finite-length horizontal trajectories. This is an open condition on the space S.
As explained in [7, Section 3.4], the horizontal foliation of a saddle-free differential
splits the surface P1 into a union of domains called horizontal strips and half-planes.
In the present case we obtain five half-planes and two horizontal strips. The resulting
trajectory structure on the blown-up surface S is illustrated in Fig. 1. The crosses
denote zeroes of the differential, and the black dots are the points of M.

Taking one trajectory from the interior of each horizontal strip defines a triangulation
of the marked bordered surface (S,M) called the WKB triangulation (see [7, Section
10.1] for details). In our case the result is the two dashed edges in Fig. 1. Note that
there are exactly two internal edges, and all such triangulations differ by a rotation

4 For the purposes of comparison with the general situation of [7] involving the hat-homology group
H1(X◦s ,Z)−, note that the group H1(Xs ,Z) coincides with its −1 eigenspace under the action of the
covering involution of (90); indeed the +1 eigenspace can be identified with the first homology of the
quotient P1, which vanishes; moreover, puncturing Xs at the inverse image of the pole∞ ∈ P1 also leaves
the first homology unchanged.
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of the pentagon. As explained in [7, Section 3.6], each of the two horizontal strips
contains a unique finite-length trajectory of some phase in the interval (0, 1), and
the corresponding classes in γi ∈ H1(Xs,Z) determine a basis, whose elements are
therefore indexed by the edges of the WKB triangulation.

6.4 Associated BPS structures

There is a variation of BPS structures over the space S naturally associated to the
family of quadratic differentials φs(x) defined by (89).

Definition 6.1 The BPS structure (Ŵs, Zs,�s) associated to a generic point s ∈ S is
defined as follows:

(a) the charge lattice is Ŵs = H1(Xs,Z) with its intersection form 〈−,−〉;
(b) the central charge Zs : Ŵs → C is the map (91);
(c) the BPS invariants �s(γ ) are either 0 or 1, with �s(γ ) = 1 precisely if the

differential φs(x) has a finite-length trajectory of some phase whose associated
homology class is γ ∈ Ŵs .

Remark 6.2 Condition (c) needs modification in the special case that the image of Zs

is contained in a line R · z, and the correct definition of the invariants �s(γ ) at such
non-generic points is quite subtle (see [20, Section 6.2]). This will play no role in
what follows however, since what appears in the Riemann-Hilbert problem are the
automorphisms Ss(�) associated to sectors by the products (85), and by the wall-
crossing formula these are locally constant, and hence determined by their values at
generic points. See the last paragraph of the proof of Proposition 7.1 below.

Suppose that s ∈ S corresponds to a saddle-free and generic differential φs . As
explained in the last subsection, the lattice Ŵs then has a distinguished basis (γ1, γ2) ⊂
Ŵs , indexed by the edges of the WKB triangulation, which can be canonically ordered
by insisting that 〈γ1, γ2〉 = 1. Set zi = Z(γi ) ∈ C. The orientation conventions
discussed above imply that Im(zi ) > 0, and the genericity assumption is the statement
that Im(z2/z1) �= 0.

Proposition 6.3 Take a point s ∈ S, and let (Ŵs, Zs,�s) be the corresponding BPS

structure. Suppose that the differentialφs is saddle-free and generic, and let (γ1, γ2) ⊂
Ŵs be the ordered basis as above. Define zi = Z(γi ) ∈ C∗. Then the BPS invariants

are as follows:

(a) if Im(z2/z1) < 0 then �s(±γ1) = �s(±γ2) = 1 with all others zero;

(b) if Im(z2/z1) > 0 then �s(±γ1) = �s(±(γ1 + γ2)) = �s(±γ2) = 1 with all

others zero.

Proof This could presumably be proved by direct analysis of the trajectory structure
of the differentials φs . Alternatively, it follows from the results of [7], together with
the well-known representation theory of the A2 quiver. In more detail, in the case of
the marked bordered surface (S,M) considered above, the CY3 triangulated category
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Fig. 2 The BPS structures of Proposition 6.3

D(S,M) appearing in [7] can be identified with the derived category D of the Ginzburg
algebra of the A2 quiver [7, Section 12.1]. The main result [7, Theorem 1.2] then shows
that the differentials (89) define stability conditions on this category, and moreover, by
[7, Theorem 1.4], the finite-length trajectories of the differential are in bijection with
the stable objects of the associated stability condition. The result therefore follows
from the easy and well known classification of stable representations of the A2 quiver.
Note that the basis (γ1, γ2) ⊂ Ŵs correspond to the basis of the Grothendieck group
K0(D) given by the classes of the vertex simples. The assumption 〈γ1, γ2〉 = 1 then
corresponds to a quiver with a single arrow from vertex 2 to vertex 1. ⊓⊔

In the situation of Proposition 6.3 there is a quadratic refinement g ∈ Ts,−, defined
by setting

g(γ1) = g(γ2) = −1,

which is unique with the property that g(γ ) = −1 for every active class γ ∈ Ŵs . We
use this element and the map (83) to identify the twisted torus Ts,− with the standard
torus Ts,+. Under this identification the birational automorphism (84) becomes the
birational automorphism of Ts,+ defined by

S(ℓ)∗(yβ) = yβ ·
∏

Z(γ )∈ℓ
(1+ yγ )

�(γ )〈γ,β〉.

Once we have Proposition 6.3, the fact that the BPS structures of Definition 6.1
form a variation of BPS structures comes down to the wall-crossing formula

Cγ1 ◦ Cγ2 = Cγ2 ◦ Cγ1+γ2 ◦ Cγ1 , (92)

where for each classα ∈ Ŵs we defined a birational automorphism Cα : Ts,+ ��� Ts,+
by

C∗
γ (yβ) = yβ · (1+ yγ )

〈γ,β〉.

This identity is familiar in cluster theory, and can be viewed as the semi-classical limit
of the pentagon identity for the quantum dilogarithm.
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Fig. 3 A triangulation of the
marked bordered surface (S,M)

7 The solution to the Riemann-Hilbert problem

In this section we first introduce the Fock-Goncharov co-ordinates on the monodromy
space V . These are birational maps to the torus (C∗)2 and depend on a choice of
triangulation of the pentagon. We then prove that, when composed with these maps,
the monodromy map for the deformed cubic oscillator gives a solution to the Riemann-
Hilbert problem associated to the BPS structures of Sect. 6. In particular, this gives a
proof of Theorem 1.6 from the introduction. Most of the content of this section is due
to Gaiotto, Moore and Neitzke [17, Section 7].

7.1 Fock-Goncharov co-ordinates

Let (S,M) be a marked bordered surface of the kind appearing in Sect. 6, namely a
disc with five marked points on the boundary. We call two points p, q ∈ M adjacent
if they lie in the closure of the same connected component of ∂S \M. We introduce
the space

V(S,M) =
{
ψ : M → P1 : ψ(p) �= ψ(q) for all adjacent points p, q ∈ M

}
.

Let us now choose a triangulation T of the surface (S,M) as in Fig. 3. In particular,
the vertices of T are the points of M. There are precisely five possible choices for T ,
all related by rotations. We denote by E(T ) the set of internal edges of T : this set
contains exactly two elements. Define

VT (S,M) ⊂ V(S,M)

to be the open subset consisting of those points for which the elements ψ(p) ∈ P1

associated to the two ends of any edge of T are distinct.
For each internal edge e ∈ E(T ) there is a holomorphic map

Xe : VT (S,M)→ C∗ (93)
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obtained by taking the cross-ratio

Xe = CR(a1, a2, a3, a4) =
(a1 − a2)(a3 − a4)

(a1 − a4)(a2 − a3)
,

of the four points ai = ψ(i) ∈ P1 corresponding to the vertices of the two triangles
adjoining the edge e. More precisely, the points ψ(i) should be taken in anti-clockwise
order starting with one of the two ends of e: there are two possible such orderings, but
the two choices give the same value for the cross-ratio.

Combining the maps Xe associated to the two internal edges of T gives a holomor-
phic map

XT : VT (S,M)→ (C∗)E(T ) ∼= (C∗)2.

The invariance property of the cross-ratio shows that this descends to the quotient
space

VT (S,M) = VT (S,M)/PGL2 ⊂ V (S,M) = V(S,M)/PGL2,

and it is easy to see that the resulting map

XT : VT (S,M)→ (C∗)E(T ) ∼= (C∗)2 (94)

is an isomorphism. The components of this map are called the Fock-Goncharov co-
ordinates for the triangulation T .

7.2 Solution to the Riemann-Hilbert problem

Take a point s ∈ S and consider the corresponding quadratic differential (89). We
would like to solve Problem 5.3 for the associated BPS structure (Ŵs, Zs,�) of Defi-
nition 6.1. As explained in Sect. 6.4, there is a distinguished quadratic refinement of
the form 〈−,−〉s , and we can use the associated map (83) to identify the twisted torus
Ts,− with the standard torus Ts = Ts,+. The Riemann-Hilbert problem then depends
on a choice of a constant term ξ ∈ Ts , and involves constructing meromorphic maps

Xr : Hr → Ts (95)

for all non-active rays r ⊂ C∗, where Hr is the half-plane defined in (86).
Let us assume first that the chosen point ξ ∈ Ts lies in the image of the abelian

holonomy map 
s : Ms → Ts , so that we can write ξs = 
s(m) for some point
m ∈ Ms . We will construct a suitable map (95) by sending � ∈ Hr to the Fock-
Goncharov co-ordinates of the monodromy of the deformed cubic oscillator (1)–(2)
defined by the point m ∈ M . More precisely, we will take the Fock-Goncharov co-
ordinates defined by the WKB triangulation of the quadratic differential

λ
−2 · Q0(x)dx⊗2 = λ

−2 · (x3 + ax + b) · dx⊗2, (96)
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where λ ∈ r is an arbitrary point of the given ray. Note that the assumption that the
ray r ⊂ C∗ is non-active is equivalent to the statement that the differential (96) is
saddle-free for λ ∈ r .

One confusing point requires a little care. For each λ ∈ C∗ let us denote by
(S(λ),M(λ)) the marked bordered surface determined by the rescaled differential
(96). We can always take the underlying surface S(λ) to be the unit disc in C, and
the marked points M(λ) are then positive real multiples of the fifth roots of λ

2 (see
for example [2, Section 3.2]). Given a ray r ⊂ C∗, we will also use the notation
(S(r),M(r)) for the marked bordered surface corresponding to an arbitrary point
λ ∈ r . It is important to note that if two rays r1, r2 ⊂ C∗ lie in the same half-plane
then there is a canonical identification between the two surfaces (S(ri ),M(ri )). In
concrete terms, this is because the fifth root function is single-valued on any given
half-plane.

Returning to our non-active ray r ⊂ C∗, we can consider the associated WKB
triangulation T (r) of the marked bordered surface (S(r),M(r)). Since the internal
edges of T (r) are labelled by basis elements of the group Ŵs , the map (94) can be
interpreted as a birational isomorphism

XT (r) : V (S(r),M(r)) ��� T+. (97)

On the other hand, as in [2, Section 5.3], the Stokes sectors of the Eq. (7) are in
natural bijection with the points of M(�). As discussed above, since � ∈ Hr , there is a
canonical identification between the surfaces (S(r),M(r)) and (S(�),M(�)). We can
then compose the monodromy map

F : Hr → V (S(r),M(r)), � �→ F(�)(m),

with the map (97) to obtain the required map Xr : Hr → Ts . We now proceed to check
the conditions (RH1) – (RH3) of Problem 5.3.

7.3 Jumping

Let us start with the jumping condition (RH1). Take a point s ∈ S and let ℓ ⊂ C∗ be
an active ray for the corresponding BPS structure (Ŵs, Zs,�s). Consider non-active
rays r− and r+ which are small anti-clockwise and clockwise deformations of the ray
ℓ. We can identify the marked bordered surfaces (S(r±),M(r±)) associated to the
rays r± with the surface (S(ℓ),M(ℓ)) as above, and hence also identify the spaces
V (r±) with the fixed space V (ℓ). Let T± = T (r±) be the WKB triangulations of the
surface (S(ℓ),M(ℓ)) defined by the non-active rays r±, and let XT± : V (ℓ) ��� T be
the associated Fock-Goncharov co-ordinates.

Proposition 7.1 The two systems of co-ordinates are related by

XT+ = S(ℓ) ◦ XT− .
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Fig. 4 Flipping the triangulation: first case

Proof Suppose first that s ∈ S is generic. For λ ∈ ℓ the differential (96) has a unique
saddle connection, and the WKB triangulations T± for the saddle-free differentials
(96) corresponding to λ± ∈ r± differ by a flip in a single edge. This situation is
discussed in detail in [7, Section 10.3].

Without loss of generality we can assume that the triangulation T+ is as in Fig. 3.
There are two cases, depending on which edge of the triangulation is being flipped.
These are illustrated in Figs. 4 and 5. We label the vertices of the pentagon in clockwise
cyclic order as shown. In each case, the left-hand picture illustrates T−, and the right-
hand picture is T+. The two edges e+1 , e+2 of the triangulation T+ are labelled by
classes γ1, γ2 ∈ Ŵ. Since e+1 , e+2 appear as adjacent edges in clockwise order in the
unique triangle of T+ which contains them both, the sign correction to [7, Lemma
10.3] mentioned in the proof of Proposition 6.3 shows that 〈γ1, γ2〉 = 1. Let us now
consider the two cases in turn.

In the first case, illustrated in Fig. 4, the edge e+1 is being flipped. According to
[7, Proposition 10.4], the edges e−1 , e−2 are labelled by the classes −γ1, γ1 + γ2. The
Fock-Goncharov co-ordinates are

X+
1 = X∗

T+(yγ1) = CR(a5, a1, a2, a3), X+
2 = X∗

T+(yγ2) = CR(a5, a2, a3, a4),

on the right, whereas on the left we have

X−
1 = X∗

T−(y−γ1) = CR(a1, a2, a3, a5) = (X+
1 )−1,

X−
2 = X∗

T−(yγ1+γ2) = CR(a5, a1, a3, a4) = X+
2 ·
(
1+ (X+

1 )−1)−1
,

where we used the easily-checked identity

CR(a5, a1, a3, a4) = CR(a5, a2, a3, a4) ·
(
1+ CR(a5, a1, a2, a3)

−1)−1
.

Thus we have

X∗
T+(yγ1) = X∗

T−(yγ1), X∗
T+(yγ2) = X∗

T−

(
yγ2(1+ yγ1)

)
.
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Fig. 5 Flipping the triangulation: second case

Consider the central charges Z± = λ± · Zs with λ± ∈ r±. By definition of the
classes γi ∈ Ŵ associated to the triangulation T+ we have Im Z+(γ1) > 0. Since the
rotation from λ ∈ r− to λ ∈ r+ is clockwise, the central charges λ

−1 · Z(γ ) rotate
anti-clockwise, and it follows that for λ ∈ ℓ the central charge λ

−1 · Z(γ1) lies on the
positive real axis. Thus the corresponding wall-crossing automorphism S(ℓ) = Cγ1

satisfies

S(ℓ)∗(yγ1) = yγ1 , S(ℓ)∗(yγ2) = yγ2 · (1+ yγ1),

and we therefore conclude that X∗
T+ = X∗

T− ◦ S(ℓ)∗ as required.

In the second case, illustrated in Fig. 5, the edge e+2 is being flipped. This time [7,
Proposition 10.4] shows that the edges e−1 , e−2 are labelled by the classes γ1,−γ2. The
Fock-Goncharov co-ordinates on the right are as before. On the left they are

X−
1 = X∗

T−(yγ1) = CR(a5, a1, a2, a4) = X+
1 · (1+ (X+

2 )),

X−
2 = X∗

T−(y−γ2) = CR(a4, a5, a2, a3) = (X+
2 )−1,

where we used

CR(a5, a1, a2, a4) = CR(a5, a1, a2, a3) ·
(
1+ CR(a5, a2, a3, a4)

)
.

Thus we have

X∗
T+(yγ1) = X∗

T−

(
yγ1(1+ yγ2)

−1), X∗
T+(yγ2) = X∗

T−(yγ2).

This time the wall-crossing automorphism S(ℓ) = Cγ2 is given by

S(ℓ)∗(yγ1) = yγ1 · (1+ yγ2)
−1, S(ℓ)∗(yγ2) = yγ2 ,

so we again find that X∗
T+ = X∗

T− ◦ S(ℓ)∗.
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Consider now the case when s ∈ S is not generic. The corresponding BPS structure
has exactly two active rays±ℓ. Let us deform the point s ∈ S to a nearby generic point
t ∈ S. Under this deformation the ray ℓ splits into two or three rays ℓi as in Fig. 2, but
for t close enough to s these rays ℓi will be contained in the sector bounded by the
non-active rays r±. The triangulations associated to the rays r± do not change under
the deformation, and the wall-crossing formula (85) shows that the automorphism
Ss(ℓ) is the clockwise composition of the automorphisms St (ℓi ). The result for the
non-generic point s ∈ S now follows by applying the same result for the generic point
t ∈ S to each of the rays ℓi . ⊓⊔

7.4 Behaviour as � → 0

To verify condition (RH2) of Problem 5.3 we must show that the map

Xr : Hr → Ts, Xr (�) = XT (r)(F(�)(m)),

has the correct asymptotics as � → 0. As explained above, given an edge e of the WKB
triangulation for the differential (96), there is a corresponding class γe ∈ Ŵs defined
by the saddle connection crossing the associated horizontal strip. The statement we
want is that

Xr (γe)(�) ∼ exp(−Z(γe)/�) · ξ(γe),

as � → 0 in the half-plane Hr . To simplify matters a little, we can, by applying the
C∗ action on M used in the proof of Proposition 4.4, assume that the ray r = R>0 is
the positive real axis, and hence that the differential φs is saddle-free.

Let us then state the required result as concretely as possible. Consider a deformed
cubic oscillator of the form (1)–(2), and assume that the corresponding quadratic
differential Q0(x)dx⊗2 on C is saddle-free. The horizontal trajectory structure of this
differential then defines a WKB triangulation of the regular pentagon with vertices at
the fifth roots of unity. Moreover, each of the two edges ei of this triangulation T is
naturally labelled by a class γi in the homology group H1(Xs,Z) of (10). We set

zi =
∫

γi

√
Q0(x) dx ∈ C, ξi = exp

(∫

γi

−Q1(x)dx

2
√

Q0(x)

)
∈ C∗.

By definition of the orientation of the classes γi we have Im(zi ) > 0.
When � ∈ R>0 the Stokes sectors for our Eq. (1) are centered on the rays spanned

by the fifth roots of unity. Thus for all Re(�) > 0 we can continuously identify the
Stokes sectors with the vertices of the triangulation T . Using this identification, we
let X i (�) denote the Fock-Goncharov co-ordinate corresponding to the edge ei of the
triangulation T , for the point of the monodromy manifold defined by the subdominant
solutions of the Eq. (1).
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Theorem 7.2 The Fock-Goncharov co-ordinates X i (�) satisfy

exp(zi/�) · X i (�)→ ξi ,

as � → 0 in any closed subsector of the half-plane Re(�) > 0.

We defer the proof of this result to the Appendix (written by Davide Masoero).

7.5 Behaviour as � → ∞

The final step is to check the condition (RH3). In fact we will prove more, namely
that, for a fixed point m ∈ M , the point F(�)(m) of the monodromy manifold tends
to a well-defined limit point. To see this, we will use the homogeneity of the potential
(2) under the C∗ action of Remark 3.5(b).

Proposition 7.3 For any point m ∈ M the monodromy F(�)(m) ∈ V has a well-

defined limit as � →∞ in a fixed half-plane. This limit is independent of m ∈ M and

is one of the two fixed points of the Z/5Z action of Remark 2.2.

Proof Let us consider the partial compactification

M̄ =
{
(a, b, q, p, r) ∈ C5 : p2 = q3 + aq + b

}

of the space M , obtained by dropping the vanishing discriminant condition. We denote
by 0 ∈ M̄ the point where all co-ordinates vanish. For a given � ∈ C∗ the monodromy
map F(�) extends to a holomorphic map

F̄(�) : M̄ → V ,

subject to the usual warning that this depends on a choice of fifth root of �2.
Consider the action of C∗ on M̄ of Remark 3.5(b) which scales the co-ordinates

(a, b, q, p, r) with weights (4, 6, 2, 3, 1) respectively. Note that if we also rescale �

with weight 5, and x with weight 2, then the Eq. (1) is unchanged. Thus for all points
(a, b, q, p, r) ∈ M̄

F̄(�)(a, b, q, p, r) = F̄(λ5�)(λ4a, λ6b, λ2q, λ3 p, λ1r).

Taking λ
5 · � = 1, and sending � → ∞ in a fixed half-plane, it follows that the

monodromy of F(�)(m) tends to the finite limit F̄(1)(0), which is the monodromy of
the equation

y′′(x) =
(

x3 + 3

4x2

)
y(x).

For the final claim, note that the above C∗ action induces an action of the fifth roots
of unity μ5 ⊂ C∗, which leaves � invariant. Since this action rescales x by an element
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of μ5, the monodromy map F(�) intertwines this action with the Z/5Z action on V

of Remark 2.2. But the special point 0 ∈ M̄ is clearly fixed by the μ5 action, so its
image is also a fixed point. ⊓⊔
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Appendix A: Asymptotic analysis of the functions Xi(�) by Davide
Masoero

The Appendix is dedicated to the computation of the full asymptotic expansion of the

function e
zi
� X i (�), i = 1, 2. As a particular case, we prove Theorem 7.1 of the main

text.
The Appendix is organised as follows. In Sect. A.2 we study the asymptotic expan-

sion of solutions of the deformed cubic oscillator according to the Complex WKB
method. In Sect. A.5 we lift the formal WKB solutions to the elliptic curve Xs punc-
tured at the branch points. Finally, in Sect. A.6 we prove Theorem A.1. We made
this Appendix self-contained. The proofs are lengthy but complete, and the reader
experienced in the complex WKB method may want to skip all proofs until the last
section.

A.1 Statement of the result

In order to state the our main result, we begin by fixing some notation. Recall that
we deal with the small � limit of the deformed cubic oscillator, y′′(x) = Q(x),
Q(x) = �−2 Q0(x)+ �−1 Q1(x)+ Q0(x), where

Q0= x3 + ax + b, Q1(x)=
p

x − q
+ r , Q2(x)=

3

4(x − q)2 +
r

2p(x − q)
+ r2

4p2 .

(98)

Here r is an arbitrary complex number, while the parameters (q, p) are assumed to
belong to the affine elliptic curve X◦

s = {p2 = Q0(q)}, punctured at the three branch
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points p = 0. We call B the set of the three branch points. The projectivization of the
affine elliptic curve is called Xs , and it is endowed with the canonical double cover
p : Xs → P1, which is branched at B and at infinity.

The asymptotic expansion of the Fock-Goncharov co-ordinates is naturally written
in terms of complete elliptic integrals over Xs . The following meromorphic abelian
differentials α(x) dx on Xs are relevant to our analysis

α0(x) =
√

Q0(x), α1(x) = − Q′
0(x)

4Q0(x)
+ α̃1, with α̃1 =

Q1(x)

2
√

Q0(x)

α2(x) =
1

2
√

Q0(x)

(
Q2(x)− α′1(x)− α2

1(x)
)

αk(x) = − 1

2
√

Q0(x)

(
α′k−1(x)+

m−1∑

j=1

α j (x)αk− j (x)
)
, k ≥ 3. (99)

The cycles along which the above differentials are evaluated are the cycles γi , i =
1, 2 defined in the main text.5

Finally, we use the following formalism in dealing with asymptotic expansions
in sectors of the complex � plane. For every θ ∈ [0, π

2 [ and �θ > 0, we let Sθ,�θ

denote the sector {| arg �| ≤ θ, 0 < |�| ≤ �θ }. For any formal power series A =∑
k≥0 ak�k ∈ C[[�]], we denote by Am :=

∑m
k=0 ak�k its m − th truncation.

Definition A.1 Let f be a function on the sector Re � > 0, and A a formal power
series. We say that f is asymptotic to A, and we write f ≈ A on Re � > 0, if for
every θ ∈ [0, π

2 [ there exists a sequence of positive constants �θ , Cθ,m,m ≥ 0 such
that | f (�)− Am(�)| ≤ Cθ,m |�|m+1 for all � ∈ Sθ,�θ

.

Theorem A.1 Assume that Q0 is saddle-free. The functions e
zi
� X i (�), i = 1, 2 have

the following asymptotic expansion

e
zi
� X i (�) ≈ ξi exp

( ∞∑

k=1

�kCk,i

)
on Re � > 0, (100)

where

zi =
∫

γi

α0(x)dx, ξi = e
−
∫
γi

(
α̃1(x)+ 1

2(x−q)

)
dx

, Ck,i = −
∫

γi

αk+1(x) dx, k ≥ 1.

(101)

5 There is a subtle difference with respect to the main text relative to the cycles γi , i = 1, 2. In the
main text γ1,2 are elements (a basis of) H1(Xs ,Z). In our setting, they are elements of the hat-homology
H1(X◦s \ B,Z)−; this is the −1 eigenspace of H1(X◦s \ B,Z) under the action of the elliptic involution
p → −p, as defined in [7]. The embedding ι : X◦s \ B → Xs induces an isomorphism ι∗ : H1(X◦s \
B,Z)− → H1(Xs ,Z); this follows from the same reasoning used in the main text, in the footnote in Sect.
6.2, to show that H1(X◦s ,Z)− and H1(Xs ,Z) are isomorphic. Under the isomorphism ι∗, the cycles γ1,2
of this Appendix coincide with the ones defined in the main text.

123



On the monodromy of the deformed...

In particular,

lim
�→0

e
zi
� X i (�) = ξi in any closed subsector of Re � > 0.

Remark A.2 Before we tackle the proof of the Theorem, we check that all terms in the
asymptotic expansions (101) attain the same value for every path γ in the homology
class γi ∈ H1(X◦

s \ B,Z)−, i = 1, 2, even though the forms αk are possibly singular
at the points (q,±p).

This is indeed the case. In fact,

(k = 0) The only singular point of α0(x)dx is ∞. Furthermore its residue is zero.

(k = 1) e
−
∫
γi

(
α̃1(x)+ 1

2(x−q)

)
dx

is well-defined, since all residues of the form
(
α̃1(x)+

1
2(x−q)

)
dx are integer-valued, as it is shown in the main text after formula

(42).
(k ≥ 2) For the forms αk(x)dx, k ≥ 2, the residue at (q,±p) vanishes, see Corollary

A.12 below.

A.2 WKB analysis of the deformed cubic oscillator

Our approach is based on transforming a linear ODE of the second order into an
integral equation of Volterra type, following [13]: We consider a second order scalar
linear ODE of the form

y′′(x) = Q(x)y(x), x ∈ C (102)

where Q(x)may depend on additional parameters, and a putative approximate solution
Y (x), which we suppose to be of such a form that

u(x) = y(x)

Y (x)
(103)

is well-defined and approximately 1 in a certain domain of C to be later specified.
Defining the forcing term

F(x) = Q(x)− Y ′′(x)

Y (x)
(104)

the Eq. (102) for y(x), when rewritten in terms of the function u(x) defined by (103),
becomes

d

dx

(
Y 2(x)u′(x)

)
− Y 2(x)F(x)u(x) = 0 (105)

We fix a point x ′ in the Riemann sphere, the boundary conditions u′(x ′) = 0, u(x ′) =
1, and a piece-wise smooth integration path γ connecting x ′ to another point x ∈ C.
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Integrating twice Eq. (105), u(x) is proven to solve the following integral equation

u(x) = 1−
∫ x

x ′,γ
K (x, s)F(s)u(s)ds , K (x, s) =

∫ x

s,γ

Y 2(s)

Y 2(r)
dr , (106)

provided the above integral converges absolutely.
Conversely, given any continuous solution u(x) of the latter integral equation, the

function y(x) := u(x)Y (x) solves (102) and satisfies the (possibly singular) Cauchy
problem

lim
x→x ′,x∈γ

y(x)

Y (x)
= 1, lim

x→x ′,x∈γ

y′(x)

Y ′(x)
= 1

Remark A.3 Given a solution u of (106), the corresponding solution y of (102) is a
priori only defined on the trajectory of the curve γ . It can however be analytically
extended to any open simply connected domain of analyticity of Q which intersects
the trajectory of γ . To be more precise: let D ⊂ C be an open simply connected
domain such that Q|D is analytic, and assume that, for some t1 < t2, γ (t) ∈ D for all
t ∈]t1, t2[; there exists a unique solution ŷ : D → C such that ŷ(γ (t)) = u(γ (t)) for
all t ∈]t1, t2[.

A.3 FormalWKB solutions

We are interested in studying the small � limit of the equation y′′(x) = Q(x) where
Q(x) = �−2 Q0(x)+ �−1 Q1(x)+ Q0(x), as per (98).

The m − th WKB approximation, with m ≥ 0, is provided by the function

Ym(x; x ′) = exp

{
�−1

m+1∑

k=0

∫ x

x ′
�kαk(s)ds

}
, (107)

where the forms αk(x)dx are recursively determined by the following requirement on
the forcing term

Fm := Q(x)− Y ′′m(x)

Ym(x)
= O(�m). (108)

A simple computation shows that the forms αk are given by Eq. (99), and that

F0(x) = α2
1(x)+ α′1(x)− Q2,

Fm(x) = �m

(
α′m+1(x)+

2m∑

k=m

�k−m

2m−k∑

l=0

αm+1−lαk+1−m+l

)
. (109)

The following Lemma will be useful in the proof of the main result.
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Lemma A.4 The forms α̃1dx, αk(x)dx, k ≥ 2 and F̂m := Fm(x)√
Q(x)

dx,m ≥ 0 are

holomorphic on Xs \ V where V = B ∪ {(q, p), (q,−p)}.

Proof The forms under consideration are well-defined and meromorphic on Xs since
they are represented by the formula β(x)dx with β(x) = R(x,

√
Q0(x)) for some

rational function R. Because of formula (99), they are manifestly holomorphic on
Xs punctured at V and at ∞. Hence the thesis is proven if they are shown to be
holomorphic at ∞.

Recall that a meromorphic form on Xs , written as β(x)dx , is regular at ∞ if the
degree of β(x) at ∞ is less or equal than − 3

2 (in fact a good local parameter at ∞
is τ = x−

1
2 so that dx = −2x

3
2 dτ ). Let dk denote the degree of αk(x) at ∞. After

formula (99) we have that d1 = −1, deg α̃1 = − 3
2 , d2 = − 3

2 ; moreover, we recursively
obtain d2k+1 = −1− 3(2k− 1), and d2k+2 = d2k+1 − 1

2 . Let d̂m denote the degree of
Fm (x)√

Q(x)
at ∞. After formula (109), we have that d̂0 = − 3

2 and, recursively, d̂k = dk+2.
The thesis is proven. ⊓⊔

A.4 WKB estimates

Our method of analysis of the deformed cubic oscillator is based on the study of the
integral Eq. (106), in the case the approximate solution is the formal WKB solution
Ym(x; x0) and the forcing term is Fm(x), as defined by formulas (107) and (109).

In order to cosntruct a solution of (102) using the integral Eq. (106), we first need to
choose an integration path γ in such a way that the integral equation admits a solution
u which converges uniformly to 1, as � → 0, in all sectors of the form � ∈ Sθ,�θ

with
θ ∈ [0, π

2 [.
The complex WKB method provides such a solution whenever the integration path

γ : [0, 1] → P1 satisfies the following inequality in the sector Re � > 0

∣∣∣∣arg �−1
∫ t

t ′

√
Q0(γ (s))γ̇ (s)ds

∣∣∣∣ <
π

2
, ∀t, t ′ ∈]0, 1[ such that 0 < t ′ < t < 1,

(110)

for one of the two choices of
√

Q0.
It is straightforward to see that the only paths which satisfy inequality (110) are

the horizontal trajectory of Q0dx⊗2, since these are the steepest descent paths for
the function Re w, where w(x) :=

∫ x √
Q0(s)ds (equivalently the arcs along which

Im w is constant). More precisely, the horizontal trajectories that serve our purposes
are those horizontal trajectories that can be prolonged indefinitely without crossing
any zero of Q0. These admit a maximal extension to a simple closed Jordan curve
γ := γk,k′ : [0, 1] → P1, that satisfies the following three Properties

(P1) As t → 0, γ (t) is asymptotic to the ray of argument 2πk
5 , for some k ∈ Z.

(P2) As t → 1, γ (t) is asymptotic to the ray of argument 2πk′
5 , for some k′ ∈ Z,

k �≡ k′ mod 5.
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(P3)
|γ̇k,k′ (t)|
|γk,k′ (t)|

→ 1 as t → 0 or t → 1, which implies that
∫ 1

0 | f (γk,k′(t))γ̇k,k′(t)|dt

converges for every function f continuous on the support of γk,k′ , which decays
at ∞ as x−1−ε for some ε > 0.

Properties (1,2) above were recalled in Section 6.1 of the main text. Property (3)

follows rather directly from the expansion w = 2
5 x

5
2 + O(x

1
2 ); see [30, §7.3] for a

proper proof.
We notice that the set of horizontal trajectories is naturally partitioned into subsets

of trajectories with the same end points. Hence the following definition is quite natural.

Definition A.5 For every k, k′ ∈ Z, we denote by Ŵk,k′ the set of oriented horizontal
trajectories leaving ∞ parallel to the ray of argument 2πk

5 and arriving at ∞ parallel

to the ray of argument 2πk′
5 . Every element of Ŵk,k′ is endowed with a parametrisation

γ : [0, 1] → P1, satisfying the properties P(1,2,3) listed above. We denote by the
same symbol γ an oriented trajectory and its parametrisation.

Remarks A.6 (i) For every k, k′, the set Ŵk,k′ ∼= Ŵk′,k is either empty or diffeo-
morphic to the real line. The set C \ ∪k �=k′{x ∈ γ, γ ∈ Ŵk,k′} is known as
the anti-Stokes complex. It is the union of the roots of Q0 with the horizontal
trajectories emanating from them.

(ii) Given a point q ∈ C \ {Q0(x) = 0}, it belongs to at most one curve γ ∈ Ŵk,k′ .
If q belongs to a curve γq ∈ Ŵk,k′ , then this curve separates Ŵk,k′ \ γq into two
non-empty disjoint subsets. A curve belonging to one subset is homotopic in
P1 \ {q} to any other curve in the same subset, and not-homotopic to any curve
belonging to the complementary subset.

(iii) If k′ = k ± 1, the set Ŵk,k′ is not empty and moreover

inf
γ∈Ŵk,k±1

∫ 1

0
| f (γ (t))γ̇ (t)|dt = 0

for every function f that is defined on a neighbourhood of ∞, which decays as
x−1−ε for some ε > 0.

(iv) The condition Q0(x)dx⊗2 is saddle free can be rephrased as follows: there exists
a k such that both Ŵk,k+2 and Ŵk,k−2 are not empty.

In order to prove our main result, we need to relax inequality (110) to allow for slightly
more general integration curves.

Definition A.7 For every k, k′ ∈ Z and any θ ∈ [0, π
2 [, we denote by Ŵθ

k,k′ the set

of curves γ : [0, 1] → P1, satisfying the properties (P1,P2,P3) of the horizontal
trajectories, and moreover such that there exists an εγ > 0 such that

∣∣∣∣arg
∫ t

t ′

√
Q0(γ (s))γ̇ (s)ds

∣∣∣∣ ≤
π

2
− θ − εγ , ∀t ′ < t (111)

for one of the two choices of
√

Q0(x).
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The great advantage of relaxing (110)–(111) is that we are able to deform the integra-
tion paths. More precisely, we have the following Lemma.

Lemma A.8 Suppose that Ŵk,k′ is not-empty. For any γ ∈ Ŵk,k′ such that q /∈ γ , and

any θ ∈ [0, π
2 [, there exists a γθ ∈ Ŵθ

k,k′ satisfying the following properties:

• γθ is homotopic to γ in P1 \ {{Q0(x) = 0} ∪ {q}};
• there exist 0 < t1 < t2 < 1 such that arg γθ (t) = 2πk

5 for all t ∈]0, t1] and

arg γθ (t) = 2πk′
5 for all t ∈ [t2, 1[.

Proof The easy proof is left to the reader. ⊓⊔

We have introduced the integration curves which we will use to define the integral
Eq. (106) and to prove Theorem A.1. Before dealing with the analysis of (106), we
need a last preparatory lemma.

Lemma A.9 Let β(x)dx be one of the forms considered in Lemma A.4: namely β is

either α̃1, or αk k ≥ 2, or F̂k , k ≥ 0. Then

∫ 1

0
|β(γ (t))β̇(t)|dt <∞, ∀γ ∈ Ŵθ

k,k′ such that q /∈ γ.

Proof It follows from Lemma A.4 and Property (3) of the paths Ŵθ
k,k′ . ⊓⊔

We now prove the fundamental estimate underlying the complex WKB method.

Proposition A.10 Fix a θ ∈ [0, π
2 [, a γ ∈ Ŵθ

k,k′ such that q /∈ γ , a t0 ∈]0, 1[ and the

branch of
√

Q0(x) in such a way that limt→0 Re
∫ t0

t

√
Q0(γ (t))γ̇ (t)dt = ∞.

For any �θ > 0, there is a sequence of positive constants Cm,m ≥ 0 - depending

on θ, γ - and a unique sequence of solutions yk,m(x) of the deformed cubic oscillator

satisfying the following inequality

sup
t∈[0,1]

∣∣∣∣
yk,m(γ (t))

Ym(γ (t), γ (t0))
− 1

∣∣∣∣ ≤ Cm |�|m+1, ∀� ∈ Sθ,�θ
(112)

where Ym(x; γ (t0)) is the formal WKB solution defined by formula (107) with x =
γ (t), x ′ = γ (t0).

Moreover, the solutions yk,m satisfy the following properties

(1) lim|x |→∞ yk,m(ei 2πk
5 |x |) = 0. Equivalently, yk,m(x) is subdominant in the k-th

Stokes sector.

(2) yk,m(x) = Dm yk,0(x), with Dm = exp
(
−
∑m+1

k=2 �k
∫ t0

0 αk(γ (t)) ˙γ (t)dt
)
.

(3) lim|x |→∞ |yk,m(ei 2πk′
5 |x |)| = ∞. Equivalently, yk,m(x) is dominant in the k’-th

Stokes Sector.

Proof We introduce an order relation on γ : v ≤ x if v = γ (s), x = γ (t) and
s ≤ t . We use the following convention:

∫ γ (t)
γ (s),γ f (v)dv :=

∫ t

s
f (γ (t ′))γ̇ (t ′)dt ′,

and
∫ γ (t)
γ (s),γ | f (v)dv| :=

∫ t

s
| f (γ (t ′))γ̇ (t ′)|dt ′.
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According to the general theory we provide the solution yk,m (hence we prove

its existence) by analysing the integral Eq. (106) for the ratio u(x) := yk,m (x)

Ym(x)
. For

convenience we rewrite the integral equation in the following form

u(x) = 1− �

∫ x

∞,γ

K̂m(x, v)F̂m(v)u(v)dv, (113)

where K̂m(x, v) = �−1√Q0(v)
∫ x

v,γ

Y 2
m(v)

Y 2
m (r)

dr , and F̂m(v) = Fm (v)√
Q0(v)

with Fm(x) as

defined in (109).
We divide the analysis of the integral equation (113) in two steps

(1) We show the estimate: For any given θ < π
2 , if |�| is smaller than an arbitrary, but

fixed, constant �θ > 0, there exists a Cm > 0 such that |K̂m(x, v)| ≤ Cm for all
x, v ∈ γ, x ≤ v.

(2) We use the above estimate on |K̂m(x, v)| to study the integral equation and prove
the thesis.

Step 1. In order to estimate K̂m(x, v) we need to control the integral
∫ x

v,γ

Y 2
m (v)

Y 2
m (r)

dr ,

where Ym is the formal WKB solution. If m ≥ 1, the integral
∫ x

v,γ

Y 2
m (v)

Y 2
m (r)

dr cannot be

computed in close form. To overcome this difficulty we factorise Ym(x) as Y (x)Tm(x),
where Y is an unbounded function such that

∫
Y−2(r)dr can be computed in closed

form, and Tm is a bounded function (with bounded derivatives).
Explicitly, we make the following choice

Y (x) = exp
( ∫ x

x ′,γ
�−1
√

Q0(w)− Q′
0(w)

4Q0(w)
dw
)
,

Tm(x) = exp
( ∫ x

x ′,γ
α̃1(w)+

m+1∑

l=1

�lαl(w)dw
)
,

where x ′ = γ (t0), and the forms α are as in (99).

We notice that Y−2(r) = �

2
d
dr

e−
2
�

∫ r
x ′
√

Q0(w)dw and we integrate by parts to obtain

K̂m(x, v) = 1

2

(
e−

2
�

∫ x
v

√
Q0(w)dw T 2

m(v)

T 2
m(x)

− 1

)
− 1

2

∫ x

v

e−
2
�

∫ r
v Q(w)dw d

dr

T 2
m(v)

T 2
m(r)

dr

Due to Lemma A.4, the functions Tm(x), T−1
m (x) as well as all their derivatives are

uniformly bounded on γ , provided |�| is bounded. It follows that

|K̂m(x, v)| ≤ Cm,1

(
1+ |e− 2

�

∫ x
v

√
Q0(r)dr | +

∫ x

v,γ

|e−
2
�

∫ r
v,γ

√
Q0(r ′)dr ′

dr |
)
,

(114)

where Cm,1 is a sufficiently high positive constant (in the third term we have used the
Hölder inequality).
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By definition of Ŵθ
k,k′ there exists an εγ > 0 such that

| arg
∫ x

v

√
Q0(γ (s))ds| ≤ π

2
− θ − εγ , ∀v, x ∈ γ (]0, 1[) such that v ≤ x .

(115)

From the above inequality it follows directly that |e− 2
�

∫ x
v

√
Q(r)dr | ≤ 1 for all v, x ∈

γ (]0, 1[) such that v ≤ x .
We complete Step 1 by showing that the inequality (115) implies that also the third

term in (114) is uniformly bounded by a constant C2. To be more precise we show
that there exists a C2 <∞ such that

E(x, v) :=
∫ x

v

|e− 2
�

∫ r
v

√
Q(r ′)dr ′dr | ≤ C2 if v ≤ x . (116)

We notice that, due to (115), under the function w(x) =
∫ x

x ′
√

Q0(r)dr , the curve γ is
mapped onto a curve which is diffeomorphic to its projection on to the real axis. We call
g such a curve and we parametrise it by its real part; explicitly, with x = Re w(γ (t)),
Re g(x) = x , Im g(x) = Im w(γ (t)). Using x = Re(w(γ (t)) as the new variable of
integration in (116), we transform the problem of bounding E(x, v) into the equivalent
problem: prove that there exists a C ′

2 > 0 such that

Ẽ(x, y) :=
∫ x

y

∣∣e−
2
�

(
g(x ′)−g(y)

) dg(x ′)
dx ′√

Q0
(
�(x ′)

)
∣∣dx ′ ≤ C ′

2, ∀y ≤ x ∈ R,

(117)

where � is the inverse of w composed with g. The functions
∣∣Q− 1

2
0

(
�(x)
)∣∣ and

| dg(x
dx
| are bounded. Indeed, Q

− 1
2

0 (�(Re(x))) decays as |x | → ∞ (one can show as

O(|x |− 2
5 )); moreover | dg(x)

dx
| converges to 1 as |x | → ∞ by definition of Ŵθ

k,k′ (Prop-

erty (P3) of the steepest descent paths). Hence if we show that
∫ x

y

∣∣e−
2
�

(
g(x ′)−g(y)

)∣∣dx ′

is smaller than a constant C ′′
2 for all y ≤ x , (117) follows by the Hölder inequality. To

this aim, we notice that (115) implies that
∣∣e−

2
�

(
g(x ′)−g(y)

)∣∣ ≤ e
− 2 cos ( π2 −εγ )

|�| (x ′−y) for
all y ≤ x ′; integrating the right hand side we obtain that

∫ x

y

∣∣e−
2
�

(
g(x ′)−g(y)

)∣∣dx ≤ |�θ |
2 sin(εγ )

, ∀y ≤ x,

which completes the proof of Step 1.
Step 2. We denote by Cγ the space of continuous functions supported on γ endowed

with the supremum norm ‖ f ‖∞. In this space we define the linear operator Km by the
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formula

Km[ f ](x) = −�

∫ x

∞,γ

K̂m(x, v)F̂m(v) f (v)dv

which allows us to write the integral Eq. (113) in the compact form u = 1 + Km[u].
As we will show, this integral equation admits a (unique) continuous solution, which
is of the form u =

∑∞
N=0 K N

m [1], where 1 is the constant function 1 on γ and K N
m is

the N -th iterate of K .
After Step 1., for every 0 < θ < π

2 there exist a sequence of positive constants
�θ , Ĉm,m ≥ 0 such that |K̂m(x, s)| ≤ Ĉm < ∞ for all � ∈ Sθ,�θ

. Furthermore, due
to Lemma A.9, there exists another sequence of positive constants ρm,m ≥ 0 such
that
∫ 1

0 |F̂m(v)dv| ≤ |�|mργ for all � ∈ Sθ,�θ
. Using once again the Hölder inequality

together with the two estimates above, we immediately obtain that the operator Km is
bounded as indeed its operator norm ‖Km‖ is less or equal than |�|m+1Ĉmρm . Namely

‖Km[ f ]‖∞ ≤ |�|m+1Ĉmρm‖ f ‖∞ for every bounded function f .

It is a basic fact of integral equations of Volterra type that ‖K N
m ‖ = ‖Km‖N

N ! (in fact
K N

m [ f ] is defined as an integral on the N dimensional simplex whose volume is 1
N ! ;

for a detailed proof see e.g. [9, §79]). It follows that the series u =
∑∞

N=0 K N
m [1]

converges in Cγ , and that ‖u−1‖∞ ≤ e|�|
m+1Ĉmρm −1, for every � ∈ Sθ,�θ

. Therefore
the function yk,m(x) := u(x)Ym(x) is a solution of the deformed cubic which satisfies
the estimate (112).

We complete the proof by proving properties (1,2,3) of yk,m , as well as its unique-
ness.

(1) By construction limt→0 Ym(γ (t); γ (t0)) = 0 and γ is asymptotic to the ray of

argument ei 2πk
5 for t → 0. It follows that yk,m is subdominant in the k − th

Stokes sector. It is well-known (see e.g. [27]) that in any given Stokes sector,
the subdominant solution is uniquely defined up to a scale. Hence property (1)
implies hat yk,m is the unique solution satisfying (112).

(2) For the same reason yk,m = Dm yk,0 for some Dm ∈ C∗. Since

lim
t→0

Ym(γ (t); γ (t0))
Y0(γ (t); γ (t0))

= e−
∑m+1

k=2 �
k
∫ t0

0 αk (γ (t))γ̇ (t)dt ,

the thesis follows.
(3) The thesis follows from the fact that limt→1 |Ym(γ (t); γ (t0))| = ∞.

⊓⊔

Remark A.11 One of the hypothesis of the proposition above is that the lower inte-
gration point x ′ in the definition of Ym(x; x ′) belongs to the curve γ . However
this condition can be dropped. Choose any other point x ′′ in the complex plane,
which is not a root of Q0(x), and a path γ ′ connecting x ′′ to x ′. The function
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ŷk,m = e�
−1∑m+1

k=0

∫ x ′
x ′′ αk (x)dx yk,m(x) is a new solution of the deformed cubic oscillator

and ŷk,m (x)

Ym(γ (t);x ′′) satisfies the estimate (112), since ŷk,m(x)

Ym (γ (t);x ′′) =
yk,m(x)

Ym (x;x ′) by construc-
tion.

We have the following Corollary.

Corollary A.12 Let (q, p), p �= 0 be the point of Xs used to define the potentials

Q1, Q2. We have that

res(q,±p)αk(x)dx = 0, ∀k ≥ 2. (118)

Proof Instead of considering the forms αkdx as meromorphic differentials on Xs , we
can consider them as multi-valued meromorphic differentials on C. The thesis is then
equivalent to resx=qαk(x)dx = 0,∀k ≥ 2 for both branches of

√
Q0(x). We prove

this statement here.
We fix a branch of

√
Q0. We suppose—without loss of generality6 - that, there exists

a pair (k, k′) and a γq ∈ Ŵk,k′ such that q ∈ γq , and limt→0 Re
∫ t0

t

√
Q0(γq(t))γ̇q(t)dt

= ∞.
We can then choose two paths γ, γ ′ in Ŵk,k′ , which are not homotopic in C \ {q};

see Remark A.6(ii).
We fix a θ ∈ [0, π

2 [. According to Lemma A.8, γ, γ ′ can be deformed to two
paths γθ , γ

′
θ ∈ Ŵθ

k,k′ such that γθ (t) = γ ′θ (t) as t → 0, and as t → 1. These are by

construction non-homotopic paths in P1 \ {q}. Since γθ , γ
′
θ coincide for large vaue of

|x |, γθ − γ ′θ defines a non-trivial closed loop in C \ {q}. Let t0 small enough so that
γθ (t0) = γ ′θ (t0). After Proposition A.10 it follows that there are positive constants �θ

and Cm,m ≥ 0 such that for all � ∈ Sθ,�θ

sup
t∈[0,1]

∣∣∣ yk,m(γθ (t))

Ym (γθ (t);γθ (t0)) − 1
∣∣∣ ≤ Cm |�|m+1, supt∈[0,1]

∣∣∣∣∣
yk,m(γ ′θ (t))

Ym(γ ′θ (t); γ
′
θ (t0))

− 1

∣∣∣∣∣ ≤ Cm |�|m+1.

(119)

Here Ym is the m-th WKB approximation defined in (107). Recall, from the main
text, that every non-trivial solution of the deformed cubic is two valued and the point
x = q is its branch point. By construction γθ , γ

′
θ are not homotopic in C \ {q}, hence

yk,m(γθ (t))

yk,m(γ ′θ (t))
= −1 as t → 1. Moreover we have that

Ym(γθ (t); γθ (t0))
Ym(γ ′θ (t); γ ′θ (t0))

= − exp

(
2π i

m+1∑

k=2

�k−1resqαk(x)dx

)
, as t → 1,

6 If q is not in generic position, we can consider, instead of Xs punctured at (q,±p), the isomorphic

punctured curve, Xε, ε ∈ C punctured at (qε = eiεq,±e
i 3

2 ε
p), where Xε is the (projectivization) of the

affine elliptic curve obtained by twisting the coefficients a, b of Q0 as a → e2iεa, b → e3iεb. If ε �= 0 is
small then qε is in generic position. The same C∗ action is discussed in the main text in Remark 3.5(b).
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since e
2π i
∮
γθ−γ ′

θ
�α0(x)+α1(x)dx = −1, by explicit computation. Because of the above

identities, the inequalities (119) imply that for all m ≥ 0 there exists a C̃m such that

∣∣∣∣∣exp
(
2π i

m+1∑

k=2

�k−1resqαk(x)dx
)
− 1

∣∣∣∣∣ ≤ C̃m |�|m+1, as � → 0.

It immediately follows that resx=qαk(x)dx = 0,∀k ≥ 2, for the chosen branch of√
Q0. ⊓⊔

A.5 LiftingWKB solutions to Xs

By hypothesis the potential Q0(x) is saddle free, from which it follows that there exists
a k such that Ŵk,k±2 is not empty, see Remark A.6 (iv). Without losing in generality,
we suppose that Ŵ0,±2 �= ∅ (the other cases are obtained by a rotation). Hence we are
in the situation depicted in Fig. 6, and we can fix the roots x0, x1, x−1 of Q0(x), as
depicted in the same Figure.

We choose 3 branch-cuts of the function
√

Q0(x): the j − th cut, j = −1, 0, 1
connects the roots x j with the point at ∞ and and it asymptotic to the ray π + j 2π

5 ,
see Fig. 7 below. The elliptic curve Xs is thus realised the Riemann surface of the
function

√
Q0(x), and we name the lower sheet the one fixed by the requirement

limx→+∞ Re
√

Q0(x) = +∞. To represent a curve in Xs as a curve in the two-
sheeted covering, we draw a solid line when the curve belong to the upper sheet, and
a dashed line otherwise.

After Proposition A.10, the subdominant solutions yk, k ∈ Z/5Z are well-
approximated on paths γ ∈ Ŵθ

k,k′ by the m-th WKB approximation (107), namely

Ym(x; x ′) = exp

{
�−1

m+1∑

k=0

�k

∫ x

x ′,γ
αk(s)ds

}
.

Fig. 6 Schematic representation
of the trajectories γ0,±2 and of
the roots of Q0(x)
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Fig. 7 The elliptic curve Xs as a double-sheeted cover, with the cyclesγ1,2 defined by the WKB triangulation

provided the branch of
√

Q0 is chosen in such a way that

lim
t→0

Re
∫ t0

t

√
Q0(γ (t))γ̇ (t)dt = ∞. (120)

Since the formal WKB solutions are written in terms of abelian differential on Xs ,
they are naturally defined on the lift of γ to Xs , which we call γ̂ . This is not only
natural, but also very convenient since there is a unique way of lifting γ that enforces
condition (120). In fact, taking into consideration our choice of the branch-cuts of√

Q0, the lift of any path γ belonging to Ŵθ
k,k′ is defined as follows:

• If k = 0, γ̂ lies on the upper sheet for t small. In fact, by definition,
limx→+∞ Re

√
Q0(x) = −∞, if x belongs to the upper sheet.

• If k �= 0, γ̂ lies on the lower sheet for t small.

We finish this Section by analysing the cycles γ1,2 ∈ H1(X◦
s \ B,Z)− defined in

Fig. 7. Their image in H1(Xs,Z) coincide with the cycles γ1,2 provided by the WKB
triangulation, as defined in Section 6 of the Main Text. This indeed is equivalent to
the point (i) of the following Lemma.

Lemma A.13 The paths γ1, γ2 ∈ H1(X◦
s \B,Z)− defined in Fig. 7 satisfy the following

normalisation

(i)
∫
γ1

√
Q0(x)dx = 2

∫ x0
x1

√
Q0(x)dx and

∫
γ2

√
Q0(x)dx = 2

∫ x−1
x0

√
Q0(x)dx

where the right hand side is computed in the upper sheet.
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(ii) Im
∫
γi

√
Q0(x)dx > 0, i = 1, 2.

(iii) 〈γ1, γ2〉 = 1.

Proof (i) and (iii) are self-evident. (ii) We prove Im
∫
γ1

√
Q0(x)dx > 0, and leave the

other case to the reader. Recall the following facts from Section 6.2 of the Main Text:

• x1 and x0 belong to the closure of the simply connecetd domain—we denote by
H—which is foliated by the horizontal trajectories belonging to Ŵ0,2.

• The map x �→
∫ x

x0

√
Q0(u)du is a conformal map of H into a a horizontal strip.

• There is a path l connecting x1 with x0 such that the angle between any γ ∈ Ŵ0,2
and l is a fixed, positive number πθ, θ ∈]0, 1[.

If x belongs to the upper-sheet then Re
∫ x

x0

√
Q0(u)du increases along γ for any

γ ∈ Ŵ0,2. Since
∫ x

x0

√
Q0(u)du is conformal, it follows that Im

∫ √
Q0(x)dx increases

along the line l connecting x1 with x0. The thesis follows. ⊓⊔

A.6 Proof of the Theorem A.1

The proof of the Theorem is based on the Proposition A.10 and on the computation of
the WKB approximation of cross-ratios of asymptotic values, that the author developed
in [27,28].

As it was explained in Sect. A.2 above, the hypothesis that the potential Q0(x) is
saddle free is equivalent to the property that there exists a k such that Ŵk,k±2 is not
empty. Moreover, we can always reduce to the case that Ŵ0,±2 �= ∅, hence we are in
the situation depicted in Fig. 6 above.

For an arbitrary basis {y, ỹ} of solutions to the deformed cubic oscillators, one
defines the single-valued meromorphic function f (x) = y(x)

ỹ(x)
. The function f has 5

asymptotic values, ak, k ∈ Z/5Z, defined by the formula

ak(�) = lim
x→+∞

f (|x |ei 2πk
5 ) ∈ P1, (121)

which is independent on the curves along which the limit is taken.
According to the main text, see Eq. (93), the Fock-Goncharov co-ordinates are

defined as cross-ratio of the asymptotic values

X1(�) := CR(a0, a1, a2, a−2) X2(�) := CR(a0, a2, a−2, a−1). (122)

Here CR(a, b, c, d) = (a−b)(c−d)
(a−d)(b−c)

, is the cross-ratio.
In what follows we prove the thesis, namely Eq. (100), for the co-ordinate X2. The

proof for the co-ordinate X1 can obtained by repeating the very same steps, and it is
therefore omitted.

A.6.1 The apparent singularity

Here we prove a generalization of formula (121), which is useful in the presence of
one apparent singularity.
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We fix a point x ′ ∈ C such that x ′ �= q and two local linearly independent solutions
Moreover we fix two solutions y, ỹ. Suppose that we have two paths,γ, γ̃ , that connects

x ′ to ei 2πk
5 ∞, that do not cross x = q, and that coincide for large x , so that γ − γ̃

can be thought as a Jordan curve (i.e. a simple closed curve) on C \ {q}. Denoting
by yγ (x), ỹγ̃ (x) the analytic continuation of y, ỹ along these paths, we obtain the
following expression for the asymptotic value ak , which we will need below

ak = (−1)s(γ−γ̃ ) lim
x→+∞

yγ (xei 2kπ
5 )

ỹγ̃ (xei 2πk
5 )

. (123)

Here s is the winding number of γ − γ̃ around q.
The above formula is a consequence of (121) and the following fact: for every non

trivial solution, the point x = q is a branch point and the monodromy about q is −1.

A.6.2 The Fock-Goncharov co-ordinates in the small � limit

In order to compute the asymptotic expansion of X2(�) we need to choose a basis of
solutions with a known asymptotic expansion, and then compute the corresponding
asymptotic values ak . Our choice (the only possible) is {y0, y−2} where y0 is the

solution subdominant at +∞ and y−2 is the solution subdominant at e−
4π
5 i∞.

Notice that {y0, y−2} may in general fail to form a basis of solutions. They do
however form a basis, whenever � is small enough. Indeed, let us fix a θ ∈ [0, π

2 [.
By hypothesis Ŵ0,−2 is not empty. Therefore, according to Proposition A.10(3), there

exists a �θ > 0 such that limx→+∞ |y0(x
− 4π

5 i)| = ∞, for all � ∈ Sθ,�θ
. This implies

that the solution y0 and the solution y−2 are linearly independent. Hence a0 = 0,
a−2 = ∞, and formula (122) reduces to

X2(�) = − a2(�)

a−1(�)
, ∀� ∈ Sθ,�θ

. (124)

A.6.3 Integration paths used in the proof

By hypothesis on the potential Q0, the sets Ŵ0,−2,Ŵ0,2 are not empty, and the sets
Ŵ−2,−1,Ŵ−2,2, and Ŵ0,−1 are not empty for every potential Q0, see Remark A.6.

According to Lemma A.8, for every θ ∈ [0, π
2 [, we can choose paths γ0,±2 ∈

Ŵθ
0,±2, γ0,−1 ∈ Ŵθ

0,1, γ−2,0 ∈ Ŵθ
−2,0, γ−2,2 ∈ Ŵθ

−2,2 satisfying the following properties

(1) γ0,2(t) = γ0,−2(t) = γ0,−1(t) for t ∈ [0, t0], with t0 > 0. We denote by x ′ =
γ0,2(t0) the (last) intersection point;

(2) γ−2,0(t) = γ0,−2(1− t);
(3) γ−2,2(t) = γ−2,0(t) = γ−2,−1(t) for t ∈ [0, t1], with t1 small enough. We denote

by x ′′ = γ−2,0(t1) the (last) intersection point
(4) γ−2,1(t) = γ0,−1(t) as t → 1;
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After Proposition A.10, a subdominant solution in the 0-th Sector, y0(x), is well-
approximated by the m-th WKB function

Y (0)
m (x; x ′) = exp

{
�−1

m+1∑

k=0

∫ x

x ′,γ
�kαk(s)ds

}
, ∀x ∈ γ0,2 ∪ γ0,−2 ∪ γ0,−1,

(125)

Here the integration path γ is -depending on x - γ0,2 or γ0,−2 or γ0,−1, and the
suffix (0) stands to remind that the branch of

√
Q0 is chosen in such a way that

limt→0 Re
∫ t0

t

√
Q0(γ0,2(t))γ̇0,2(t)dt = ∞. More precisely: there is a �θ > 0 and a

sequence of positive constants Cm,θ such that

∣∣∣∣∣
y0(x)

Y
(0)
m (x; x ′)

− 1

∣∣∣∣∣ ≤ Cm,θ |�|m+1, x ∈ γ0,2 ∪ γ0,−2 ∪ γ0,−1, � ∈ Sθ,�θ
. (126)

The same hold for the subdominant solutions in the Sector −2. There are are positive
constants C̄m,θ and a subdominant solution y−2(x) such that

∣∣∣∣∣
y−2(x)

Y
(−2)
m (x; x ′)

− 1

∣∣∣∣∣≤ C̄m,θ |�|m+1, x ∈ γ−2,0∪γ−2,−1 ∪ γ−2,2, � ∈ Sθ,�θ
. (127)

where

Y (−2)
m (x; x ′) = exp

{
�−1

m+1∑

k=0

−
∫ x ′

x ′′,γ−2,0

�kαk(s)ds +
∫ x

x ′′,γ
�kαk(s)ds

}
,

∀x ∈ γ0,2 ∪ γ0,−2 ∪ γ0,−1. (128)

In the above formula the integration path γ is -depending on x - γ−2,0 or γ−2,−1 or
γ−2,2, and the suffix (2) stands to remind that the branch of

√
Q0 is chosen in such a

way that limt→0 Re
∫ t1

t

√
Q0(γ−2,0(t))γ̇−2,0(t)dt = ∞.

As it was explained in the Sect. A.5, the choice of the branch of
√

Q0 can be enforced
by lifting the integration paths to Xs , which we described as a two-sheeted covering of
the Riemann sphere.7 The lift is defined as follows: the lift of γ0,2, γ0,−2, γ0,−1 belongs
to the upper (solid) sheet for x →+∞, the lift of γ−2,0, γ−2,−1, γ−2,2 belongs to the

lower (dashed) sheet as x → e−
4π
5 i∞. Denoting by γ̂k,k′ the lift of γk,k′ , for any of

the paths introduced, the situation is as illustrated in the Bacalhau Diagram, Fig. 8.

7 See Fig. 7 above. Recall: the lower sheet is the one such that limx→+∞ Re
√

Q0(x) = +∞.
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Fig. 8 The Bacalhau (cod) diagram. Integration paths for the approximate functions Y0, Y±2

A.6.4 Computation of the Fock-Goncharov co-ordinates in WKB approximation

We can compute a−1(�) in the WKB approximation using formulas (123,125,126,127,
128). After formula (123), we have

a−1(�) = (−1)s− lim
t→1

y0(γ0,−1(t))

y−2(γ−2,−1(t))
, s− = s(γ0,−1 − γ−2,−1 + γ−2,0).

Defining

ǫ−(�) := lim
t→1

y0(γ0,−1(t))

Y
(0)
m (γ̂0,−1(t); x ′)

Y
(−2)
m (γ̂−2,−1(t); x ′)

y−2(γ−2,−1(t))
− 1, (129)

we obtain

lim
t→1

y0(γ0,−1(t))

y−2(γ−2,−1(t))
=
(

lim
t→1

Y
(0)
m (γ̂0,−1(t); x ′)

Y
(−2)
m (γ̂−2,−1(t); x ′)

)
(
1+ ǫ−(�)

)

After formulae (125,128), we have that

lim
t→1

Y0(γ0,−1(t); x ′)

Y−2(γ−2,−1(t); x ′)
= exp

(
�−1

m+1∑

k=0

�k

∫

γ−2

αk(x)dx

)
, (130)
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Fig. 9 The paths used in formulas (130,131)

where γ−2 is the lift -which is not closed- of the closed path γ0,−1 − γ−2,−1 + γ−2,0,
as depicted in Fig. 9. Finally, after (126,127), we have that there exists a sequence of
positive constants Cm,θ such that

|ǫ−(�)| ≤ C−
m,θ |�|m+1, ∀� ∈ Sθ,�θ

,

where ǫ−(�) is the constant defined in (129).
We can use the same strategy to compute a2(�) to obtain the following statement:

There exists a sequence of constants �θ ,C+
m,θ such that

(−1)s+a2(�) exp

(
−�−1

m+1∑

k=0

�k

∫

γ+2

αk(x)dx

)
=
(
1+ ǫ+(�)

)
,

with |ǫ+| ≤ C+
m,θ |�|m+1, ∀� ∈ Sθ,�θ

. (131)

Here s+ = s(γ0,2 − γ−2,2 + γ−2,0) and γ+2 is the lift of γ0,2 − γ−2,2 + γ−2,0, as
depicted in Fig. 9.

We notice that

γ+2 − γ−2 = −γ2 in H1(X◦
s \ B,Z)− (132)

where γ+2 , γ−2 are the curves defined in Fig. 9 and γ2 is the basis element of H1(X◦
s \

B,Z)− defined in Fig. 7. Combining (130), (131), and (132), we obtain the following
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result: For every θ ∈ [0, π
2 , there exist �θ > 0 and a sequence of positive constants

Cm,θ > 0,m ≥ 0 such that

X2(�)e
�
−1
∫
γ2

√
Q0(x)dx = −(−1)(s++s−)

(
1+ ǫ2(�)

)
exp

(
−�−1

m+1∑

k=1

�k

∫

γ2

αk(x)dx

)
,

(133)

where |ǫ2(�)| ≤ Cm |�|m+1, for all � ∈ Sθ,�θ
.

We are left to show that Eq. (133) is equivalent to Eq. (100) (for the index i = 2).
Comparing the two equations, we see that they are equivalent if and only if

− (−1)(s++s−) exp

(
−
∫

γ2

α1(x)dx

)
= exp

(
−
∫

γ2

α̃1(x)+
1

2(x − q)
dx

)

(134)

where α̃1(x) = α1(x) + Q′
0(x)

4Q0(x)
as per (99). This is indeed the case. In fact, by the

residue theorem we have that
∫
γ2

dx
2(x−q)

= iπσ where σ is the winding number of

the projection of γ2 around q, and
∫
γ2

Q′(x)
4Q(x)

dx = −iπ .

Remark A.14 The co-ordinates X1, X2 are strictly related to the Stokes multipliers of
the cubic oscillator. These are defined as follows: For every k ∈ Z/5Z one chooses
a normalisation of the subdominant solutions yk, yk±1 of Eq. (98), see [26] for the
precise definition, in such a way that

yk+1(x) = yk−1(x)+ σk yk(x)

for some uniquely defined σk ∈ C, which are the Stokes multipliers.
It was proven in [26, §2] that each Stokes multiplier can be expressed as the cross-

ratio of 4 asymptotic values, namely

σk = i CR(ak−1ak+1, ak+2, ak−2). (135)

Now assume that the potential Q0 is saddle-free. It follows that there is a unique
l ∈ Z/5Z such that the sets of horizontal trajectories Ŵl,l±2 are not empty. Comparing
(135) with (93) we obtain

X1 =
(
− iσl−1

)−1
, X2 = −iσl+1. (136)
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