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Abstract 

DNA double-strand breaks (DSBs), generated by ionizing radiation, reactive oxygen 

species and DNA replication across nicks, are the most severe DNA damage in 

eukaryotic cells. Non-Homologous End Joining repairs DNA double-strand breaks 

directly without a template and so can take place at any point in the cell cycle. Ku70/80 

heterodimers rapidly assemble around broken DNA ends, allowing DNA-PKcs, the 

catalytic subunit of DNA-dependent protein kinase, to be recruited and facilitating 

synapsis of broken DNA ends. This then provides a stage for end-processing and 

ligation. Here we review progress leading in 2017 to the medium resolution X-ray 

structure of DNA-PKcs, a single polypeptide chain of 4128 amino acids. This was 

followed quickly by chain tracing of cryo-EM structures of DNA-PKcs in complex with 

Ku and DNA. We discuss how combination of structural information from X-ray and 

cryo-EM studies can produce a working model for complex multicomponent molecular 

assemblies such as those found in DNA-double-strand-break repair. 
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Abbreviations 

AFM: atomic force microscopy  

DSBs: DNA double-strand breaks  

EM:  electron microscopy 

HEAT: Huntingtin, Elongation Factor 3, PP2 A, and TOR1 
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Ku80CTR: Ku80 C-terminal region 

LigIV: DNA ligase IV  

NHEJ: Non-Homologous End Joining  

 

1.! Introduction: DNA-PK in NHEJ 

DNA double-strand breaks (DSBs) are the most severe DNA damage in eukaryotic 

cells. They are generated by ionizing radiation, reactive oxygen species and DNA 

replication across nicks. Physiological DSBs are also present in many cellular activities 

such as V(D)J and class-switch recombination for generating the diversity in 

immunoglobulin genes (Chaudhuri and Alt, 2004; Gellert, 2002). DSBs are repaired by 

two major pathways: Non-Homologous End Joining (NHEJ) and Homologous 

Recombination (HR). The phase in the cell cycle is a major factor in the choice of DSBs 

repair pathway. HR reaches its peak activity in mid-S phase and requires a sister 

chromatid as a template, whereas NHEJ repair of DSBs directly without a template can 

take place at any point in the cell cycle and is the dominant repair pathway in both G1 

and G2 phases (Beucher et al., 2009; Her and Bunting, 2018; Karanam et al., 2012). 

Recent studies have shown that modulating the DSB repair pathway choice can also 

influence the outcome of precise genome editing by CRISPR-Cas9, which generates 

site-specific DSBs in the genome (Pawelczak et al., 2018). Inhibiting the NHEJ 

pathway was found to enhance the efficiency of HR repair and CRISPR-Cas9-induced 

precise genome editing (Chu et al., 2015). 

 

Compared to HR, NHEJ functions as a faster and simpler repairing mode through rapid 

recruitment of various NHEJ proteins at the DNA ends. These proteins function in three 

general stages of NHEJ. During the first stage, synapsis, Ku70/80 (Ku) heterodimers 

recognize the DSBs and assemble around broken DNA ends (Walker et al., 2001). They 

recruit the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), a 

phosphatidylinositol 3-kinase-related serine/threonine kinase, through interaction with 

Ku80 C-terminus (Gell and Jackson, 1999; Singleton et al., 1999) to form DNA-PK. 

Interactions between DNA-PKcs molecules likely contribute to the synapsis of broken 

DNA ends together (Spagnolo et al., 2006). This step is further stabilised by PAXX 

(Wang et all, 2018). The second, end-processing stage involves nucleases such as 

Artemis, which exhibits endonuclease activity after activation by DNA-PKcs. Finally, 
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in the third stage, ligation is mediated by DNA ligase IV (LigIV) in a stable complex 

with dimeric XRCC4 (Bryans et al., 1999; Grawunder et al., 1998). XLF, which 

interacts with XRCC4, further enhances the ligation step (Ahnesorg et al., 2006; Buck 

et al., 2006).  

 

It has been evident for two decades that understanding how the components of NHEJ 

are coordinated in space and time during synapsis, end processing and ligation must be 

a major priority. Many research groups have addressed this by carrying out structural 

and functional studies in NHEJ as reviewed in Ochi et al., 2014 (Ochi et al., 2014). 

DNA-PKcs, a single polypeptide chain of 4128 amino acids, interacts with Ku forming 

DNA-PK at DNA broken ends. X-ray analysis of the core ring structure of the 

heterodimeric Ku70/80 encircles the DNA providing a strong interaction with DNA 

ends (Walker et al., 2001) (Figure 1A, B). The C-terminal regions of both Ku70 and 

Ku80 contain a flexible long linker and a globular structural domain. The globular 

domain (residues 595-704) in Ku80 C-terminal region (Ku80CTR) (residues 543-732) 

comprises six helices including two “helical hairpin” structures, determined in solution 

by NMR methods (Harris et al., 2004; Zhang et al., 2004) (Figure 1B). The extreme 12 

residues of the Ku80 C-terminus are crucial for mediating interaction with DNA-PKcs 

for recruitment of DNA-PKcs to the DNA damage site (Gell and Jackson, 1999) 

(Figure 1A).  

 

In 2004 Oscar Llorca and Laurence Pearl reviewed electron microscopy (EM) studies 

on DNA recognition by DNA-PK, suggesting how electron microscopists could 

collaborate with X-ray crystallographers and NMR spectroscopists to study the 

structure and dynamics of the molecular assemblies and machines, such as DNA-PK, 

gaining insights into the structural basis of recognition of damaged DNA and the 

activation of DNA-PK kinase (Llorca and Pearl, 2004). Here we briefly review progress 

over two decades in understanding the structure of DNA-PK but focus on recent 

developments describing higher order complexes in NHEJ studied using X-ray and 

cryo-EM. The publication of chain tracing at medium resolution of the cryo-EM 

structures of the DNA-PKcs in complex with Ku and DNA in (Sharif et al., 2017; Yin 

et al., 2017), following the publication of the X-ray crystal structure of  DNA-PK in 

2017 (Sibanda et al., 2017), shows how quickly cryo-EM can build on and significantly 

extend our understanding of the structure and  function of large molecules that 



	 4 

contribute to multicomponent complexes. By combining structural information from 

both X-ray and cryo-EM studies, we can produce a working model for the complex 

formation of DNA-PK with DNA. 

 

2.! Early EM studies of the structure of DNA-PK 

Structural studies on DNA-PK were initiated using EM and atomic force microscopy 

(AFM) over 20 years ago (Cary et al., 1997; Yaneva et al., 1997). 2D electron 

crystallography, EM of negative-stain samples and cryo-EM have all subsequently 

contributed to the determination of the general architecture of DNA-PK.  

 

In 1998 (Chiu et al., 1998) reported cryo-EM imaging of the catalytic subunit of the 

DNA-PKcs at 22 Å resolution. This was followed in 1999 by Leuther, Hammarsten, 

Kornberg, & Chu (K. Leuther et al., 1999), who produced a map defined by electron 

crystallography at a similar resolution. The structures showed an open channel “similar 

to those seen in other double-stranded DNA-binding proteins”, and an “enclosed cavity 

with three openings large enough to accommodate single-stranded DNA”. The authors 

demonstrated that efficient kinase activation required DNA longer than 12 bp, the 

minimal length accommodated in the open channel.  

 

DeFazio et al. (2002), in an analysis of DNA-PKcs, showed that kinase activity is 

cooperative with respect to DNA concentration and demonstrated using electron 

microscopy that two DNA-PKcs molecules form complexes, possibly a mechanism for 

bringing together broken DNA ends (DeFazio et al., 2002). This was elaborated by 

Spagnolo, Rivera-Calzada, Pearl & Llorca (2006), who described the 3D-structure of 

the DNA-PK assembled on DNA and discussed its implications for DNA DSB repair. 

These studies showed that DNA-PKcs has a large circular structure with a head/crown 

structure including the kinase (Boskovic et al., 2003; Chiu et al., 1998; K. K. Leuther 

et al., 1999; Rivera-Calzada et al., 2007, 2005; Williams et al., 2008). DNA-PKcs 

interacts with DNA through the cavity in the circular structure with the Ku interaction 

site located close by (Boskovic et al., 2003; Rivera-Calzada et al., 2005; Spagnolo et 

al., 2006). Furthermore the Pearl and Llorca groups (Boskovic et al., 2003) 

demonstrated by electron microscopy that DNA-PKcs undergoes large conformational 

changes in the presence of double-stranded DNA that correlate with the activation of 
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the kinase. In 2005 this collaboration (Rivera-Calzada et al., 2005) used single-particle 

cryo-EM of DNA-PKcs to extend the resolution to 13 Å, suggesting how 

conformational changes in FAT and FATC domains affect activity of the kinase 

domain.  

 

Better prediction methods for the HEAT (Huntingtin, Elongation Factor 3, PP2 A, and 

TOR1) repeats and structural homology modelling allowed docking of different parts 

of DNA-PKcs into the EM densities (Brewerton et al., 2004; Rivera-Calzada et al., 

2005). However, due to the low resolution of these EM structures and difficulty of 

modelling unambiguously long regions of HEAT repeat structures with the correct 

curvature and amino acid registration, the chain trace remained unclear.  

 

3.! Understanding molecular structures and interactions using X-ray 

crystallography 

In parallel over the first decade of the 21st century other groups, including ours, defined 

structures using X-ray crystallography of individual smaller components of NHEJ, 

including Ku (Walker et al., 2001), LigIV (Ochi et al., 2013, 2012), XLF (Andres et 

al., 2007; Li et al., 2008), XRCC4 (Junop et al., 2000) and PAXX (Ochi et al., 2015; 

Xing et al., 2015) as well as binary complexes of Lig IV/XRCC4, XLF/XRCC4, 

LigIV/Artemis (Ioanned et al., 2012; Ochi et al., 2012) and Ku/XLF & Ku/APLF 

(Nemoz et al., 2018).  

 

X-ray analysis of the much larger NHEJ protein DNA-PKcs, complexed with the 

Ku80CTR, was reported first as an incomplete molecular trace, omitting the poorly 

defined N-terminal region, which at very low resolution was unclear (Sibanda et al., 

2010). A more complete X-ray analysis at 4.3 Å resolution was published in 2017 

(Chirgadze et al., 2017; Sibanda et al., 2017) (Figure 1A,C). It defined the structure of 

DNA-PKcs complex with part of the Ku80CTR, assigning ~90% of the 4128 amino 

acid residues of DNA-PKcs. The structural units of DNA-PKcs can be described as: 1) 

N-terminal arm comprising residues 1 to 892 (38 α-helices assembled as heat repeats 

in four supersecondary structures: N1-N4); 2) Circular cradle of residues 893-2801 (85 

α-helices in five supersecondary structures, CC1-CC5, predominantly of HEAT 

repeats); 3) C-terminal Head comprising residues 2802-4128 (64 α-helices in FAT, 
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FRB, kinase and FATC domains). As the regular repeat structures have similar 

sequence patterns, the amino acid sequence register was checked by positions of the 

introduced Se-Met groups defined by anomalous scattering of selenium atoms but some 

ambiguities remain due to poor density.  

 

 

Figure 1. X-ray and NMR structures of Ku70/80 and DNA-PKcs. A) Domain organisation of 

Ku70/80 and DNA-PKcs. Ku80 is in yellow, Ku70 is in green and DNA-PKcs is in rainbow 

colour. Coloured regions indicate structures determined. The core is the region of Ku70 and 
Ku80 that forms the Ku heterodimer bound with DNA as shown in B. Ku80CTR and Ku70CTR 

represent the C-terminal regions of the two proteins. The C-terminal region interacting with 

DNA-PKcs is coloured black; B) Crystal structure of Ku70/80 bound with DNA (PDB code: 
1JEY) (Walker et al., 2001). Lower panel is the NMR structure of the globular domain of 

Ku80CTR (PDB code: 1Q2Z) (Harris et al., 2004). C) Crystal structure of DNA-PKcs (PDB 

code: 5LUQ) (Sibanda et al., 2017) in rainbow colours corresponding to the colouring scheme 
and domain regions shown in A. Head includes FAT (FRAP, ATM, TRRAP), FRB (FKBP12-

rapamycin-binding), kinase and FATC (FAT C-terminal) domains. Three helices from 

Ku80CTR are numbered and coloured in black.  

 

4.! The impact of the cryo-EM resolution revolution on the structure 

determination of DNA-PK 

In recent years, single-particle cryo-EM studies of DNA-PKcs have benefited hugely 

from the development and improvement of EM instruments, detectors and image 
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processing software (Bai et al., 2015). These advances not only reflect the improved 

resolution of cryo-EM density maps, but also provide the possibility for the structure 

determination of large protein complexes. Two recent studies have determined the cryo-

EM structures of the apo form of DNA-PKcs at 4.4 Å, DNA-PKcs in complex with 

Ku70/80 at 5.8 Å (Sharif et al., 2017) and DNA-PK holoenzyme bound with DNA at 

6.6 Å resolution (Yin et al., 2017). The Blundell group has also determined the cryo-

EM structure of the apo form of DNA-PKcs at 5.7 Å resolution (see Supplementary 

Data; EMDataBank (EMDB) ID code EMD-4425). While two apo cryo-EM structures 

of DNA-PKcs from (Sharif et al., 2017) and our study are very similar (Figure 2A), 

significant structural changes occur when DNA-PKcs is bound with different constructs 

of Ku70/80 and DNA. By combining the structural information obtained so far from 

X-ray crystallography and cryo-EM, we can compare the mode of the interaction 

between DNA-PKcs and Ku70/80 with and without DNA. 

 

5.! Ku interaction with DNA-PKcs  

Although all structural studies of DNA-PK contain the same full-length DNA-PKcs, 

different constructs of Ku protein are used in the complexes defined by X-ray and cryo-

EM studies. The X-ray structure of DNA-PK contains Ku80CTR (Sibanda et al., 2017), 

while two cryo-EM studies contain full length Ku70/80 (Sharif et al., 2017; Yin et al., 

2017). The globular domain of Ku80 (residues 595 to 704) was not observed in the X-

ray structure. The remaining Ku80 residues including the extreme 12 C-terminal 

residues of Ku80CTD were observed in the X-ray map as three helices (Figure 1C). 

One helix of Ku (helix 3) was identified as that of the C-terminus based on 

selenomethionine labelling (Sibanda et al., 2017). These three helices are absent in the 

apo-structures of DNA-PKcs defined by cryo-EM (Figure 2B). At the same time, a 

region built as polyalanine for residues 2577-2773 in the crystal structure of DNA-PKcs 

with Ku80CTD is not observed in the apo cryo-EM structures (Figure 2B). This could 

be due to the flexibility of this region, which is under more constraints in the crystal 

structure. 
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Figure 2. EM structures of DNA-PK. A) Structure superimposition of the EM density (grey 

colour) of DNA-PKcs from this study EMDataBank (EMDB ID code EMD-4425, see 

Supplementary Data) with EM structure model (orange colour) of DNA-PKcs (PDB code: 
5W1R) from (Sharif et al., 2017) showing similarity. B) Crystal structure of DNA-PKcs 

(rainbow colour, PDB code: 5LUQ) superimposed with EM density (grey colour, from this 

study). Left panel: zoomed-in view shows that three helices from Ku80CTR (black colour) are 

not present in the apo form of DNA-PKcs. Right panel: zoomed-in view shows the region does 
not contain the density in the EM structure but is shown in the crystal structure of DNA-PKcs 

– see text; C) Structure of DNA-PK including DNA (PDB code: 5Y3R) (Yin et al., 2017) in 

two different views. DNA-PKcs is in blue, Ku70 is in yellow, Ku80 is in green and DNA is in 
orange. D) EM map of DNA-PK in (Sharif et al., 2017). The extra density of the globular 

domain of Ku80CTR is inside the black circle (in both middle and right panels).  The EM 

structure model of DNA-PK with DNA (PDB code: 5Y3R) in (Yin et al., 2017) was docked 
into the EM density of DNA-PK in Sharif et al. (Sharif et al., 2017). The position of extra 

density overlaps with the DNA (blue colour in right-hand side).  

 

In the EM structure of DNA-PK without DNA (Sharif et al., 2017), extra density 

between the N-terminus of DNA-PKcs and the circular cradle HEAT-repeat structure 

was observed in some classes of cryo-EM maps and this density was assigned as the 

globular domain of Ku80CTR on the basis of its size (Figure 2D). This implies that the 



	 9 

interaction between DNA-PKcs and the globular domain of Ku80CTR is weak and its 

occupancy at this site is low. This might be why we did not observe the corresponding 

electron density in our crystal structure of DNA-PKcs/Ku80CTR. Interestingly, in the 

cryo-EM structure of DNA-PK bound with DNA (Yin et al., 2017), this globular 

domain was not observed in any classes. Instead, DNA occupied the same binding 

space. These observations imply that the globular domain of Ku80CTR might 

transiently interact with DNA-PKcs and regulate the DNA binding of DNA-PKcs 

through the same region. One helix of Ku80 C-terminal region (described as helix 2 in 

the crystal structure) was observed close to the DNA end in the cryo-EM structure in 

(Yin et al., 2017). The authors predicted that the function of this helix may be to prevent 

inward sliding of DNA-PKcs along the DNA and also offer protection of the DNA end. 

This structure also demonstrates that when both DNA-PKcs and Ku bind to the DNA 

to form the holoenyzme, there are extra interactions between Ku70/80 heterodimer core 

structure with the N-terminal and middle HEAT repeats regions of DNA-PKcs. Thus, 

the interaction between DNA-PKcs and Ku70/80 is not only a simple C-terminal region 

single-site interaction but also involves multiple interactions sites among these proteins 

with DNA.  

 

The functions of the globular domains of both Ku70CTR and Ku80CTR are still not 

very clear. A computational study has indicated that the SAP domain can form DNA-

bound complexes with relatively high affinities (Hu et al., 2012). As the location of the 

SAP domain changes after DNA binds to Ku, it has been suggested that the SAP domain 

of Ku70 regulates the DNA loading to Ku (Walker et al., 2001), although there is still 

no structural evidence for this. For Ku80CTR, the globular domain contained exposed 

and conserved residues, which could potentially mediate protein-protein interaction 

(Zhang et al., 2004; Harris et al., 2004). One potential interaction partner is DNA-PKcs 

as observed in the EM structure of DNA-PK without DNA (Sharif et al., 2017). Taking 

all the structural information together, a likely series of events for DNA-PK binding to 

DNA is as follows. First, the Ku70/80 heterodimer binds to DNA ends through Both 

Ku70 and Ku80 core domains of the Ku-heterodimer in the presence of DNA DSBs. 

Ku80CTR (including the globular domain and the DNA-PKcs interaction region) then 

recruits DNA-PKcs to DSB sites. While a stable anchoring of DNA-PKcs occurs 

through binding the C-terminal 12 residues of Ku, the C-terminal globular domain of 

Ku80 mediates further dynamic and weak protein-protein interactions with DNA-PKcs 
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N-terminal HEAT repeats and circular cradle region to bring Ku and DNA-PKcs closer 

together. Once DNA-PKcs is recruited by Ku70/80 and is close to the DNA end and 

while the Ku80 C-terminal helices are still bound with DNA-PKcs, the position once 

occupied by the Ku80CTR globular domain is rapidly replaced by stronger interaction 

from DNA, which has already bound with the core structure of Ku70/80 (Figure 3B). 

In this working model, the globular domain of Ku80CTR functions to regulate the Ku 

loading to DNA-PKcs. The N-terminal region of DNA-PKcs thus functions as a gate 

opening to mediate and accommodate the interaction with Ku and DNA. The 

interaction between the core structure of Ku70/80 with DNA-PKcs then further 

stabilizes the formation of DNA-PK holoenzyme at the DNA end. 

 

 

 

Figure 3: Structural differences of the DNA-PK N-terminal region correlated with interactions 

between Ku and DNA-PKcs. A) The position of the N-terminal region differs between that seen 

in the apo DNA-PKcs EM density (from this study, grey mesh) and that of the DNA-PKcs 
bound with Ku70/80 and DNA (only DNA-PKcs is shown in blue colour for clearer illustration) 

(PDB code: 5Y3R) (Yin et al., 2017). B)  Cartoon of the mode of interaction between DNA-

PKcs with Ku at the DNA ends. Ku80 is in yellow colour, while Ku70 is in green. Big 

yellow/green circles represent the core structures in Ku70/80 heterodimer. Smaller circles 
represent the globular domain of the C-terminal region (CTR). The DNA-PKcs interaction 

region in the C-terminal of Ku80 is labelled. The apo form of DNA-PKcs is shown in orange, 
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and the DNA-PKcs structure interacting with the globular domain of Ku80CTR is in grey. The 
DNA-PKcs structure on the DNA is in blue. Two sided black arrows indicate the movement of 

the N-terminal domain of DNA-PKcs. 

 

6.! The allosteric activation of the kinase domain of DNA-PKcs  

In order to understand the allosteric activation of the kinase domain of DNA-PKcs, 

careful observation of the conformational changes of DNA-PKcs is critical. So far, four 

atomic models of DNA-PKcs have been built: two from the asymmetric unit of the 

crystal structure (Sibanda et al., 2017), one from the cryo-EM structure of apo DNA-

PKcs (Sharif et al., 2017), and one from the cryo-EM structure of DNA-PK holoenzyme 

(Yin et al., 2017). 

 

Conformational changes in the two models of the crystal structure (top panel of Figure 

4) show that the whole molecule of DNA-PKcs is twisting, involving movement of the 

N terminal region, consistent with the proposal that the interaction between E3933 and 

K881, next to the highly conserved region I (HCRI) of 979 to 1121, is important for the 

activation of the activation of kinase activity as it opens up the active site (Sibanda et 

al., 2017). This is of course a transition between two states, presumably influenced by 

the crystal packing, but nevertheless showing a correlation between changes in the N-

terminal region and those of the kinase active site. 

 

The two cryo-EM structures, corresponding to apo DNA-PKcs and DNA-PK 

holoenzyme, show two well-defined functional states of DNA-PKcs, namely inactive 

and active. Conformational changes (bottom panel of Figure 4) between these are more 

relevant to understanding the activation of the kinase. Comparison of the structures 

show that DNA-PKcs becomes more compacted when activated by DNA-Ku70/80 

complex and there is a significant uplift of the N-terminus (10-382) compared to the 

apo-structure, including HEAT1-HEAT8 repeats. The interaction in DNA-PKcs 

between N terminus and the FAT domain has been proposed to be the main driving 

factor of kinase activation (Yin et al., 2017), but other changes in the overall 

conformation undoubtedly affect the conformation and activation of the kinase. 
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Figure 4: Allosteric activation of DNA-PKcs. Four DNA-PKcs secondary structural models 

are depicted. In the top panel, two apo DNA-PKcs molecules (in green and cyan) from crystal 

structure (PDB code: 5LUQ) are superposed and show a relatively small conformational 
difference (Sibanda et al., 2017). The Highly Conserved Region I (HCRI), involving interaction 

between E3933 and K881, is shown in the amplified window on the left. In the bottom panel 

the cryo-EM structure of the apo DNA-PKcs  (PDB code: 5W1R) (Sharif et al., 2017) is shown 
in red, superposed on the structure of DNA-PKcs in blue from the cryo-EM structure DNA-PK 

(PDB code: 5Y3R) (Yin et al., 2017) in which DNA-PKcs is bound with Ku70/80 and DNA. 

The uplift of the N terminus leads to interaction between HEAT 1-8 and the FAT domain is 
shown in the right amplified window. For clarity the Ku C-terminal helices are omitted from 

(Sibanda et al., 2017) and the Ku and DNA molecules are omitted from (Yin et al., 2017) 

structures. The arrows indicate the conformational changes between the compared models. 

 

7.! Future structural studies of DNA-PK and NHEJ 

Further high-resolution structures of different states of DNA-PK will be required to 

understand the interaction mode of DNA-PKcs with Ku70/80, and the detailed 

conformational changes that modulate the DNA-binding and allosteric kinase active 

site. The DNA-PKcs structure bound with a small-molecule kinase inhibitor would be 

very useful for study of the structural changes in the kinase domain. It may be beneficial 

for future structural work of DNA-PKcs to produce the protein recombinantly in 

mammalian cells (Yin et al., 2017) as opposed to purifying the protein endogenously 

expressed in HeLa cells. This will enable mutagenesis of DNA-PKcs protein to test 

hypotheses about kinase function and interactions with other NHEJ proteins and DNA. 

 

Research over the past two decades on DNA DSB repair through NHEJ, particularly 

that on DNA-PKcs, demonstrates the complementarity of X-ray and cryo-EM 
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approaches. The future will no doubt bring new advances in cryo-EM that will assist 

study of larger multicomponent assemblies and will also likely become increasingly 

powerful with smaller proteins. Furthermore a recent study of NHEJ using a single-

molecule approach has indicated a requirement for all core NHEJ proteins for stable 

interaction (Wang et al., 2018). Over the short term, with many structures of individual 

proteins and small protein assemblies already available from X-ray studies, cryo-EM 

can take advantage of this knowledge to build up a picture of individual steps in NHEJ 

and possibly even explore the dynamics of this process. In conclusion, cryo-EM study 

of DNA-PK is just the beginning of the new era of structural biology for understanding 

the large multi-component assembly of NHEJ at the DNA damage sites and the 

structural relationship with upstream DNA damage response proteins and chromatin 

environment. 
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DNA-PKcs Review Supplementary Material 
 
The apo form of DNA-PKcs at 5.7 Å resolution (EMDataBank ID code EMD-
4425) 
 
Purification of DNA-PKcs 

DNA-PKcs was purified from Hela nuclear extract as described previously (Sibanda et 

al., 2010). The final protein buffer of DNA-PKcs is 20 mM Hepes pH 7.6, 200 mM 

NaCl, 0.5 mM EDTA, 2 mM MgCl2, 5 mM DTT. Cryo-EM grids of DNA-PKcs were 

prepared using a FEI Vitrobot Mark IV operated at 4oC and 100% relative humidity. 

Aliquots of 3 µl purified DNA-PKcs sample at a concentration of 0.2 mg/ml were 

applied to glow-discharged holey carbon grid (Quantifoil Cu R1.2/1.3, 300 mesh), 

blotted with filter paper for 2.5 s to remove excess sample and then plunge-frozen in 

liquid ethane.  

 

Cryo-EM structure of DNA-PKcs 

Cryo-EM data for DNA-PKcs were collected on a FEI Titan Krios electron microscope 

operated at 300 kV and movie image stacks were recorded on FEI Falcon 2 detector 

(integration mode). Each stack contained 40 movie frames and collected over 3 s using 

an exposure rate of 50 electrons per pixel per second at a calibrated magnification of 

95,000× (yielding a pixel size of 1.43 Å at the sample level). The final data set is 

composed of 1,557 image stacks with defocus values ranging from 2.0 to 3.8 μm.  

 

The beam-induced motion correction was performed using the MotionCor2 (Zheng et 

al., 2017). The contrast transfer function parameters were estimated by CTFFIND3 

(Mindell and Grigorieff, 2003). The remaining image processing was done using 

RELION 2.0 (Scheres, 2012). The flow-chart of data processing for DNA-PKcs is 

shown in Figure S1A. 1557 micrographs were collected (Figure S1B) and 1683 

particles were manually picked for initial 2D classification. 371484 particles were later 

auto-picked for 2D classification (Figure S1C). There were 289445 particles selected 

for 3D classification and there were two classes. Finally, class 1 with 129117 particles 

were used in ‘gold standard’ 3D refinement to yield the final map.  The resolution of 

the map was estimated by Fourier shell correlation (0.143 threshold) to be 5.7 Å 

(Figure S1D) and estimated local resolution is shown in Figure S1E. The electron 

density map was deposited in the EMDataBank with ID code: EMD-4425. 
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Figure S1: The determination of the cryo-EM structure of DNA-PKcs. A) Flow-chart of data 

processing. B) Representative images of cryo-EM micrography of DNA-PKcs. C) 

Representative images of 2D class averages for DNA-PKcs. D) FSC curve for the final refined 

DNA-PKcs structure. E) Overall resolution distribution of DNA-PKcs cryo-EM map. The N-

terminal region of DNA-PKcs is the most flexible region (red) while the kinase domain contains 

the highest resolution (blue). 
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