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Abstract: The effective manipulation of mode oscillation and competition is of fundamental 

importance for controlling light emission in semiconductor lasers. Here we develop a rate 

equation model which considers the spatially modulated gain and spontaneous emission, 

which are inherently governed by the ripple of the vacuum electromagnetic field in a Fabry-

Pérot (FP) microcavity. By manipulating the interplay between the spatial oscillation of the 

vacuum field and external optical injection via dual-beam laser interference, single 

longitudinal mode operation is observed in a FP-type microcavity with a side mode 

suppression ratio exceeding 40 dB. An exploration of this extended rate equation model 

bridges the gap between the classical model of multimode competition in semiconductor 

lasers and a quantum-optics understanding of radiative processes in microcavities.  

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

In the rapidly developing field of photonic integrated circuits and photonic signal processing, 

there is a general demand for small-size and high-efficiency light sources to enable dense 

integration [1, 2]. Usually, a smaller laser cavity results in a larger free spectral range (FSR) 

and therefore a larger mode separation. However, in this case, an inhomogeneously 

broadened gain spectrum [3] can lead to the mode competition and effective mode 

manipulation can be a demanding task [4, 5]. The technical path leading to single mode 

operation has so far relied on the spatial modulation of the real and imaginary parts of the 

refractive index. A periodically modulated active region acts as an optical grating to enable 

wavelength selection via distributed optical feedback. For example, index-coupled distributed 

feedback (DFB) lasers [6],  distributed Bragg reflector lasers [7], and photonic crystal lasers 

[8] operate on a single longitudinal mode based on a modulation of the real-part of the 

refractive index, whilst gain/loss modulation is successfully employed in gain-coupled DFB 

lasers [9-11], lasers with periodic metal structures [4] and lasers based on a pair of cavities 

with broken parity-time (PT) symmetry [5]. 

Very recently, optical interference pumping has emerged as an alternative approach to 

demonstrate single mode lasing in micro-sphere lasers [12, 13]. While the underlying 

mechanism for single mode operation is in general based on gain/loss modulation, it 

fundamentally differs from the previous cases, such as gain-coupled DFB lasers. In the case 

of gain-coupled DFB lasers, the lasing wavelength is primarily dominated by the optical 

grating itself, i.e. the spatial variation of the semiconductor structure, whilst the variation of 

the imaginary part in the refractive index breaks the PT symmetry and hence enables single 

mode operation [4, 5] . In the case of optical interference pumping discussed in this work, the 

spatial variation of the imaginary part of the refractive index determines both the lasing 

wavelength and the single mode operation. In addition, carrier injection is uniformly applied 
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 ( )0 02 sin ,I A nk z=  (2)

where k0 is the propagation constant corresponding to the longitudinal mode of wavelength Ȝ. 
Combining formula (1) and (2), the overlap between the interference pattern and the vacuum 

field of standing wave can be manipulated by altering the incident angles and the wavelength 

of interference beams. 

 

2.2 Travelling-wave rate equation  
A travelling wave rate equation is employed to analyse the lasing properties of the spatially 

pumped FP cavity. The electric field in the FP cavity can be expressed as  

 ( ) ( ) ( )( )0 0, ,, ,
ik z ik z i tE t z F t z e R t z e e ω−= +  (3)

where ω is the angular frequency, F(t,z) and R(t,z) represent the forward and backward optical 

fields in the FP cavity, respectively. The travelling-wave equation is derived from the time-

dependent coupled wave equations by neglecting the coupling between the forward and 

backward optical fields. The fields F and R are periodically modulated using interference 

pumping [16-20], 
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where vg is the group velocity, ī is the confinement coefficient factor, g is the optical gain, P 

is the spatial factor governed by the vacuum field of standing wave, FP is the Purcell factor, Ƚ 

is the internal loss, Fsp and Rsp represent the forward and reverse field of the spontaneous 

emission coupled into the lasing mode, and L is the length of active region. By applying the 

rotation wave approximation, the spatial factor of gain modulation is simplified to that of the 

following expression: 

 ( ) ( )2 sin .P z nkz=  (6)

Because the periodicity of the optical interference is at the same scale as the lasing 

wavelength, the variation in the Purcell factor due to the spatial oscillation of the vacuum 

field in the FP-type microcavity should not be neglected. According to the theoretical 

description of the Einstein coefficients and the experiment confirmation [21-24], we take the 

spatially-varied Purcell enhancement into account in both the spontaneous emission and 

stimulated emission [25, 26]. The vacuum zero-point energy, which exists ubiquitously due to 

the quantization of electromagnetic fields in the resonant cavity, has the same distribution as 

the field of standing wave in the longitudinal direction of the cavity. Governed by Fermi's 

golden rule, the transition rate is proportional to the density of final states which are the 

vacuum states [27, 28], resulting in spatially modulated spontaneous and stimulated emission. 

Single-mode operation, depending on the spatial overlap between the distribution of the 

vacuum field and optical interference pumping, can be analysed using the above rate 

equations. The general mechanism for single mode operation is sketched in Fig. 1b. The 

Purcell factor in the discussion is defined as: 
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where Q is the quality factor and V is the cavity mode volume [29]. A parabolic 

approximation of the optical gain is used [30] 
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where gN is the differential gain, N0 is the transparent carrier density, G0 is the parabolic gain 

fitting factor, and İ is the gain compression factor [31] resulted from spectral hole burning 

and carrier heating at high photon density. Photon density NP is calculated by 
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where İ0 is the vacuum dielectric constant, İ0|E|2 is the total energy of the optical field at the 

given frequency, Ȟ. Considering the relationship between optical field and photon density, the 

forward and reverse field of the spontaneous emission coupled into the lasing mode holds as 
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where ȕ is the spontaneous emission factor, N is the carrier density, Ĳsp is the spontaneous 

emission lifetime. The boundary conditions are given by: 

 ( ) ( ) ( ) ( )1 20, 0, , , , ,F t r R t R L t r F L t= =  (11)

where r1 and r2 are the mirror reflectivity of the FP resonator�s left and right facets where r1 = 

r2. Reducing the mirror loss increases the Q factor of the microcavity, which further increases 

the Purcell factor and enhances single mode oscillation via optical interference pumping. 

 

2.3 Carrier rate equation 

By taking into account the optical interference pumping and the Purcell enhancement of the 

spontaneous and stimulated emission, the time-dependent rate equation for the carrier 

densities in the active region are described by [32] 
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where Și is the internal efficiency, Lin is the injected light power, hv is the photon energy, V is 

the volume of active region, ɒnr is the non-radiative lifetime, and D is carrier diffusion 

coefficient [33, 34]. The value of S is 1 while using the uniform optical pumping, and S is 

governed by formula (1) with optical interference pumping. 

 

2.4 Multi-mode rate equations 



The longitudinal mode competition is governed by the following multimode rate 

equations [35, 36] 
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here, i represents the different longitudinal modes. To keep it simple, only three main modes 

near to the central wavelength of the gain spectrum are simulated. 

 

3. Simulation results and discussion 

Table 1. Simulation parameters used in the model 

Symbol Parameter Value 

L Length of active region 2 × 10-5 m 

W Width of active region 2 × 10-6 m 

D Thickness of active region 8 × 10-9 m 

ī Optical confinement factor 0.5 [30] 

Q Quality factor 900 

r1,r2 Mirror reflectivity 0.85 

V Cavity mode volume 0.32 ȝm3 

gN Differential gain 3 × 10-20 m2 [18] 

N0 Transparent carrier density 1 × 1024 m-3 [19] 

Į Internal optical loss 2000 m-1 [16] 

n Effective refractive index 3.2 [19] 

İ Gain compressive factor 3 × 10-23 m3 [18] 

Și Internal quantum efficiency 0.2 

ȕ Spontaneous emission factor 5 × 10-6 [37] 

Ĳsp Spontaneous emission lifetime 1 × 10-9 s [32] 

Ĳnr Non-radiative lifetime 1 × 10-9 s [32] 

G0 Parabolic gain fitting factor 1.2 × 10-9 m3/2 

D Carrier diffusion coefficient 2 × 10-4 m2s-1 [34] 

Table 1 shows the parameters used in the simulation. The length of the FP microresonator is 

20 Ɋm which is divided into 1200 sections in the simulation. We have assumed that a 

quantum well active region is used in the simulation. We consider three lasing modes, 

including Ȝ1 = 1.243 Ɋm with a longitudinal node number of m = 104, Ȝ2 = 1.255 Ɋm with m = 

103 and Ȝ3 = 1.267 Ɋm with m = 102. The FSR between the three modes is nearly 12 nm. In 

the proposed experimental system, a continuous wave laser source with Ȝ = 976 nm is 

selected for interference. The incident angle is set to 51ι and the required angular resolution is 

therefore around 1ι. The spatial distribution of the vacuum field and hence the optical gain 
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Fig. 3 The lasing performance of a uniformly pumped cavity. a. Characteristic light-light graph 

of the three lasing modes. b. Lasing mode spectra under uniform optical pumping. 

When the interference pumping effectively overlaps with the field distribution of the 

central mode (CEN lines in Fig. 4), single-mode lasing is realized with a SMSR = 43.39 dB to 

the left mode and 40.55 dB to the right mode. Comparing with the 1.41 dB difference 

between modes at Ȝ1 and Ȝ2 under uniform pumping, the central mode is very effectively 

selected by optical interference pumping. The modified distribution of the photon density in 

the interference pumping case is a consequence of spatially enhanced stimulated and 

spontaneous emission.  

Following the m ൌ 103 interference pumping, we further change the number of nodes in 

the interference pattern to effectively overlap with the field of different modes in the 

longitudinal direction of the cavity. As shown in POS lines in Fig. 4, the output powers of the 

three modes have been altered under the m ൌ 102 spatial pumping. The SMSR at the main 

lasing mode Ȝ3 ൌ 1.267 Ɋm is 42.53 dB to Ȝ1 and 37.42 dB to Ȝ2. The situation can be a little 

different under m ൌ 104 interference pumping since the mode Ȝ1 is the weakest mode in these 

three lasing modes. The SMSR at Ȝ1 is 27.60 dB to Ȝ2 and 32.20 dB to Ȝ3, respectively (NEG 

lines in Fig. 4). 
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Fig. 4 The output power of three longitudinal modes using different number of interference 

nodes. The interference nodes of spatial pumping are 103 (CEN, red lines), 104 (NEG, blue 

lines), and 102(POS, green lines), respectively.  

A carrier diffusion coefficient of 2 cm2s-1 is used in the simulation, which is a typical 

value taken from the literature for InGaAsP microcavity lasers [34]. In the optical interference 

injection system, the carrier diffusion coefficient has a non-negligible impact on mode 

selection. To investigate the influence, we observe that the SMSR at the central mode Ȝ2 = 

1.255 ȝm reduces to 35 dB to Ȝ1 and 28 dB to Ȝ3 when the carrier diffusion coefficient 

increases to 10 cm2s-1. This degradation is attributed to reduced contrast in the spatial 

distribution of carriers due to the interference injection. 
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Comparing the characteristic light-light curves of laser cavities with uniform (Fig. 3a) 

and interference pumping (Fig. 5a), a clear transition from multimodal to single mode lasing 

is observed. A detailed comparison of the output intensity in the desired mode (Ȝ2) (Fig. 5b) 

and non-desired modes (Ȝ1 and Ȝ3) show the superior mode selection when the longitudinal 

profile of the pump light is effectively overlapped with the desired lasing mode. The 

normalized intensity of the desired mode reaches almost unity when the spatial interference 

pumping is above threshold. The spatially pumped cavity displays a significant growth in the 

value of SMSR beyond the threshold power, as shown in Fig. 5c. The value of SMSR 

increases with higher input power, indicating that the SMSR can be precisely controlled by 

changing the input. A smaller size cavity expands the FSR, revealing a higher SMSR (Fig. 

5d). Applying spatial gain modulation to realise single mode lasing is suitable for 

microcavities with different sizes.   

 

Fig. 5 Mode selection. a. Multi-mode light-light curve of the laser with interference pumping. 

The threshold power is nearly 0.7 mW. b. Detailed comparison of output intensity in the 

desired mode (Ȝ2) and the intensity in non-desired modes (Ȝ1 and Ȝ3), where Uni-λ1, Uni-λ2, 

and Uni-λ3 denote the normalized intensity of the output under uniform pumping at the 

wavelength of λ1, λ2 and λ3 respectively, and Spat-λ1, Spat-λ2, and Spat-λ3 denote the 

normalized intensity of the output under spatial pumping at the wavelength of  λ1, λ2 and λ3, 

respectively. c. The change of the value of SMSR from the desired mode to the non-desired 

modes versus input power, under uniform and spatial pumping respectively. d. Mode selection 

performance of microcavities with different sizes. Single mode lasing can be achieved in 

different-size cavities via gain modulation. 

Both SMSR and laser performance, such as threshold pump power are related to the size 

of the microcavity. A smaller laser cavity expands the FSR and results in a larger mode 

separation, therefore a higher SMSR can be obtained. In the simulation, we have kept the 

same pumping density for uniformly and nonuniformly pumped microcavities. This proves 

that the SMSR is improved under nonuniform injection compared to a cavity with uniform 

injection. 

Fig 6 shows the time evolution of the carrier density (Fig. 6a) and photon density of the 

central mode (Fig. 6b) in uniformly and spatially pumped cavities, respectively. The turn-on 
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delay is an important parameter for semiconductor lasers and extensive studies have indicated 

that the delay time is principally determined by the carrier dynamics [37, 38]. The simulation 

results indicate that there is a shorter turn-on delay for the spatially pumped cavity, in which 

the interference injection interacts with the vacuum field distribution. This affects the carrier 

dynamics and hence increases the non-radiative electron scattering rates. However, the 

decrease of the turn-on delay time in our system is relatively small. This is due to the slight 

differences in the threshold carrier density under uniform and spatial optical pumping, which 

directly affect the carrier recombination rate. Moreover, the damping rate of the turn-on 

process is modified by changes to the spontaneous emission process caused by spatial 

pumping 

 

Fig. 6 Turn-on delay of uniformly and spatially pumped cavities with different pumping 

power. a. Turn-on delay dynamics of carriers. b. Turn-on delay dynamics of photon density of 

the central mode. 

We have calculated the small signal response [39-41] of both the uniformly and spatially 

pumped microcavity lasers based on the extended rate equation model. The results are shown 

in Fig. 7. Clear relaxation resonances are observed for injected light powers ranging from 3 

mW to 48 mW. The corresponding 3 dB bandwidth varies from 4.7 to 15.1 GHz for the 

uniformly pumped cavity (Fig. 7a solid lines) and 6.2 to 21.3 GHz for the spatially pumped 

cavity (Fig. 7a dotted lines), respectively. Focusing on the change of modulation response 

amplitude, the damping factor is decreased in the spatially pumped case. We plot the 3 dB 

linewidth versus the square root of light power minus threshold light power (Fig. 7b). The 

proportional constant is 2.23 GHz mW-0.5 for the uniformly pumped cavity, but the 

modulation efficiency increased to 3.70 GHz mW-0.5 for the spatially pumped cavity. The 

higher-speed performance is achieved due to an immediate interaction between non-uniform 

carrier injection with optical interference pumping and the vacuum field of the standing wave. 

 

Fig. 7 Small signal responses of the microcavity lasers. a. Small signal responses of the 

uniformly and spatially pumped cavities under varying light injection. b. 3 dB linewidth as a 
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function of the light power (L-Lth)
1/2, the modulation efficiency of spatial pumping is increased 

comparing to the uniform pumping. 

 

4. Conclusions 

In conclusion, we have proposed an extended rate equation model which considers the 

interplay between the vacuum electromagnetic field of standing waves and external optical 

injection via laser interference. Simulation results show that the lasing mode can be 

effectively selected (with a SMSR over 40 dB) when the longitudinal profile of the pumping 

light effectively overlaps that of the field distribution of the desired lasing mode. This mode 

selection mechanism shows that the value of SMSRs can be precisely controlled by altering 

the input and that the model can be applied to micro-resonators with different sizes and 

shapes, such as FP and whispering-gallery-mode resonators [42]. Moreover, a shorter turn-on 

delay and higher-speed modulation can be possible using optical interference pumping 

compared to uniformly pumped lasers. This model has been used to explore the performance 

of micro- and nano-resonators through a combination of a classical model of multimode 

competition in semiconductor lasers and a quantum-optics understanding of radiative 

processes in microcavities. 
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