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Abstract

Volatile organic compounds (VOCs) are a broad class of air pollutants which act as 

precursors to tropospheric ozone and secondary organic aerosols. Total UK emissions of 

anthropogenic VOCs peaked in 1990 at 2,840 kt yr-1 and then declined to ~ 810 kt yr-1 in 

2017 with large reductions in road transport and fugitive fuel emissions. The atmospheric 

concentrations of many nonmethane hydrocarbons in the UK have been observed to fall over 

this period in broadly similar proportions. The relative contribution to emissions from 

solvents and industrial processes is estimated to have increased from ~35% in 1990 to ~63% 

in 2017. In 1992, UK national monitoring quantified the 19 of the 20 most abundant 

individual anthropogenic VOCs emitted (all were non-methane hydrocarbons), but by 2017 

monitoring captured only 13 out of the top 20 emitted VOCs. Ethanol is now estimated to be 

the most important VOC emitted by mass (in 2017 ~136 kt yr-1, ~16.8% of total emissions) 

followed by n-butane (52.4 kt yr-1) and methanol (33.2 kt yr-1). Alcohols have grown in 

significance representing ~ 10% of emissions in 1990 rising to ~30% in 2017.  The increased 

role of solvent emissions should now be reflected in European monitoring strategies to verify 

total VOC emission reduction obligations in the National Emissions Ceiling Directive. 

Adding ethanol, methanol, formaldehyde, acetone, 2-butanone and 2-propanol to existing 

non-methane hydrocarbon measurements would provide full coverage of the 20 most 

significant VOCs emitted on an annual mass basis. 

Key words: Volatile Organic Compounds (VOCs), air pollution, atmospheric emissions
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1. Introduction.

The formation of tropospheric ozone from the reactions of volatile organic compounds 

(VOCs) and NOx in the presence of sunlight is very well-established science that dates back 

to atmospheric chemistry research in the 1950s (e.g. Haagen-Smit and Fox 1954)1. Sunlight 

in the near-UV either directly destroys VOCs or initiates reactions that generate free radicals 

that can lead to the oxidation of VOCs, and the generation of peroxy radicals that can convert 

NO to NO2, and thus create a route to the net photo-chemical production of ozone from NO2 

photolysis. Ozone at the planetary surface has impacts on health that include an exacerbation 

of asthma2 and increased risk of death from respiratory causes3. More recent advances in the 

atmospheric chemistry of VOCs have included insight that oxidation of certain species4 leads 

to chemical by-products that can create new particles5, add mass to existing particulate matter 

(PM)6, or change other properties of PM7. There is now a large body of observations 

confirming the ubiquitous presence of secondary organic aerosol (SOA) in virtually all 

environments8. A consequence is that the environmental motivations for controlling primary 

anthropogenic VOC emissions now go beyond the established science of ozone formation 

and form part of PM2.5 reduction strategies9. 

The term VOC, used frequently and interchangeably with the longer abbreviation non-

methane volatile organic compounds (NMVOCs) is a catch-all term for any organic 

compound found as a gas in the atmosphere. In urban air NMVOCs can encompass many 

thousands of different organic compounds including non-methane hydrocarbons (NMHCs), 

oxygenated, nitrated and halogenated species10. Since the term VOC is so broad, for 

regulatory and policy purposes more specific definitions are used. One such technical 

definition is given in official guidelines issued by the European Monitoring and Evaluation 

Programme (EMEP) and the parallel United Nations Economic Commission for Europe 

(UNECE) Convention on Long Range Transport of Air Pollution (CLRTAP) for national 

inventory reporting of emissions. The same definition is also used in the European 

Commission (EC) Directive 1999/13/EC (Solvent Emissions Directive)11 and EC National 

Emissions Ceiling Directive (NECD)12. 

“NMVOCs comprise all organic compounds except methane which at 293.15 K show a 

vapour pressure of at least 0.01 kPa (i.e. 10 Pa) or which show a comparable volatility under 

the given application conditions. 
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A slightly different definition of VOCs is given within the 2004/42/EC Paints Directive13, 

which refers to a VOC as “an organic species with a boiling point less than 250 ºC at a 

standard pressure of 101.3 kPa.”

The practical realisation of both definitions is that most simple non-methane hydrocarbons 

with a carbon number falling within the range C2 to C14 are thought of as VOCs. Longer-

chain hydrocarbons (>nC14) may fall outside of the definition, as may more highly 

functionalized organic compounds such as organic acids or organic peroxides. The majority 

of persistent organic pollutants (POPs) have lower vapour pressures than this definition, 

although some two and three ring polycyclic aromatic hydrocarbons such as naphthalene are 

considered as VOCs as well as POPs.  The EC Air Quality Directive 2008/50/EC14 includes 

within it a somewhat broader definition related to an ability to form ozone: 

“volatile organic compounds’ (VOC) shall mean organic compounds from anthropogenic 

and biogenic sources, other than methane, that are capable of producing photochemical 

oxidants by reactions with nitrogen oxides in the presence of sunlight”

The reporting of emissions as set out in treaties such as NECD and CLRTAP in principle 

takes into account all species that fall within the relevant technical definition. In the case of 

the UK this is done through evaluation of hundreds of different sources where statistical data 

must be collated for the purposes of reporting a single annual VOC emission total. The 

majority of countries report totals of emissions from various different sectors. The UK is 

unusual in then mapping the sectoral emissions onto nearly 700 different species. 

Pragmatic decisions are obviously needed with respect to those VOCs that might be 

measured as part of any verification or regulatory activities. Measurements may be needed to 

inform directly on attainment of specific health-related VOC concentration targets (for 

example for benzene and 1,3-butadiene), or those VOCs that may act as an independent 

check that estimated emissions changes are being reflected in the ambient atmosphere. 

Since all VOC analytical methods have boundaries on specificity and sensitivity, a very 

limited range of VOCs are typically monitored in ambient air, compared to those actually 

emitted. Ideally the species that are routinely monitored in air should reflect those that are 
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indicative of the most significant emissions, and those that cause the greatest harm to health.  

Across Europe routine monitoring of VOCs has followed guidelines in Annex X of the 

Directive on Cleaner Air for Europe 2008/50/EC. This recommends the measurement of 31 

individual VOCs, all non-methane hydrocarbons, ranging in molecular weight from ethane, 

through to 1,3,5-trimethylbenzene. From these recommendations have followed a range of 

commercial monitoring instruments based around thermal desorption and the development of 

traceable standards for calibration to mole and kilogram15. The choices around which species 

have been measured historically has been a mixture of practically (what can be measured) 

informed by which were the most significant VOCs being emitted when routine monitoring 

became established in Europe in the 1990s. In the case of the UK, continuous VOC 

monitoring began around 1992. It is noteworthy however that unlike virtually all other air 

quality parameters covered by the NECD there is no standard European reference method for 

measurement, although there have been efforts at standardisation associated with calibration 

and reference materials16. This paper evaluates how VOC emissions have changed over the 

last three decades in terms of both absolute amount and VOC speciation, using the UK as a 

test case for a high-income country, and the possible implications for future observational 

VOC networks used to track progress towards emissions targets in 2030 and beyond. 

2.1 Evaluating VOC emission changes using inventories

The National Atmospheric Emissions Inventory (NAEI) estimates UK VOC emissions from 

anthropogenic sources following methods in the EMEP/EEA Emissions Inventory 

Guidebook17 for submission under the revised EU Directive 2016/2284/EU on National 

Emissions Ceilings (NECD) and the reporting framework of CLRTAP1.  Both the NECD and 

CLRTAP set emissions ceilings with milestone targets for particular dates. For example the 

NECD sets a ceiling for 2020 that requires a 32% reduction in total UK emissions relative to 

2005 levels, excluding agricultural sources.  This equates to 724 ktonnes in 2020 based on the 

latest NAEI estimates for 2005.  The NECD then requires a 39% reduction in emissions 

relative to 2005 levels by 2030, equivalent to 649 ktonnes.

The NECD and CLRTAP define those VOC sources to be included and excluded from the 

national inventory (for example, emissions of NMVOCs from biogenic sources are not 

1 See http://www.ceip.at/ms/ceip_home1/ceip_home/reporting_instructions/reporting_programme/  for reporting requirements of 
estimating and reporting emissions data under the CLRTAP

Page 6 of 36

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

included) and the technical definition (see earlier). The Guidebook provides estimation 

methodologies and default emission factors for each source category, although countries can 

use country-specific emission factors where these are deemed relevant.  Key requirements for 

inventory reporting are Transparency, Completeness, Consistency, Comparability and 

Accuracy and in this respect, it is important to provide a national inventory with time-series 

consistency going back to at least 1990 and forward to 2030.

The NAEI uses a combination of emission factors from the EMEP/EEA Guidebook and 

emission rates provided by industry and regulators in the UK.  The emission factors represent 

either i) the total mass of all individual VOCs when added together or ii) a metric defined as 

total hydrocarbons (THCs), a non-speciated mass of VOCs, used for example in the case of 

tailpipe road transport emissions.   The speciation of the total emissions into individual VOCs 

is undertaken separately. Where THC factors are used, the methane emissions calculated 

separately are subtracted out.

The NAEI uses three basic approaches for estimating total VOC emissions – top down, point 

source and industry-reported.  In the first case, an emission factor approach (top-down) 

combined with relevant activity statistics is used for many combustion sources including 

crude oil refineries, other industrial sites, and in residential buildings.  Factors are also used 

for transport sources, as well as for some processes in the food and drink industry (for 

example bread baking and whisky production) and for some uses of solvents2, including 

many consumer products. 

A point-source approach (bottom-up) can be used where the sum of emissions is 

estimated/measured and reported by process operators for each emitting site within a sector.  

The UK estimate is generated simply by summing the emissions reported for all of the sites 

within a given sector.  This approach is used for refinery processes, chemicals industry, oil 

and gas production and certain types of solvent use in industry such as for printing of flexible 

packaging, and coating of road vehicles.  Key sources for data on point source emissions are 

the regulators in England, Scotland, Wales and Northern Ireland who maintain inventories for 

2 . The term ‘solvents’ is rather imprecise and could be possibly interpreted as defining some specific 

chemical functionality or property, although there is no universally agreed definition. In this paper 

when we refer to solvents we are referring to those VOCs included in that emissions class for the 

purposes of international emissions reporting. In a chemistry lab setting the term solvents brings to 

mind VOCs such as acetone, ethanol, toluene and so on, and they are indeed major species in solvent 

inventories. For emissions reporting purposes a wider range of VOCs are included under the 

definition including aerosol propellants such as butane and some long-chain aliphatic compounds.
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the processes they regulate, and the BEIS Environmental & Emissions Monitoring System 

(EEMS) for the offshore oil and gas sector. 

In the case of solvent use, the third approach is used for UK emission estimates taking data 

provided directly by industry. However, this may come with little additional information on 

emission factors or activity data.  Data are often supplied on an ad hoc basis and usually 

cover a limited number of years, thus a time-series may need to be generated by splicing 

together various data sets, possibly from different data providers.  Therefore, there is a risk 

that a time-series might not be fully consistent and estimates for different years may be 

subject to different levels of uncertainty.  However, industry estimates are essential for the 

VOC inventory: they provide data for sources where the lack of public domain data means 

that emission factor or point source approaches cannot be used.  Further details of the 

methods used in the NAEI are provided in the UK’s national inventory report submitted 

annually to the UNECE and NECD.  The latest version of the inventory is for years up to 

2017 (the 2017 NAEI) as submitted in early 2019 (NAEI, 2019).

2.2 Trends in estimated total VOC emissions in the UK

Figure 1 shows the trends in anthropogenic VOC emissions from 1990-2017 estimated in the 

NAEI, grouped into ten major source categories, plus projections for emissions in 2020 and 

2030. National emissions are estimated to have decreased from a peak of 2,837 ktonnes in 

1990 to 807 ktonnes in 2017, a fall of 72%, a consequence of major reductions from road 

transport and fugitive emissions from fuels.  The decrease in road transport emissions has 

been mainly due to the introduction of more stringent vehicle emission standards such that by 

2017 this sector contributed only ~4% of total UK VOC emissions, compared with 30% in 

1990.  

The largest contribution to VOC emissions in 2017 was from solvents.  Overall emissions 

have decreased for this sector, but by significantly smaller amounts than road transport and 

fugitive emissions.  There have also been relatively smaller reductions in emissions from 

industrial processes such that this sector contributed 15% of total emissions in 2017; these 

emissions now mostly come from the food and drink industry which have been increasing 

since 1990. 

The period since around 2000 has seen a substantial re-ordering of the relative contributions 

from each of the major source sectors. Figure 2 shows six sectoral emissions as an annual 

percentage contribution made to national VOC emissions. There has been a steep decline in 
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the road transport contribution and steady growth since circa 2000 in the contribution from 

solvent use, particularly ethanol. Based on the 2017 version of the inventory, the UK met the 

2010 NECD emissions target of 1,200 ktonnes VOCs, and then did so for all subsequent 

years to 2017 (the last year reported here). Whilst a small further reduction in emissions is 

anticipated to occur up to 2020, emissions then remain fairly constant up to 2030.  This 

situation arises because emissions from large sources important in the past, such as road 

transport, have already been reduced significantly and there remains little scope for further 

reductions.  For example there are currently no further VOC emission reductions planned 

beyond the vehicle class of Euro 6/VI. Emissions from sources such as solvent use, food and 

drink and industrial processes remain fairly flat or increase slightly because emission factors 

are assumed to remain constant whilst activities are predicted to remain static or increase 

slightly (often following population change).

Overall, a small exceedance of the 649 ktonne NECD target for 2030 is predicted for the UK 

unless there are further actions to reduce emissions. The size of additional reduction needed 

to meet the 2030 target is estimated to be around 30 ktonnes per year by 2030 based on 

current projections.  Meeting those targets is likely to require an increased policy and 

regulatory focus on those VOCs from the solvent and industrial usage sectors, and so the next 

section examines which VOC species are significant contributors.  

2.3 VOC speciation in key emission sectors

There is no statutory requirement to report national inventories of individual VOC species to 

the NECD or CLRTAP, but a comprehensive speciated inventory is very valuable for other 

purposes.  Given the different chemical reactivities of each component, a speciated inventory 

is essential for atmospheric models of ozone and secondary organic aerosol formation.  It is 

also necessary for interpretation of ambient measurements of VOCs and how such 

information can be used to verify inventory trends.  

The UK is one of the few countries to have developed a comprehensive speciated inventory 

for VOC emissions and this is widely used in atmospheric modelling.  The speciated 

inventory was first developed in the mid-1990s but the lack of significant new data sources 

means that development essentially finished in the early 2000s when the methodology was 

published18.  The NAEI’s VOC inventory is broken down into 664 species with unique VOC 

profiles for each emission source. These are mostly as chemically unique species although 

occasionally these are expressed as aggregate groups of VOCs, for example, “C13 aromatics”.
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The information used in the development of the species profiles came from various sources, 

for example industry trade associations in the 1990s provided some speciated estimates 

including the Solvent Industry Association, the British Coatings Federation and British 

Aerosol Manufacturers Association.  The solvent industry also helped with speciation of 

white spirit and other hydrocarbon mixtures.  The Environment Agency’s Pollution Inventory 

and similar inventories compiled by other UK regulators include some details of speciation, 

although the amount of detail is now much less than was the case in the early 1990s. Some 

analysis was undertaken of fugitive emissions at petrol stations and species profiles were also 

provided by the refinery sector.  The profiles for vehicle exhaust emissions were taken from 

the EMEP/EEA Emissions Inventory Guidebook.  An important source for other sectors was 

the US EPA SPECIATE database.

As much of the data used to develop the speciation profiles were gathered during a short 

period in the late 1990s and early 2000s, and since more recent data are not available, it is 

assumed that the species emitted by a particular source are the same in all years.  While this 

is likely to be true for sources such as bread baking or gasoline distribution, it is probably not 

true of technologically evolving sources such as industrial coating processes, chemicals 

manufacture or the formulation of consumer and household products.

There are ~360 different individual VOC source sectors or processes included within the 

NAEI and each of these has a representative chemical speciation associated with it, so it is 

possible to interrogate the NAEI for annual amounts and therefore emission trends of 

individual VOCs. Although in total the NAEI contains data on nearly 700 VOCs, a much 

smaller subset of ~ 40 VOCs represents typically ~70 % of the total mass of emissions. The 

10 most significant individual VOCs in terms of mass emitted represented 45.3% of UK 

national emissions based on 2017 estimates. Ethanol was the most important VOC 

comprising 16.8% of all emissions. The recent trends in the ten highest VOCs by mass 

emission are shown in Figure 3. 

Figure 3 highlights a national trend since 1990 of decreasing emissions of simple non-

methane hydrocarbons associated with natural gas leakage (ethane), evaporative loss of fuels 

(e.g. pentane, butane, toluene) and reductions in VOCs from tailpipe emissions (e.g. benzene, 

ethene). Over the same period there have been increases in emissions of ethanol and 

methanol. The increase in ethanol in the NAEI is due to increased reported emissions from 

the whisky industries and in estimated domestic use of ethanol as a solvent, for example 

contained within personal care, car care and household products. The more recent addition of 
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bio-ethanol to gasoline is included in the inventory, but due to the relatively low level of 

contemporary fugitive emissions and exhaust emission, this has not contributed significantly 

to this upward trend. 

Even for simple alkanes there have been some notable changes in the major contributing 

sources. n-butane for example is currently the second most abundant VOC in the UK 

inventory; in 1990 n-butane was emitted overwhelmingly from gasoline extraction and 

fugitive distribution losses (139.8 kt yr-1). However by 2017 the largest anthropogenic source 

of n-butane in the inventory was from its use as an aerosol propellant (25.5 kt yr-1) with the 

gasoline  / fugitive losses having been reduced to 23.3 kt yr-1. 

2.4 Change to emissions of VOC functional groups

Figure 3 shows the multi-year trends in the estimated emissions of some of the most 

significant VOCs from a mass-emitted perspective, but it is possible to look more generally at 

trends in the types of VOCs being emitted, by categorising the very large number that are 

individually speciated in the NAEI and then grouping by chemical functional groups.  Figure 

4a shows the estimated emissions trends of 12 VOC functional group types, plus a further 

‘other’ category for all other minor functionalised VOCs that do not fall within these 12 

classes. Figure 4b show the same data but expressed as a group contribution to the annual 

emissions in percentage terms for each year. The most striking feature is the increased 

significance of alcohols generally, with significant contributions to 2017 emissions made by 

1-propanol, 2-propanol and 1-butanol as well from methanol and ethanol highlighted in the 

previous figure.  

Understanding the exact location- and condition-specific impacts of a change in VOC 

speciation on tropospheric ozone can only be done fully using explicit modelling and is 

beyond what we report here. It is possible however to evaluate how a change in VOC 

speciation may impact on the ozone forming potential of national emissions in the 

atmosphere by considering the Photochemical Ozone Creation Potential (POCP)19 20 of the 

VOC mixture.  Using the overall POCP of the ensemble of VOCs emitted it is possible to 

examine at a bulk level whether the changes in speciation might have led to a change in 

overall ozone forming potential, per tonne of ‘average’ UK VOC emissions.  Figure 5a shows 

the trends in total VOC emissions for the UK (by mass) and the normalised POCP for each 

year derived from the top 40 emitted VOCs in that year using Derwent et al. 1998 POCP 

values. The 40 VOCs for which the calculation is made represent around ~70% of overall 
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emissions by mass and assumes that NOx and all other relevant photochemical parameters are 

held constant.  

Over the 1990-2017 period the normalised POCP of the UK VOC mixture declined slightly, 

by around 4%. A complex set of changes lie behind this; the largest change in any single 

VOC is the reduction in ethane emissions (a low POCP compound) and the growth in ethanol 

(a species of intermediate POCP reactivity). However, there are also concurrent reductions in 

a range of other high POCP alkenes and aromatic compounds that offset the growth in 

ethanol. The net change is to an average emissions mixture that is very slightly lower in 

POCP per unit national emissions in 2017 than the mixture being emitted in 1990, but likely 

too small a change to materially affect ozone formation rates.

2.5 Changes in ambient concentrations

Continuous measurements have been made of a range of nonmethane hydrocarbons in the 

UK Automated Hydrocarbon Network since 1992 The shape of the network has changed over 

the years, although the methodology has always been based around thermal desorption – GC-

FID. Further details can be found on the UK-AIR online resource3. Since 2001 there have 

been four continuous GC-FID systems measuring non-methane hydrocarbons in the UK and 

of these the monitoring station at Marylebone Road in Central London has the most complete 

data record.  Although Marylebone Road is formally a roadside location it does experience 

the full range of urban emissions given its central position within the city. Other publications 

have reported data from the UK up to around 2008, for example von Schneidemesser et al21. 

Here we show some of the more recent trends in ambient NMHCs as measured at 

Marylebone Road and then compare to changes indicated in the NAEI.  

Figure 6 shows trends for 25 different species. Each hydrocarbon has a unique behaviour 

over time, although three distinct trends are observable. For ethane and propane, derived 

largely from natural gas leakage, there have been only modest reductions in ambient 

concentrations in central London since 2000. For a range of hydrocarbons derived 

predominantly from sources such as gasoline evaporation and incomplete combustion, for 

example xylenes, toluene, 1,3-butadiene there is a broadly log-linear decrease of ~ 2 orders of 

magnitude with reductions being seen up to the most recent year of observations. For some 

species like butenes, pentenes and 1,3-butadiene ambient concentrations are now close to 

instrumental detection limits and there is considerable scatter in the data. There is a third type 

3See https://uk-air.defra.gov.uk/networks/network-info?view=hc for further details of the UK Automatic Hydrocarbon Network
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of behaviour for VOCs that showed initial falls in ambient concentrations in the early 2000s 

but that have plateaued more recently. These include i and n butane, ethene, benzene, ethyne 

and propene. This is potentially rationalised as arising from initial falls in concentrations 

through the reduction of emissions of these species from their road transport source, but that 

other urban sources also exist that have not declined and that now dominate ambient 

concentrations. 

Ambient concentrations measured at the roadside cannot be expected to directly reflect 

inventory changes, since roadside monitoring sites of this kind are skewed to detecting 

changes in the locally dominant road transport source. However, it is still instructive to 

examine the general scale of reductions seen and the degree of agreement between 

observation and inventory. Table 1 shows the annual mean concentrations for a range of 

VOCs and the estimated change in emissions over a similar period. The nature of the 

Marylebone Road monitoring makes it particularly sensitive to road transport emissions, and 

for many VOCs the reductions in roadside concentrations have been greater than those 

estimated as a percentage of overall national emissions, reflecting particular success in 

reducing emissions from this sector. In the case of natural gas-derived VOCs like ethane and 

propane, urban concentrations reported through UK-AIR have changed little in recent years 

whilst national emissions of ethane are estimated to have fallen by 66% between 2000 and 

2017 for all sources and by 52% for natural gas leakage according to the NAEI. This 

mismatch between trends in emission estimates and concentrations may in part be 

rationalised due to the inventory reductions in emissions occurring in remote offshore 

extraction industries and distribution networks, which are displaced from monitoring sites. It 

may also be the case that in London gas leakage rates have been higher than the UK average 

which the NAEI is based on.  It is also important to consider that the lifetimes of these 

species are long and significant hemispheric background concentrations are present. 

Observations in Europe have shown similar ambient trends to those reported here, with 

declines across several European roadside locations,22. 

Making direct like-for-like trend comparisons between observations and inventories is 

generally not appropriate, given multiple contributing sources that define the ambient 

concentrations of any given VOC. Urban monitoring stations can be sensitive to a particular 

subset of sources along with reflecting broader patterns of long lifetime VOCs which are 

influenced by regional transport. However, 1,3-butadiene is one VOC where some direct 

comparisons can potentially be made. The lifetime of butadiene during daytime with respect 
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to hydroxyl radical oxidation is very short, around 30 minutes, and so its measured 

concentration essentially reflects local sources only. The only major urban source of 1,3-

butadiene is thought to be road transport tailpipe emissions. In Figure 7 we show the trend in 

roadside concentrations of 1,3-butadiene (Marylebone Road) against the inventory estimated 

emissions of 1,3-butadiene from the road transport sector (i.e. excluding all other sources 

such as refineries and fossil fuel extraction). There is a remarkable degree of agreement in 

trends between the estimated emissions and ambient roadside observations, with some 

evidence that for a period, ambient concentrations reduced faster than reported in the 

inventory, potentially due to overperformance of emission control technologies in the early 

and mid 2000s. The trends in 1,3-butadiene can be contrasted with benzene, a much longer-

lived VOC, which has significantly greater diversity of emissions sources beyond road 

transport tailpipe emissions. 

2.6 Impacts of changing speciation on monitoring strategies  

Previous sections have shown how at a national level, current emissions in the UK are now 

significantly influenced by VOCs released from solvent use, both industrial and domestic. As 

further reductions in emissions are required across Europe, and most reductions from the 

fossil fuel and transport sectors have likely already been achieved, reducing solvent 

emissions appear the most feasible route to meet future NECD objectives. Specific policies 

and interventions that might achieve these aims are beyond this paper, but there will likely be 

an overarching requirement for ambient observations to continue to provide some external 

verification that changes in emissions as determined by inventory reporting processes have 

occurred. This situation creates a measurement challenge since the solvents sector is heavily 

influenced by oxygenated compounds, rather than non-methane hydrocarbons which current 

on-line monitoring infrastructure is generally best configured to detect23. There are then 

further questions raised about where geographically representative measurements should be 

made if transport sources are no longer significant. 

The current speciation of VOCs from the class of ‘solvents and related products’ in the NAEI 

is likely imperfect due to lack of up to date speciation information from manufacturers, but it 

provides some guide to the key species that are released. Figure 8 shows the fractional 

contributions for the most abundant 43 VOCs in this solvent emission class in the NAEI for 

2017, dominated again by ethanol and methanol, but with significant contributions from 

ketones like acetone and 2-butanone and halocarbons including trichloroethene and 

Page 14 of 36

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

dichloromethane. The figure is annotated by those species that are currently routinely 

monitored (in green) with those that are not (in red). 

An alternative way of visualising the impacts of changing emission speciation on monitoring 

strategies is to consider the most significant VOCs (either individual species or inventory 

lumped groups) emitted each year and then whether there is coverage in terms of ambient air 

measurements. We evaluate this by taking a time slice at 5-year intervals from the VOC 

speciation in the NAEI and rank order the top 40 VOCs emitted in each year. 

VOCs in Table 2 with a white background are currently measured as part of the UK 

Automated Hydrocarbon Network, and this is mirrored widely in terms of analytical 

methodology across Europe and elsewhere. Those species shaded are not currently monitored 

routinely. It is clear that when the UK / EMEP networks for on-line monitoring were first 

designed there was very good alignment between the major VOCs being emitted and the 

VOCs being monitored. Of the top 20 unique VOCs emitted in 1990, 19 were captured by the 

Automated Hydrocarbon Network (this excludes a NAEI lumped group of >C13). Over time 

however the observational coverage has declined, to 2017 when only 13 of the top 20 VOCs 

were routinely monitored, including omission of two of the top three most significant VOCs 

emitted by mass.  

It is also instructive to note those VOCs which are not as significant as they once were. 

Ethyne is one of the most challenging VOCs to measure using thermal desorption techniques 

due to its very low boiling point, and this can be a defining factor for much of the analytical 

instrumentation for analysis (for example breakthrough volume). By 2017 ethyne had fallen 

to 82nd when ranked by mass of emissions from a position in 1990 of 21st.  An argument can 

also be made that the various isomers of butenes and pentenes that were once important as 

contributors to both total mass emissions and to reactivity and ozone creation potential in the 

1990s have been reduced so significantly that the effort expended on their measurement in 

networks may not be particularly productive. 

2.7 Global applicability to emissions and monitoring in other locations. 

Since there is no standardised international requirement to report speciated VOCs as part of 

emissions control treaties it is difficult to make direct comparisons between the UK-specific 

conclusions we report here and other global locations. We make some attempt to reality-

check whether the influence of oxygenated VOCs is as great as suggested by UK inventories 

by examining the most significant VOCs detected in ambient air in the UK and in other 
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countries, using data collected from short periods of research observations and process 

studies. Ambient data is of course not directly comparable to emissions inventories at a 

national scale, since large point sources may not be detected at a given measurement location 

and there may be important seasonal factors not captured in short-term measurements that are 

reflected in annual averages.  Many oxygenated VOCs are also produced through 

atmospheric oxidation, so they may be elevated in ambient air not solely because of direct 

anthropogenic emission, but also as a by-product of the degradation of other VOCs. This is 

particularly important for acetaldehyde and formaldehyde which are common degradation 

products, including also from natural emissions such as isoprene. We exclude those from this 

analysis. From recent literature we note the work of McDonald et al. 201824 which shows 

ethanol, iso-propanol and acetone as three of the four most abundant individual VOCs 

measured in ambient air in Pasadena, USA. From our own observations made using two-

column GC-FID in various locations we find a good degree of consistency between the top 

VOCs ranked by ambient concentrations in different global locations. Table 3 shows 

examples of the most abundant VOCs in ambient air in London, Beijing (measured during 

wintertime) and Delhi (during the post-monsoon period), all part of research-intensive 

observation periods. We use wintertime data since this is a closer reflection of source 

emission profiles since oxidation losses are lower than in summer.  The concentration of 

VOCs found in each location differs very significantly, with order magnitude differences 

between London (lowest) and Delhi (highest). However, for all three urban locations ethanol 

is the most abundant VOC with methanol and acetone also found in the top 10 species in all 

three locations.  

We note that since research observations exist for many oxygenated VOCs,  it demonstrates 

that there are no insurmountable technical obstacles to improving routine measurement 

coverage25. This paper does not make recommendations for how best a broadened set of 

VOCs might be measured in automated networks, but there are several proven analytical 

approaches available - widely reported in literature are GC-FID26, GC-MS27 and online 

chemical ionisation mass spectrometry28. Indeed, the World Meteorological Organisation 

Global Atmosphere Watch (GAW) programme has already supported a set of calibration 

infrastructure and measurement guidelines for some oxygenated VOCs29, although 

measurements remain sparse at GAW background stations30. 

3. Conclusions 
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Inventory estimates of total VOC emissions in the United Kingdom show significant 

decreases over the past 30 years from a peak around 1990, which is mirrored in ambient 

measurements of some non-methane hydrocarbons. The most significant sources in the 1990s 

were non-methane hydrocarbons related to fossil fuel usage, in particular from natural gas 

extraction and distribution, gasoline tailpipe emissions and fugitive fuel losses. Policies and 

regulations across multiple sectors to reduce emissions have been very effective, particularly 

from road transport, which now contributes only a small amount (~4%) to total UK VOC 

emissions. There has been little change in overall emissions from industrial and domestic 

solvent usage, and this has resulted in a growth of this sector as a proportion of national 

emissions. Along with this change has been a change in both the relative and absolute 

amounts of individual VOCs emitted. Ethanol is now the most abundant VOC emitted in the 

UK and overall, short-chain alcohols are the most important functional group, measured by 

mass. The shift in functional groups has not however had an appreciable impact on overall 

average POCP (a 4% decline) since the growth in ethanol has been balanced by losses in 

reactivity in other species, notably alkenes and mono-aromatics.  

If future changes in emissions are to be independently tested against external atmospheric 

monitoring, then a revised analytical strategy is needed, both in terms of species quantified 

and locations of the measurement themselves. The current online VOC networks used across 

Europe predominantly focus on the measurement of non-methane hydrocarbons, with only 

rather limited coverage of certain functionalised VOCs using off-line methods, for example 

to measure aldehydes. This results in many of the major oxygenated VOCs emissions going 

undetected, and skewed in geography towards VOCs emitted from transport sources. Without 

some change to this position it will not be possible to evaluate how successful future policies 

and technical interventions have been in reducing solvent emissions, noting that reductions in 

VOCs are needed in many countries to meet NECD and CLRTAP obligations for 2030.   The 

addition of ethanol, methanol, formaldehyde, acetone, 2-butanone and 2-propanol to the 

existing suite of non-methane hydrocarbon measurements would provide for full 

observational coverage of the 20 most significant VOCs emitted on an annual mass basis. It 

may be possible for a change in future observational strategy to be brought closer to cost-

neutral in operational terms by ceasing observations of certain analytically challenging 

nonmethane hydrocarbons, such as acetylene, butenes and pentenes which have seen their 

emissions fall very significantly and that are now often close to or below instrumental 

detection limits in UK ambient air. 
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Table 1. Selected comparison of emission reductions for individual Volatile Organic 

Compounds (VOCs) estimated in the NAEI National Atmospheric Emissions Inventory 

(2000-2017) and the change in concentrations observed in central London at the Marylebone 

Road monitoring station. 

VOC 2000 annual 

mean

/mg m-3

2018 annual 

mean

/mg m-3

Roadside 

Change

%

2000 

emission

/ktonnes

2017 

emission

/ktonnes

NAEI 

Change

%

ethane 11.5 8.3 -27.6 96.0 33.1 -65.5

propane 6.2 5.2 -16.4 67.1 28.1 -58.1

i-butane 10.6 2.4 -77.9 27.8 8.4 -70.0

n-butane 22.1 2.9 -86.9 112.8 52.4 -58.5

i-pentane 24.8 2.5 -90.1 43.7 21.1 -51.7

benzene 8.1 0.7 -91.9 56.6 13.2 -76.7

toluene 28.0 2.5 -90.1 56.1 13.1 -76.6

ethyl benzene 5.1 0.5 -90.0 22.6 6.3 -72.1

ethene 14.4 2.4 -83.5 43.7 21.1 -51.7

propene 7.0 1.5 -78.5 22.2 5.4 -75.7

1,3 butadiene 1.7 0.3 -93.3 10.5 2.0 -81.4

t-2 pentene 1.6 0.1 -93.4 2.9 0.8 -72.4

ethyne 7.0 1.9 -72.0 13.0 1.7 -86.9

Page 21 of 36

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

Table 2. Top 40 anthropogenic VOC Volatile Organic Compounds species emitted by mass 

in the United Kingdom in different time periods 1990-2017. Shaded species are not routinely 

measured by existing automated nonrioting monitoring networks.

Rank 1990 1995 2000 2005 2010 2015 2017

1 ethane butane butane ethanol ethanol ethanol ethanol

2 butane ethane ethanol butane butane butane butane

3 ethanol ethanol ethane ethane ethane ethane methanol

4 propane toluene propane propane propane methanol ethane

5 toluene propane toluene pentane methanol propane propane

6 pentane pentane pentane toluene ethylene pentane pentane

7 2-me butane ethylene ethylene ethylene pentane ethylene ethylene

8 ethylene 2-me butane 2-me butane methanol toluene m-xylene m-xylene

9 3-me pentane 3-me pentane 3-me pentane 2-me butane benzene toluene benzene

10 2-me propane benzene hexane benzene 2-me butane benzene toluene

11 hexane 2-me propane benzene m-xylene m-xylene 2-me butane formaldehyde

12 benzene hexane m-xylene 2-me propane 2-me propane formaldehyde 2-me butane

13 m-xylene m-xylene 2-me propane hexane hexane hexane hexane

14 ethylbenzene propylene methanol formaldehyde formaldehyde 2-me propane decane

15 propylene ethylbenzene ethylbenzene heptane decane decane acetone

16 o-xylene 3-me pentane propylene propylene acetone acetone 2-me propane

17 3-me pentane o-xylene heptane ethylbenzene 2-butanone 2-butanone 2-butanone

18 heptane other, C>13 formaldehyde acetone propylene ethylbenzene 1,2,4-tmb

19 other, C>13 m & p-xylene 2-me pentane decane heptane 1,2,4-tmb ethylbenzene

20 m & p-xylene methanol TCE 1,2,4-tmb 2-propanol 2-propanol 2-propanol

21 acetylene heptane o-xylene 3-me-pentane 1,2,4-tmb heptane C7 alkanes

22 TCE formaldehyde octane 2-butanone ethylbenzene propylene propylene

23 methanol acetylene 1,2,4-tmb octane 3-me pentane ethyl acetate heptane

24 octane acetone other, C>13 o-xylene octane C7 alkanes C8 alkanes

25 2-me propene 2-me propene acetone 2-me pentane 2-me pentane 3-me pentane ethyl acetate

26 formaldehyde 1,2,4-tmb m & p-xylene TCE o-xylene nonane 3-me pentane

27 1,2,4-tmb TCE acetylene 2-propanol nonane undecane undecane

28 acetone octane 2-butanone unspeciated undecane o-xylene nonane

29 DCM methyl acetate decane other, C>13 C7 alkanes me-pentanone me-pentanone

30 111-TCethane C9 aromatics 2-me propene m & p-xylene ethyl acetate octane 2-me pentane

31 methyl acetate 2-butanone C13+ aromatic C13+ aromatic me-pentanone 2-me-pentane o-xylene

32 C13+ aromatic C7 alkanes C7 alkanes 2-me propene C13+ aromatic C8 alkanes octane

33 2-butanone decane 2-propanol C8 alkanes C8 alkanes p-xylene p-xylene

34 decane C8 alkanes unspeciated me-pentanone butyl acetate butyl acetate butyl acetate

35 C7 alkanes 2-propanol methyl acetate nonane DCM 1-butanol DCM

36 2-propanol ethyl acetate C8 alkanes acetylene 2-me propene DCM 1-butanol

37 C8 alkanes DCM DCM DCM p-xylene C13+ aromatic 1-propanol

38 ethyl acetate me-pentanone ethyl acetate undecane unspeciated 1-propanol C13+ aromatic

39 me-pentanone unspeciated me-pentanone butyl acetate TCE TCE TCE

40 1-butanol 111-TCethane butyl acetate ethyl acetate 1-butanol C3-benzene C3-benzene

Abbreviations used: me – methyl; tmb – trimethylbenzene; TCE – Trichloroethylene; DCM – 

Dichloromethane;  
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Table 3. Most abundant VOCs Volatile Organic Compounds ranked by concentrations based 

on recent research of wintertime city centre observations in London31, Beijing32, Delhi all 

based on a common two-channel gas chromatography – flame ionisation detection GC-FID 

method. 

Rank Order London 

Monthly Mean 

(g m-3)

Beijing 

Monthly Mean 

(g m-3)

Delhi

Monthly Mean 

(g m-3)

Year 2012 2016 2018

Period Jan Nov-Dec Oct-Nov

1 ethanol              (10.7) ethanol             (23.7) ethanol              (72.4)

2 ethane               (8.3) acetone*          (19.6) n-butane           (60.8)

3 acetone*            (8.1) m+p xylene     (17.7) methanol*         (53.7)

4 methanol*         (6.8) methanol*       (13.2) propane             (48.5)

5 n-butane            (5.2) propane            (13.1) iso-butane         (32.3)

6 propane             (4.9) ethane              (11.8) toluene              (30.4)

7 iso butane          (2.6) ethene              (9.4) iso-pentane       (28.8)

8 iso pentane        (3.5) toluene             (7.8) acetone*           (25.3)

9 toluene              (2.6) n-butane          (7.0) ethane               (23.1)

10 butanol              (2.5) i-pentane         (6.5) m+p-xylene      (15.1)

* Minor contribution to ambient concentrations possible from the oxidation of other VOCs
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Figure 1: United Kingdom VOC emissions of Volatile Organic Compounds from 

anthropogenic sources 1990-2017 and projections for 2020 and 2030.   The solid black 

marker lines represent the NECD National Emissions Ceiling Directive ceilingceiling for that 

time period. The 2020-2029 NECS ceiling is applicable to all the sectors included in the 

series minus emissions from Agriculture (light blue bar)’. The dotted lines indicate the 2020-

2029 UNECE CLRTAP ceiling of the revised Gothenburg Protol and is applicable to all 

sectors, including Agriculture.

Figure 2. Trends in sectoral contributions to national emissions of Volatile Organic 

CompoundsVOCs as a percentage of the overall annual national total, 1970 to 2017, data 

from uk-air.gov.uk and National Atmospheric Emissions Inventory.

Figure 3. Estimated trends (1990-2017) in the UK emissions of (by rank order in 2017) 1. 

ethanol, 2. n-butane, 3. methanol, 4. ethane, 5. propane, 6, n-pentane, 7. eEthylene, 8. m-

xylene, 9. bBenzene and 10. tToluene. 

Figure 4. Upper: Trends in estimated national emissions of functional group classes of 

Volatile Organic CompoundsVOCs. 4a (left) Contribution of each functional group class to 

the overall annual national total, 1970 to 2017. Lower: b) Contribution of each functional 

group class expressed as percentage of annual emissions. Legend common to both plots. 

Figure 5. Normalised POCP Photochemical Ozone Creation Potential per average UK unit of 

Volatile Organic CompoundsVOC emissions emitted 1990-2017 (left hand y-axis) and total 

mass of Volatile Organic CompoundsVOC emissions emitted (right hand y-axis).

Figure 6. Trends in selected ambient non-methane hydrocarbons measured at the Marylebone 

Road automated hydrocarbon network station in the centre of London. 

Figure 7. Comparison of trends in roadside 1,3-butadiene and benzene concentrations at 

Marylebone Road in central London with the National Atmospheric Emissions Inventory 

estimate of total 1,3-butadiene emissions from the road transport sector (solid black line). 

Figure 8. Percentage contribution to the overall emission of Volatile Organic 

CompoundsVOCs from the ‘solvents and related products’ class of emissions in the NAEI 
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National Atmospheric Emissions Inventory (2017 edition). Red species are not routinely 

measured, green species are included in the UK Defra automated hydrocarbon network. 
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Figure 1: United Kingdom emissions of Volatile Organic Compounds from anthropogenic sources 1990-2017 

and projections for 2020 and 2030.   The solid black marker lines represent the National Emissions Ceiling 

Directive ceiling for that time period. The 2020-2029 ceiling is applicable to all the sectors included in the 

series minus emissions from Agriculture (light blue bar)’. The dotted lines indicate the 2020-2029 ceiling of 

the revised Gothenburg Protol and is applicable to all sectors, including Agriculture. 
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Figure 2. Trends in sectoral contributions to national emissions of Volatile Organic Compounds as a 

percentage of the overall annual national total, 1970 to 2017, data from uk-air.gov.uk and National 

Atmospheric Emissions Inventory. 
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Figure 3. Estimated trends (1990-2017) in the UK emissions of (by rank order in 2017) 1. ethanol, 2. n-

butane, 3. methanol, 4. ethane, 5. propane, 6, n-pentane, 7. ethylene, 8. m-xylene, 9. benzene and 10. 

toluene. 
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Figure 4. Upper: Trends in estimated national emissions of functional group classes of Volatile Organic 

Compounds. 4a (left) Contribution of each functional group class to the overall annual national total, 1970 to 

2017. Lower: b) Contribution of each functional group class expressed as percentage of annual emissions. 

Legend common to both plots. 
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Figure 5. Normalised Photochemical Ozone Creation Potential per average UK unit of Volatile Organic 

Compounds emitted 1990-2017 (left hand y-axis) and total mass of Volatile Organic Compounds emitted 

(right hand y-axis). 
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Figure 7. Comparison of trends in roadside 1,3-butadiene and benzene concentrations at Marylebone Road in 

central London with the National Atmospheric Emissions Inventory estimate of total 1,3-butadiene emissions 

from the road transport sector (solid black line). 
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Figure 8. Percentage contribution to the overall emission of Volatile Organic Compounds from the ‘solvents 

and related products’ class of emissions in the National Atmospheric Emissions Inventory (2017 edition). 

Red species are not routinely measured, green species are included in the UK Defra automated hydrocarbon 

network. 
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