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Abstract
[bookmark: _Hlk22226371]1. Plant-derived low molecular weight compounds play a crucial role in shaping soil microbiome functionality. While various compounds have been demonstrated to affect soil microbes, most data are case-specific and do not provide generalizable predictions on their effects. Here we show that the chemical structural affiliation of low molecular weight compounds typically secreted by plant roots – sugars, amino acids, organic acids and phenolic acids – can predictably affect microbiome diversity, composition and functioning in terms of plant disease suppression. 
2. We amended soil with single or mixtures of representative compounds, mimicking carbon deposition by plants. We then assessed how different classes of compounds, or their combinations, affected microbiome composition and the protection of tomato plants from the soil-borne Ralstonia solanacearum bacterial pathogen. 
3. We found that chemical class predicted well the changes in microbiome composition and diversity. Organic and amino acids generally decreased the microbiome diversity compared to sugars and phenolic acids. These changes were also linked to disease incidence, with amino acids and nitrogen-containing compound mixtures inducing more severe disease symptoms connected with a reduction in bacterial community diversity.
4. Together, our results demonstrate that low molecular weight compounds can predictably steer rhizosphere microbiome functioning providing guidelines to engineer microbiomes based on root exudation patterns by specific plant cultivars or crop regimes. 
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1 INTRODUCTION
The soil and root-associated microbiome comprise an essential component of plant health (Berendsen, Pieterse & Bakker, 2012; Paredes & Lebeis, 2016) and there is a growing interest in harnessing the benefits of soil microbiome for sustainable food production (Chaparro, Sheflin, Manter & Vivanco, 2012; de Vries, Griffiths, Knight, Nicolitch & Williams, 2020). In this interaction, plants shape the surrounding microbial communities by secreting low molecular weight organic compounds to the rhizosphere (Carvalhais et al., 2015), which can enrich distinct microbial groups and promote their activity (Eilers, Lauber, Knight & Fierer, 2010). In turn, enriched microorganisms can have a positive effect on the plant performance (Berendsen et al., 2012). Over time, this process can lead to selection for specific rhizosphere microbial communities that are beneficial for the plant and can remain in the soil even between the crop seasons leading to a phenomena called plant-soil feedbacks or soil legacy effects  (Kardol, Bezemer & Van Der Putten, 2006). 
Recent studies suggest that secretion of specific antimicrobial compounds by competing bacteria can change microbial community activity and composition via interference competition (Mehrabi et al., 2016; Wei et al., 2019). Similar effects could also be triggered by plant-derived compounds that can shape the microbial community structure via both facilitative and inhibitory effects (Jousset, Schmid, Scheu & Eisenhauer, 2011; Zwetsloot, Kessler & Bauerle, 2018). For example, plant-derived root exudates form an important source of nutrients for the rhizosphere bacteria. These low molecular weight organic compounds typically consist of amino acids, sugars, phenolic acids, and organic acids (Bais, Weir, Perry, Gilroy & Vivanco, 2006; Badri, Chaparro, Zhang, Shen & Vivanco, 2013). While sugars and organic acids represent a source of carbon, amino acids are important for providing microbes nitrogen, phenolics typically inhibit microbial activity and this effect is often taxa-specific (Badri et al., 2013). These compounds can then increase the relative abundance of certain microbes in the available species pool that can in turn provide benefits for the plant in terms of growth and immune activation (Hu et al., 2018; Rolfe, Griffiths & Ton, 2019). Such cascades can also be triggered by pathogenic bacteria. For example, the foliar pathogen Pseudomonas syringae pv tomato (Pst DC3000) can indirectly change the microbial community composition by shifting Arabidopsis thaliana root exudation, which will improve disease resistance during subsequent plant generation (Yuan et al., 2018). Similarly, it has been shown that Ralstonia solanacearum plant pathogen invasion can trigger changes in the tomato root exudation patterns leading to reduced microbial diversity via increased exudation of phenolic compounds that are also harmful for the pathogen (Gu et al., 2016). As a result, breeding new plant cultivars with improved ability to actively recruit beneficial microbes using secreted low molecular weight organic compounds could be an important avenue for sustainable crop production (Perez-Jaramillo, Mendes & Raaijmakers, 2016; Preece & Penuelas, 2020). While considerable body of research exists on the role of single molecules in isolation (Eilers et al., 2010; Hu et al., 2018), or root exudates as a whole (Badri et al., 2013), there is less information on the role of specific classes of compounds on the microbiome composition and disease suppression. As a result, we lack a holistic framework that could predict how certain compounds or compound combinations might change microbiome functioning. Here we present an experimental framework allowing the prediction of how plant-derived low molecular weight organic compounds shape the microbiome diversity and functioning on the basis of their chemical structure. 
To achieve this, we first screened the effect of a range of molecules belonging to different chemical classes, that are typically secreted by plants, on microbiome composition by amending natural soil with a total of 48 low molecular weight compounds falling into four chemical functional classes: amino acids, sugars, phenolic acids  and organic acids (applied twice a week for a total of six weeks; soil conditioning experiment). We then assessed the changes in microbiome biomass, composition and diversity and tested if the compound-mediated effects could predict the functioning of microbial communities in terms of suppression of soil-borne bacterial pathogen R. solanacearum in the tomato rhizosphere - an economically important pathogen causing bacterial wilt (Genin, 2010). We hypothesized that 1) different functional chemical classes would have distinct effects on the soil microbiome structure by selectively recruiting and repelling different bacterial taxa,  and that, 2) these changes would correlate with microbiome ability to suppress plant pathogen, providing a predictive framework for steering rhizosphere microbiome functioning based on low molecular weight compounds.

2 MATERALS AND METHODS
2.1 Preparation and assembly of low molecular weight organic compounds 
We selected 48 low molecular weight organic compounds (12 sugars, 12 amino acids, 12 organic acids and 12 phenolic acids; Supporting information, Table S1) typically found in tomato tissues or root exudates. In addition to all 48 mono-compounds, we assembled 16-compound mixtures using 54 independent low molecular weight compound combinations (Table S2). Each combination was randomly composed of four sugars, four amino acids, four organic acids and four phenolic acids, and each of the 48 carbon resources was included in a total of 18 different combinations. Each compound, or compound mixture, was prepared as a standardized solution of 1.3125 g C L-1 in 20% (v:v) methanol, which is an established procedure used in several studies bringing the compromise between solubilization of all substances and a minimal impact on soil microbiome (Qu & Wang, 2008; Lanoue et al., 2009; Zhou & Wu, 2012; Badri et al., 2013). Each solution was adjusted to a pH of 7.0 to prevent differences in acidity from biasing the results in microbiome assembly (Fierer & Jackson, 2006). None of the compounds had a charge, and were mostly complex and inert carbon compounds. As a result, no signs of chemical reactions (e.g., gas or precipitation production or color change) were observed when preparing solution of compound mixtures. As methanol is also a carbon source and could potentially affect the community composition, we included a methanol-only treatment to account for its effect. Water-only treatment was also included to compare the effects of water-only and solvent-only treatments on soil bacterial community composition.
2.2 Screening the effects of different compounds in soil conditioning experiment 
We conditioned soil with different low molecular weight compounds to assess their effect on microbiome composition and abundance using a topsoil (0-20 cm) collected from a tomato field in Qilin (Nanjing, China; 118°57’E, 32°03’N). This field has been infested with the bacterial plant pathogen R. solanacearum for more than 15 years. The soil is a yellow-brown earth (Udic Argosol) with pH of 5.4, total C of 19.7 g kg-1, total N of 6.3 g kg-1, available K of 178 mg kg-1, available P of 172.9 mg kg-1, and organic matter content of 24.6 g kg-1. The soil was sieved (< 4 mm) and homogenized thoroughly. The soil was then divided to replicate pots (35 cm × 25 cm × 10 cm) each containing 600 g (dry weight) of soil for the experiment. The effect of each compound or compound mixture was tested independently using the following experimental design: four replicates were used for control (methanol-only) and three replicates for each of the single compound (48 treatments) and 16-compound treatments (54 treatments) (Table S2). Each replicate consisted of two independent technical replicate pots to ensure we had enough conditioned soil for the second experiment (soil suppressiveness). As the daily input of carbon secreted by tomato has not previously been reported, we used estimates derived from maize and oat in sand soils: 0.05-0.1 mg C d-1 g-1 (Trofymow, Coleman & Cambardella, 1987; Iijima, Griffiths & Bengough, 2000; Baudoin, Benizri & Guckert, 2003). This is likely to be conservative estimate as the amount of carbon in root exudates of tomato has been reported to be greater compared to maize, wheat and barley (Whipps, 1987). To mimic natural exudation, we applied low molecular weight organic compound mixtures twice a week at every 84 hours for a total of six weeks. At each time of application, every pot received 0.075 mg C g-1 soil d-1 of low molecular weight organic compounds (120 ml per pot). The soils were then thoroughly mixed with sterile 5 mL tips to ensure even distribution of compounds. Pots were maintained in the greenhouse with natural temperature variation ranging between 20-32 °C and soil samples were collected after 6 weeks of conditioning for DNA extraction for the bacterial community composition analysis as described below.
a) Soil DNA extraction
Four soil cores (1 cm diameter × 10 cm deep) were collected from each pot and soil samples from two pots were mixed together resulting in three and four biological replicates for carbon and control treatments, respectively. We used 0.5 g subsamples of homogenized soil cores for DNA extraction with MoBio PowerSoil DNA extraction kit (Carlsbad, CA, USA) following the manufacturer’s instructions. The quantity and quality of DNA was measured using a NanoDrop (ND2000, ThermoScientific, DE, USA) spectrophotometer and aliquots of DNA were used for quantitative PCR analyses (qPCR) and 16S rRNA amplicon sequencing.
b) Quantification of total bacterial abundances and pathogen density in the soil samples
Quantitative PCR assays were performed to determine 1) R. solanacearum pathogen densities and 2) total bacterial biomass using the SYBR Premix Ex TaqTM Kit (Takara, Dalian, China) and a 7500 Fast Real-Time PCR System (Applied Biosystems, CA, USA). The specific primer sets Rsol_fliC (Schonfeld, Heuer, van Elsas & Smalla, 2003) and universal primer sets Eub338/Eub518 (Fierer, Jackson, Vilgalys & Jackson, 2005) were used to target the R. solanacearum fliC gene and V4 regions of the bacterial 16S rRNA genes, respectively. Plasmid standard (pMD 19-T vector; Takara, Dalian, China) was generated from cloned target genes (fliC gene or 16S rRNA gene) using the R. solanacearum strain QL-Rs1115, which is the dominant genotype in the field from where the soil was originally collected (Wei et al., 2011). The standard curves were generated according to a previously published protocol (Cao et al., 2011) and each individual sample was measured in triplicate.
c) Determining bacterial community diversity and composition in the soil samples
We used 16S rRNA amplicon sequencing to determine bacterial community composition and diversity in the soil samples. Three DNA products from each mono-compound and 16-compound carbon treatment replicates were pooled into one. As a result, the differences in bacterial community diversity and composition were compared at carbon class and combination level (N = 12 and N = 54 for each mono and 16-compound carbon treatments).  The V4 region of the bacterial 16S rRNA genes was amplified using a primer set 563F and 802R (Cardenas et al., 2010) with attached Illumina flow cell adapters under optimized PCR conditions described previously (Gu et al., 2016). The PCR products were purified using an AxyPrep PCR Clean-up Kit (Axygen Biosciences, Union City, CA, USA), DNA quantity determined with QuantiFluorTM-ST (Promega, WI, USA) and final samples sequenced using Illumina MiSeq sequencing Shanghai (2x250PE, Biozeron Bio-technology Co., Ltd). Sequence reads were processed using `the UPARSE pipeline (Edgar, 2013). Briefly, read pairs from each sample were assembled and low-quality nucleotides (maximal expected error of 0.25), short reads (< 200 bp) and singletons removed. Sequence reads were then clustered into operational taxonomic units (OTUs) using 3% dissimilarity cutoff point and chimeric sequences removed using UCHIME (Edgar, Haas, Clemente, Quince & Knight, 2011). We obtained between 25,013 to 38,779 (mean = 31,032) quality-filtered sequences for all the soil samples. The representative sequences and OTU tables were then analyzed using Mothur (Schloss et al., 2009), the sampling depth was equalized using the lowest number of sequences detected in any of the samples (25,013) and taxonomic assignment performed using the RDP 16S rRNA classifier (Wang, Garrity, Tiedje & Cole, 2007). 
2.3 The suppression of bacterial wilt disease incidence
In the second experiment, we assessed how soil conditioning affected microbiome functioning in terms of bacterial wilt disease suppression. We first quantified R. solanacearum densities in each sample at the end of the soil conditioning experiment using serial dilution plating on selective SMSA media (Elphinstone, Hennessy, Wilson & Stead, 1996). We then adjusted the R. solanacearum densities to 5 × 106 CFU g-1 soil in every treatment using drenching method (see below) two days after the end of soil conditioning experiment using overnight cultures of  R. solanacearum QL-Rs1115 strain previously isolated from the same field (Wei et al., 2011). Prior the experiment, one single colony was grown overnight in nutrient broth (NB) media, harvested by centrifugation (10,000×g for 8 min) and washed twice with a sterile saline solution (0.9% NaCl). Pathogen stock culture density was then estimated based on optical density (OD600) and further verified by serial dilution count assay on NB media. 50 mL of the suspension (diluted based on formerly dilution count results on selective SMSA media) was used to drench soils. Soils were incubated for three days to allow the stabilization of the inoculated pathogen and serial dilution and plating used to verify that pathogen densities remained within one order of magnitude of inoculated levels. Tomato plants were prepared for the inoculation as follows. Tomato seeds (Solanum lycopersicum cv. ‘Jiangshu’) were surface-sterilized with 3% NaClO for 5 min, rinsed four times in sterile distilled water and germinated in the dark at 30 °C for two days. Germinated seeds were then sowed in nursery pots (6 cm × 6 cm × 6 cm) in nursery substrate (Huainong, Huaian soil and fertilizer institute, Huaian, China). After ten days of growth (corresponding to five days after the end of soil conditioning experiment), each tomato seedling was gently washed and four seedlings transplanted to larger pot (35cm × 25 cm × 10 cm) containing 600 g dry weight of homogenized soil originating from soil conditioning experiment. Both technical replicates from the soil conditioning experiment were used and eight seedlings from two technical replicates were considered as one biological replicate. Four replicates were used for control (methanol-only, N = 4) and three replicates for mono-compound (N = 144) and 16-compound mixtures (N = 162) resulting in 2480 plants (620 pots with 4 seedlings each). It should be noted that no low molecular weight compounds were added to the soil in the second experiment. Similar to the soil conditioning experiment, disease suppression experiment was conducted in a greenhouse with a natural temperature variation ranging between 25-35 °C. The severity of bacterial wilt disease was recorded 40 days after transplantation as a disease index on a scale of 0-4 (0 = no wilting, 1 = 1-25% of leaves wilted, 2 = 26-50% of leaves wilted, 3 = 51-75% of leaves wilted and 4 = 76-100% of leaves wilted). Disease incidence was then determined as = [ ∑ (number of diseased plants in given disease index × given disease index) × (total number of plants × highest disease index)-1] × 100% (Chen et al., 2013). 
2.4 Statistical analyses
Analysis of variance (ANOVA, Tukey’s honestly significant difference test) and Student’s t test were used to compare mean differences between the treatments using SPSS (v. 19). The soil microbiome composition was ordinated by principal coordinates analysis (PCoA) based on unweighted UniFrac distances (phylogeny-based distance metric) (Lozupone & Knight, 2005) and microbiome compared using analysis of molecular variance (AMOVA). Principal component analysis (PCA) was also used to summarize variation in the composition of soil bacterial communities using CANOCO (Etten, 2005). In this analysis, the top 10% of most significant OTUs (based on linear discriminant analysis where LDA scores > 3 using Mothur (Schloss et al., 2009)) were included in the PCA and the input data was log transformed before the analysis. The OTUs that were significantly associated with the solvent-only and water-only control treatments were screened using DESeq2 (Love, Huber & Anders, 2014). Structural equation modeling (SEM) was conducted with R package lavaan (Rosseel, 2012) to compare the direct and indirect effects (via soil microbiome) of plant-derived compounds on disease incidence and to visualize effects as simple networks. The first step of SEM requires establishing an initial model based on theoretical causal relationships between variables (Delgado-Baquerizo et al., 2016; Trivedi et al., 2016). The fit of the initial model is then determined and adjusted in case of a poor fit (Lamb, 2008; Latz, Eisenhauer, Rall, Scheu & Jousset, 2016). In this study, the initial SEM models were generated based on relationships between low molecular weight compound classes and ratio of nitrogen addition, soil bacterial community diversity and the severity of bacterial wilt disease (Fig. S2). The fit of the initial models were tested using χ2-test (the model has a good fit with low χ2 value (~ ≤ 2) and high p-value (traditionally > 0.05)) and the root mean square error of approximation (RMSEA; the model has a good fit with low RMSEA value (~ ≤ 0.05) and high p-value (traditionally > 0.05)) (Delgado-Baquerizo et al., 2016). The total observed bacterial community richness (Sobs index) was used as input data for bacterial community diversity in SEMs. 

3 RESULTS
3.1 The chemical class of plant-derived compounds predicts the abundance, richness and composition of soil bacterial communities 
Most plant-derived compounds had a strong impact on total bacterial abundances and community richness after 6 weeks of soil conditioning (Fig. 1 and Fig. S3). The amendment of 16-compound mixture, organic acids and amino acids generally increased bacterial abundances but decreased the richness of soil bacterial communities relative to the control treatment (Fig. 1a-b). In contrast, sugars and phenolic acids had no clear effects on the abundance and richness of bacterial communities (p > 0.05 in all pairwise comparison). Thirty-six of the 48 molecules, including all the organic acids and amino acids, increased the total bacterial abundances, while five sugars (Melibiose, D-Galactose, Sucrose, L-Rhamnose and D-Mannitol) and five phenolic acids (Coumaric acid, Salicylic acid, Gallic acid, Syringic acid, and Cinnamic acid) decreased the total bacterial abundances (Fig. S3a). Six of the 48 carbons (one sugar: L-Rhamnose and five phenolic acids: Benzoic acid, p-Hydroxybenzoic, Cinnamic acid, Coumaric acid, and Salicylic acid) increased bacterial community richness, while other compounds decreased bacterial community richness (Fig. S3b). 
[bookmark: gjdgxs]The methanol-only treatment had slight effects on soil bacterial community composition compared to the water control (p = 0.03, analysis of molecular variance (AMOVA); Fig. S1a and External Databases S1): it enriched a few OTUs belonging to Gemmatimonadetes and Candidatus Saccharibacteria and decreased some OTUs belonging to Planctomycetes (Fig. S1b). The methanol had however smaller effects compared to those of plant-derived compounds (Fig. S1c-d) and we thus used this treatment as a baseline in further analyses. Principal coordinates analysis revealed that the chemical class significantly explained the differences in bacterial community composition (d.f. = 5, MS = 0.51, p < 0.001, Fs = 3.1, AMOVA; Fig. 1c). Compared to the control treatment, amino acids (d.f. = 1, MS = 0.38, p < 0.001, Fs = 2.3, AMOVA with post hoc test) and 16-compound mixtures (d.f. = 1, MS = 0.48 , p < 0.001 , Fs = 2.7, AMOVA with post hoc test) had similar (d.f. = 1, MS = 0.19, p = 0.266, Fs = 1.1, AMOVA with post hoc test) and relatively strongest impacts on the soil bacterial community composition followed by organic acids (d.f. = 1, MS = 0.23, p = 0.009, Fs = 1.6, AMOVA with post hoc test; Fig. S4). In contrast, phenolic acids (d.f. = 1, MS = 0.19, p = 0.006, Fs = 1.4, AMOVA with post hoc test) and sugars (d.f. = 1, MS = 0.14, p = 0.106, Fs = 1.1, AMOVA with post hoc test) had relatively smaller effects on soil bacterial community composition.
[bookmark: _30j0zll]Overall, addition of compounds mainly affected the relative abundance of Proteobacteria, Bacteroidetes, and Actinobacteria (LDA, Fig. 2 and External Databases S2), with each chemical class being associated with a specific subset of species. For example, 16-compound mixtures were associated with relatively high proportion of OTUs belonging to Proteobacteria and Firmicutes (83.3%), phenolic acids with Actinobacteria (48%) and amino acids and organic acids with Bacteroidetes (55.6% and 35.7%, respectively). While amino acids and 16-compound mixtures were associated with a specific subset of species (Fig. 2), they mainly enriched OTUs belonging to Proteobacteria and Actinobacteria compared to other compounds (Fig. S5). Based on PCA results, we identified twenty genera that significantly explained most of the variation in the soil bacterial community composition (Fig. S6). For example, sugar treatments showed higher relative abundance of Bradyrhizobium (F5,100 = 21.3, p < 0.001, ANOVA), Flavitalea (F5,100 = 12.8 , p < 0.001, ANOVA), and Spartobacteria (F5,100 = 21.9, p < 0.001, ANOVA), while amino acids and the 16-compound mixtures enriched the relative abundance of Mycobacterium (F5,100 = 15.5, p < 0.001, ANOVA). Compared to phenolic acids treatments, organic acids enriched the relative abundance of Achromobacteria (Student’s t test, p < 0.001) and decreased the relative abundance of Terrabacter (Student’s t test, p = 0.001) and Ornithinibacillus (Student’s t test, p < 0.001). 
3.2 Effect of soil conditioning on pathogen densities
Soil conditioning had contrasting effects on pathogen densities varying from a 4-fold reduction to 70-fold increase compared to the control treatment, and these effects were driven by specific compounds instead of chemical class (Fig 3a and S7a). Specifically, four sugars (Melibiose, Sucrose, L-Rhamnose and D-Mannitol), two amino acids (Citrulline, β-Alanine) and one phenolic acid (Coumaric acid) clearly decreased the pathogen densities. In contrast, 37 compounds including all the tested organic acids increased the pathogen densities (Fig. S7a). Pathogen densities were strongly correlated with total bacterial densities (Table 1), indicating that the introduced compounds acted as a general growth stimulants or inhibitors instead of specifically affecting the pathogen. 
3.3 Effect of soil conditioning on disease suppression by the soil microbiome
Soil conditioning further led to a strong variation in microbiome functioning in terms of bacterial wilt disease suppression. The soils conditioned with amino acids, and in some cases with 16-compound mixtures, showed a sharp increase in disease incidence compared to the other treatments (ANOVA with Tukey post hoc test; Fig. 3b, Table S3). More specifically, 12 carbons including five sugars (Sucrose, Maltose, L-Rhamnose, D-Xylose and L-Arabinose), four organic acids (Succinic acid, Pyruvic acid, Lactic acid and Acetic acid) and three phenolic acids (Coumaric acid, Ferulic acid, and Cinnamic acid) significantly decreased the disease incidence (Fig. S7b). In contrast, 23 carbons including all the amino acids increased the disease incidence (Fig. S7b). The variation in disease incidence was explained by soil conditioning-mediated changes in microbiome species richness and total bacterial abundances (Fig. 3c, Table 1). For example, amino acids treatment was associated with a decrease in microbiome diversity and a subsequent increase in disease incidence. 
3.4 The rate of nitrogen addition played a key role in determining soil bacterial community diversity and functioning
Because amino acids were the only compound class containing nitrogen, we assessed if its effects on soil bacterial community diversity and functioning were due to nitrogen fertilization. We first calculated the amount of nitrogen present in different amino acids and 16-compound mixtures, and analyzed its relationship with bacterial community abundance, diversity and functioning (effect on disease incidence). We found that the nitrogen addition rate correlated positively with the total bacterial abundances (Fig. 4a), and negatively with bacterial community richness (Fig. 4b). No significant correlation was observed between nitrogen addition rate and R. solanacearum abundances at the end of soil conditioning experiment (Fig. 4c). However, nitrogen addition rate was positively associated with the disease incidence (Fig. 4d). 
3.5 Changes in microbiome composition can protect plants from bacterial wilt
We used structural equation modeling (SEMs) to describe the direct and indirect effects of soil conditioning on soil microbiome composition and functioning (effect on disease incidence). Two SEMs were constructed based on chemical class and nitrogen content of the organic compounds. The final SEMs provided a good fit with our data based on RMSEA and χ2-test (Fig. 5). In the first SEM model, we found that organic and amino acid treatments were directly linked with high soil bacterial abundances and low bacterial community richness during the soil conditioning experiment (Fig. 5a). Moreover, amino acids were directly linked with a high disease incidence at the end of the greenhouse experiment (Fig. 5a). Crucially, bacterial community richness measured at the end of the soil conditioning experiment was negatively linked with pathogen densities at the end of the subsequent greenhouse experiment (Fig. 5a). In the second SEM, the nitrogen addition rate was negatively linked with bacterial community richness and positively linked with soil bacterial abundances at the end of soil conditioning experiment (Fig. 5b). Moreover, mono-compounds and 16-compound mixtures with high nitrogen contents were positively correlated with a high disease incidence at the end of the greenhouse experiment. 

4 DISCUSSION
In this study, we explored the effects of different chemical classes of typical plant-derived compounds on soil microbiome composition, abundance and disease suppression. We observed that while R. solanacearum pathogen density was generally promoted by amendments, this increase was not always associated with high disease incidence. Instead, nitrogen rich amino-acids and 16-compound mixtures had positive effects on the disease incidence and that this effect was driven by changes in the total bacterial biomasses and microbiome diversity leading to a loss of protective function of the soil microbiome. 
Each chemical compound class had a specific effect on the microbial community. Amino acids and organic acids had greater effects on the soil bacterial community composition than sugars and phenolic acids. This is in agreement with previous observations showing that organic acids can cause larger shifts in the dominant soil bacterial taxa compared to sugars (Shi et al., 2011). One explanation for this could be that sugars mainly promote bacterial growth having only small effects on secondary metabolism that might be important for triggering competition-mediated shifts in microbial communities (Yang et al., 2019). Phenolic compounds are relatively hard to decompose by most microorganisms (Krastanov, Alexieva & Yemendzhiev, 2013), which may explain their observed low impact on microbial communities. In contrast to the general class-level patterns, five specific phenolic-compounds increased bacterial community diversity, which is in line with a previous study by Badri et al. (2013), who found that phenolic-related compounds present in the natural root exudates positively correlate with a higher number of bacterial OTUs compared to sugars, sugar alcohols or amino acids. However, we also found that some other phenolic compounds reduced bacterial diversity, potentially due to negative effects on competitively dominant bacterial groups: many phenolic compounds have shown to be antimicrobial (Lanoue et al., 2009) and could thus directly suppress some microorganisms via antibiosis. Interestingly, while bacterial communities were the most similar between amino acid and 16-compound mixture treatments, clear difference were found suggesting that addition of diverse mix of compounds also shapes the microbial community complexity.
The induced shifts in soil microbiome composition during the soil conditioning experiment predicted well the subsequent changes in microbiome-mediated disease suppression. Specifically, nitrogen-rich amino acids and mixtures correlated positively with increased disease incidence and reduced bacterial community diversity. Nitrogen fertilization was recently shown to abolish microbiome-mediated plant protection in the tomato leaf phyllosphere (Berg & Koskella, 2018), while the negative correlation between disease incidence and bacterial community diversity also supports our findings (Van der Heijden et al., 1998; van Elsas et al., 2012). Mechanistically, surplus of nitrogen could have stimulated fast-growing r-strategists that were able to outcompete K-strategists during the soil conditioning experiment when the nitrogen was likely a limiting resource in the absence of deposition from plants (Sinclair & Rufty, 2012). This could have led to reduced diversity and potentially reduced invasion resistance by leaving niche space vacant for the pathogen (van Elsas et al., 2012; Wei et al., 2015). Alternatively, Species-poor communities could have exerted weaker interference competition by producing a less diverse set of antibacterial pathogen-inhibiting compounds (Van Elsas et al., 2007). Together, our results indicate that the composition of plant-derived low molecular weight organic compounds can predictably drive changes in microbiome composition and functioning in relation to disease suppression.
While low molecular weight compounds are typically degraded easily by soil microbes (Kuzyakov & Domanski, 2000), we cannot rule out that some amendments remained in the soil having cascading effects during the plant protection experiment. Additionally, the root exudates secreted by tomato plants likely had further impact on the soil microbiome and disease incidence during the second experiment. However, as we used the same tomato plant cultivars in all treatments, this unlikely created any bias to our results which more likely stemmed from differences in microbial community composition and abundances between compound treatments. Further complexity could have risen by pathogen-mediated shifts in root exudation patterns. For example, it has previously shown that the presence of R. solanacearum can promote the exudation of phenolic compounds having predictable effects on rhizosphere microbiome composition (Gu et al., 2016) and further studies are thus needed to understand how plant diseases emerge as a result of interactions between the pathogen, microbiome and plant root exudation patterns. In the future, it is also important to take into account the concentration, stoichiometry and dynamics of plant root exudation, which are highly variable and dependent on plant species, abiotic factors and interactions with the microbiome (Haichar et al., 2008; Sasse, Martinoia & Northen, 2018). The effects of plant-derived low molecular weight molecules on soil microbiome composition and plant functioning has previously been shown to depend on their concentration (Zhou & Wu, 2012; Chen, Yu, Zhou & Wu, 2018) with the same compound having concentration-dependent positive or negative effects on the pathogen growth (Ling et al., 2013). Potential emergent properties of compound mixtures could further increase the difficulty in predicting the root exudate effects on microbiome functioning.
In conclusion, our study demonstrates that plant-derived compounds can have a profound effect on microbiome structure and function. Furthermore, we show that the effect of different compounds can be predicted on the basis of their chemical structure, and specifically, that nitrogen-rich compounds can reduce microbiome ability to protect plants against pathogen. These results suggest new possibilities for the application of fertilizers. While, nitrogen is essential for plant growth, it can also indirectly promote disease by reducing the natural protection offered by the soil microbiome (Berg & Koskella, 2018). This pattern could also potentially explain the positive relationship between bacterial wilt disease occurrence and excessive use of chemical fertilizers (Ghorbani, Wilcockson, Koocheki & Leifert, 2009). In this case, application of less nitrogen-rich fertilizer could be considered to offset the crop losses caused by plant pathogens. Moreover, new plant varieties, or cropping regimes, that increase temporal and spatial variation in root exudation patterns could be used to stimulate species-rich microbial communities that can naturally suppress pathogens. Together, our study provides the basis for a framework at sustainably enhancing plant health by engineering natural root-associated microbiomes based on plant root exudation patterns. 
SUPPORTING INFORMATION 
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FIGURE 1 Effects of the chemical class of mono-compounds (sugars, organic acids, amino acids and phenolic acids) and 16-compound mixtures on soil bacterial abundances (a), bacterial community richness (b) and bacterial community composition (c). In (a) and (b), plots show medians with interquartile range, and small letters denote for statistically significant differences between mono-compound and 16-compound mixture treatments (Tukey’s test). The red dashed line indicates the mean of the solvent-only control treatment (n = 4). Panel (c) shows the percentage of explained variation based on PCo 1 and 2 based on unweighted Unifrac distance metric and means with 95% confidence intervals. Different symbols and colors denote for different compound treatments
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FIGURE 2 Bacterial taxa specifically associated with different mono-compound chemical classes (sugars, organic acids, amino acids and phenolic acids) and 16-compound mixture treatments. The top 10% significant OTUs with LDA scores > 3 were used in the analysis. Histograms show LDA scores of enriched bacteria at the genus level, while the pie plots show the percentage of enriched bacteria at the phylum level
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FIGURE 3 Effects of mono-compound (sugars, organic acids, amino acids and phenolic acids) and 16-compound mixtures on pathogen abundances (a), bacterial wilt disease incidence (b) and correlation between the disease incidence and bacterial community richness at the end of the soil conditioning experiment (c). In (a) and (b), plots show medians with interquartile range and small letters denote for statistically significant differences between mono-compound and 16-compound mixture treatments (Tukey’s test). The red dashed line indicates the mean of the solvent-only control treatment (n = 4) and the line in panel (c) shows the linear regression fitting
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FIGURE 4 Correlations between total bacterial abundances (16S rRNA gene abundances; a), bacterial community richness (Sobs index; b), pathogen abundance (c) and disease incidence (d) with the nitrogen addition rate. Bacterial abundances and microbiome diversity were quantified based on 16S rRNA gene abundances and as bacterial community richness (Sobs index), respectively. Lines in all panels show linear regression fitting
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FIGURE 5 Structural equation models (SEMs) linking the compound classes (a) and nitrogen addition rate (b) with changes in bacterial community composition in the soil conditioning experiment and disease suppression. The top levels denote for compound class and nitrogen addition rate, the middle levels effects observed at the end of the soil conditioning experiment, and the bottom level effects observed at the end of the greenhouse experiment. Bacterial abundances and microbiome diversity were quantified based on 16S rRNA gene abundances and bacterial community richness (Sobs index), respectively. Green and red arrows represent positive and negative effects between variables, respectively. Numbers beside the arrows denote for standardized path coefficients and arrow widths correspond to the strength of path coefficients. Non-significant relationships are not shown

TABLE 1 Results of linear models explaining variation in pathogen abundances at the end of soil conditioning experiment and disease incidence at the end of greenhouse experiment. 
	Response variable
	Predictor variable
	d.f.
	F
	p

	Pathogen abundance
	Bacterial community richness
	1
	0.54
	0.46

	
	Bacterial community composition
	1
	3.21
	0.08

	
	Bacterial abundance
	1
	37.56
	< 0.001

	
	Residuals
	98
	
	

	Disease incidence
	Bacterial community richness
	1
	20.58
	< 0.001

	
	Bacterial community composition
	1
	0.35
	0.55

	
	Bacterial abundance
	1
	4.16
	0.04

	
	Pathogen abundance
	1
	1.75
	0.19

	
	Residuals
	97
	
	


Note:  Significant effects are highlighted in bold.
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