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REPRESENTING KERNELS OF PERTURBATIONS OF
TOEPLITZ OPERATORS BY BACKWARD
SHIFT-INVARIANT SUBSPACES

YUXIA LIANG AND JONATHAN R. PARTINGTON

ABSTRACT. It is well known the kernel of a Toeplitz operator is
nearly invariant under the backward shift S*. This paper shows
that kernels of finite rank perturbations of Toeplitz operators are
nearly S*-invariant with finite defect. This enables us to apply
a recent theorem by Chalendar—Gallardo—Partington to represent
the kernel in terms of backward shift-invariant subspaces, which
we identify in several important cases.

1. INTRODUCTION

Let H(ID) be the space of all analytic functions on the open unit disc
D. The Hardy space H? := H?*(D) is defined by

H*={f € HD): f(z) =Y _a,z" with |[f]|* = |an|* < +00}.
n=0 n=0

The limit lim f(re™) exists almost everywhere, which gives the val-
r—1-

ues of f on the unit circle T. Since the H? norm of f and the L*(T)
norm of its boundary function coincide, H? embeds isometrically as a
closed subspace of L*(T) via

o0 (o]
E 2" E a,e.
n=0 n=0

This indicates a natural orthogonal decomposition L*(T) = H? @ HZ,
where H? is identified with the subspace spanned by {e™* : n > 0}

int .

and Fg is the subspace spanned by {e" : n < 0}, respectively.
Let L := L*°(T) be the space containing all essentially bounded
functions on T. And H*> := H*°(D) is the Banach algebra of bounded
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2 Y. LIANG AND J. R. PARTINGTON

analytic functions on D with the norm defined

1flloc = sup [f(2)].
z€eD

Similarly, the radial boundary function of an H* function belongs to
L, and then H* can be viewed as a Banach subalgebra of L>.

We recall an inner function is an H* function that has unit modulus
almost everywhere on T. An outer function is a function f € H' which
can be written in the form

in 1 [P ettfrem
f(re) = Ozexp(27T / i mmk(e )dt)
for re™ € D, where k is a real-valued integrable function and |o| = 1.
It is known that each f € H'\ {0} has a factorization f = 6 - u, where
0 is inner and wu is outer. This factorization is unique up to a constant
of modulus 1 (cf. [9]).
Let P: L?(T) — H? be the orthogonal projection on H? defined by

a Cauchy integral
/ —dm ), |2 < 1.

Given g € L*°, the Toeplitz operator T,: H? — H?is defined by
Tyf = P(gf)

for any f € H? If 6 is an inner function, then Ker Ty is the model space
Ky = H>© 0H? = H2 N OHZ (cf. [10, 11]). It has also been proved
that [|T,| = [|gllc and T, = Ty (cf. [3]). For more investigations into
Toeplitz operators, the reader can refer to [7, 4, 14] and so on.

Beurling’s theorem states that the subspaces 0 H? with inner function
0 constitute the nontrivial invariant subspaces for the unilateral shift
S: H?* — H?* defined by [Sf](z) = zf(z). Also the model space Ky is
invariant under the backward shift S* : H? — H? (cf. [10, Proposition
5.2]) defined by

S f(z) =

The invariant subspace problem is still an unresolved problem in
operator theory and there are various related investigations (cf. [6, 5]).
Moreover, the study of nearly S*-invariant subspaces has attracted a
lot of attention (cf. [12, 13, 5]).

G =IO) (e pp s e

Definition 1.1. A subspace M C H? is called nearly S*-invariant if
S*f € M whenever f € M and f(0) = 0. Furthermore, a subspace
M C H? is said to be nearly S*-invariant with defect m if there is an
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m-~dimensional subspace F' such that S*f € M + F whenever f € M
with f(0) = 0; we call F' the defect space.

If f € KerT, with f(0) =0, so gf € H and then ¢g(Zf) € HZ. Since
Zf € H?, this implies S*f = zf € Ker T}, which shows the kernel of a
Toeplitz operator is nearly S*-invariant. Motivated by this well-known
result, we continue to examine a question which has a close link with
the invariant subspace problem:

Given a Toeplitz operator T, acting on Hardy space H?, is the kernel
of a rank n perturbation of T, nearly S*-invariant with finite defect?

We recall that an operator T': ‘H — H of rank n on a Hilbert space
‘H takes the form

Th = Z(h,ui>vi for all h € H,

i=1

where {u;} and {v;} are orthogonal sets in H (we may also suppose
that {w;} is orthonormal). For simplicity, write A, := {1,2,--- ,n}
and let |A| stand for the number of integers in a set A.

A rank n perturbation of the Toeplitz operator T, : H*> — H? de-
noted by R, : H*> — H? is defined by

Ro(h) = Tyh+Th =Tyh+> (h,u:); (1.1)

=1

with orthonormal set {u;} and orthogonal set {v;} in H?

The rest of the paper is organized as follows. In Section 2, we dis-
cuss the nearly S*-invariant subspace Ker R,, with finite defect for sev-
eral important classes of symbols and present the corresponding defect
space in each case. Then we apply a recent theorem by Chalendar—
Gallardo—Partington to represent the kernel of the operator R, in terms
of backward shift-invariant subspaces in Section 3. The challenging
task here is to identify the subspaces in question, which we do in vari-
ous important cases. Note that even in the nearly S*-invariant (defect
0) case, this is known to be a difficult question in general.

2. NEARLY S*-INVARIANT Ker R,, WITH FINITE DEFECT

In this section, we prove that the kernel of the operator R,, in (1.1)
is nearly S*-invariant with finite defect for various important cases,
especially identify the finite-dimensional defect spaces. First of all, we
recall a useful theorem for later use.
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Theorem 2.1. [10, Theorem 4.22] For v, ¢ € L*, the operator T,T,
is a Toeplitz operator if and only if either v € H® or o € H®. In both
cases, TyT, = Ty.

So for all g € L™, it holds that
Tng - ng - ng. (21)

For every h € Ker R,,, it follows that
Tyh + zn:(h, u;yv; = 0. (2.2)
i=1
Letting S* = T% act on both sides of (2.2) and using (2.1), we have
Tyzh + zn:(h, u;)S*v; = 0.
i=1

Now let h € Ker R,, satisfy h(0) = 0, and then the above equation
implies the following equivalent expressions.

h - .
I .=
S 9 + Z(h,uZ}S v; € Hj. (2.4)
i=1

So the question of nearly S*-invariant Ker R,, with finite defect is
that: for each h € Ker R, with h(0) = 0, find a vector w in some
suitable finite-dimensional space F such that

h
S*h+w=—+w € Ker R,,,
z

which is equivalent to the following equations.

Tg(g +w) + Z(g +w,u;)v; =0 (2.5)

h — h —
& g(; +w) + Z(; + w, u;)v; € HE. (2.6)

=1

Next we will construct the defect space F' in several important cases.
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2.1. g = 0 a.e. on T. In this case, R, is a rank-n operator and
equation (2.5) with g = 0 implies

n

Ker R, = (\(\/{uh)* = H2 & (\/{ui,i € A}),

=1

where \/ denotes the closed linear span in H?.
For any h € Ker R,, with h(0) = 0, it always holds that

S*h e Ker R, @ (\/{ui,i € A,}) = H?,

which gives the following elementary observation on the nearly S*-
invariant subspace Ker R,, with finite defect.

Proposition 2.2. Suppose g = 0 almost everywhere on T. Then the
subspace Ker R,, is nearly S*-invariant with defect n and defect space

F=\/{u, i€ A,}.

2.2. g = 0 an inner function. In this case Tpf = 0f is an isometric
multiplication operator on H?. For each h € Ker R,, with h(0) = 0, the
relation (2.4) becomes

h n
= NGy = 0. 2.
GZ + ;:1 (h,u;)S™; =0 (2.7)

The required relation (2.6) turns into

Combining it with (2.7), the above equation is equivalent to

n n

(Ow = (hyup)S™vp) + Y _((Bw = (b, up)S*vp), Ouz)v; = 0. (2.8)

k=1 i=1 k=1
Now choosing

n n

w=00) (hur)Svx) =Y (h,u)Ty(S"vi) € H?,

k=1 k=1
the required equation (2.8) holds. So we can obtain a theorem on the
nearly S*-invariant Ker R,, with finite defect.

Theorem 2.3. Suppose g = 0 an inner function. Then the subspace
Ker R,, is nearly S*-invariant with defect at most n and defect space

F = \/{T3(S"v;), i € A,}.
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Ezample 2.4. For g(z) = 2™ (m € N), Ker R,, is nearly S*-invariant
with defect at most n and defect space F = \/{(S*)" " (v;), i € A,}.

2.3. g = fifa with f; € GH* for j = 1,2. Here GH™ denotes the
set of all invertible elements in H*. In [2], Bourgain proved: If g is a
bounded measurable function on T, then the condition fﬂ log |g|ldm >
—o0 (m is the normalized invariant measure on T) is the necessary
and sufficient condition for g # 0 to be of the form g = fi - fo where
f1, fo € H*. The interested reader can also refer to [1, Theorem 4.1]
for a matricial version with norm estimates. In this subsection, we
suppose f; € GH* for j = 1,2, and then Theorem 2.1 ensures that

Tfl f2 T Tfl

For each h € Ker R,, with h(0) = 0, (2.3) can be rewritten as
Tfl )+ Z (h,u;)S*v; = 0, (2.9)

which together with Theorem 2.1 imply

h & .
~+ > (hyu) Ty T (S™0) = 0. (2.10)

i=1

The required equation (2.5) is changed into
TTf1 +w +Z + w, u)v; =0,

which, by (2.9), is equivalent to

Tflw ZhukSvk+Z —I—wuz Z—O.

Now choosing

n

w = Z<h,Uk>TfflT£71(S*Uk)

k=1
and using (2.10), the result follows. Hence we can present a theorem
on the nearly S*-invariant Ker R,, with finite defect.

Theorem 2.5. Suppose g = fifa with f; € GH™® for j = 1,2. Then
the subspace Ker R, is nearly S*-invariant with defect at most n and
defect space

F=\{T;- T (S7w), i € A,}.

The following is a remark on two special cases of Theorem 2.5.
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Remark 2.6. (i) For the operator R, in (1.1) with g € GH*, Ker R,
is nearly S*-invariant with defect at most n and defect space

F = \/{T (S™v;), i € Ap}.

(1) For the operator R, in (1.1) with g € GH*, Ker R, is nearly S*-
invariant with defect at most n and defect space

F = \/{T (S*v;), i € An}.

2.4. g(z) = 0(z) with § a nonconstant inner function. In this
case, Ty is a special conjugate analytic Toeplitz operator with kernel
Ky. And then the relation (2.4) becomes

_h <& —
= 0— h * H?
W Z—l— E (hy,u)S*™ vy, € HE,

with

h n
0y = — h, u)0S v, € H?. 2.11
?/J > + ;( 7uk> U € ( )
The desired relation (2.6) now takes the form

n

h h —
ot - Doy € H2, 2.12
( —i—w)—i—Z(z—i-w,u)vE ; (2.12)
which, by (2.11), is equivalent to

) — Z(h, ug) S*vy, + Ow

k=1

+ Z Z (h, ug)S* vy + Ow, Ou;)v; € Fg. (2.13)
k=1
We denote the decomposmons of u; and 1 as below: wu; = u;; + Qug
with U1 — PKGU'L' 6_1(97 Uso € H2_,and 1/} = 1/11 + wg with 1/11 € B .=
\/{Ous, i € A} C HZ and vy € HZ © B. So it is clear that
(19, Ou;) = 0 and (1, uzp) = 0 for all i € A,,.
The above indicates that (2.13) is equivalent to

n

(= > (h ) S™ vy + Ow)

k=1

+ Z((% - Z<h7 uk>S*Uk + gw),guﬂ + ui2>vi c Fg
i= =1
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Choosing
w = Z(h, ug)0S v — Oy,
k=1
the above desired relation is true and the defect space F' is

F = \/{0S"v;, P,u;,i € A} = \/{0S"vi, Pic,un, i € Ay, k € A},

where A denotes the subset of A, consisting of all £ € A,, such that
Py u # 0, ie. 01 ug. So in conclusion we have the following theorem.

Theorem 2.7. Suppose g(z) = 0(z) with 6 an inner function. Then
the subspace Ker R,, is nearly S*-invariant with defect at most n + |A|
and defect space

F =\/{0S"v;, Pr,ux, i € A, k € A},
with A C A,, consisting of all k € A, such that 0 1 uy.

3. THE APPLICATION OF THE C-G-P THEOREM

In this section, we apply a recent theorem (for short the C-G-P
Theorem) by Chalendar—Gallardo—Partington to represent the kernels
of rank one perturbations of Toeplitz operators in terms of backward
shift-invariant subspaces. We shall take n = 1 and denote the operator

le :Tgf+ (f,u>v

with ||u|| = 1 and S*v # 0. First we cite the C-G-P Theorem on nearly
S*-invariant subspaces with defect m from [8].

Theorem 3.1. [8, Theorem 3.2] Let M be a closed subspace that is
nearly S*-invariant with defect m. Then

(1) in the case where there are functions in M that do not vanish at
0, then

M={f: f(z) = ko(2)fol2) +2 ) _kij(2)ej(z) : (Ko, km) € K},
j=1
where fo is the normalized reproducing kernel for M at 0, {e1,--- ,en}

1s any orthonormal basis for the defect space F', and K is a closed S* @
-+ -@®S*-invariant subspace of the vector-valued Hardy space H?*(D, C™*1),

and [|fI* = 3270 [1%51*.
(2) in the case where all functions in M wvanish at 0, then

M=A{f: f(z)= szj(z>ej(z) c(ky, e k) € K,
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with the same notation as in (1), except that K is now a closed S* &
-+ -@®S*-invariant subspace of the vector-valued Hardy space H*(D, C™),

and || fI* = 327 [1k;]1%.

The following proposition asserts that the kernels of some Toeplitz
operators with special symbols are model spaces.

Proposition 3.2. [10, Proposition 5.8] Let o € H*\ {0} and let n be
the inner factor of ¢, then

Ker T@ = K77'

Now we apply the C-G-P Theorem to represent Ker R; by backward
shift-invariant subspaces in several important cases. Note that we can
find K as the largest S*-invariant subspace such that

S*nkofo +z E S*"k:jej eM or =z E S*"kjej eM
J=1 J=1
for all n € N.

3.1. g=0a.e. on T. In this case M = Ker Ry = H?*©\/{u}, which is
a vector hyperplane. It is clear that such a hyperplane is the solution
of a single linear equation. Also Proposition 2.2 showed that Ker R;
is nearly S*-invariant with a 1-dimensional defect space F' = \/{u}.

Using Theorem 3.1, we deduce a corollary on the representations of
Ker R;.

Corollary 3.3. Given a nearly S*-invariant subspace M = H*S\/{u}
with defect 1, let fo = Pyl = 1 — u(0)u, vo = P(u — u(0)|u|?) and
vy = P(Z|u|?). Then
(1) in the case Pyl # 0, we have
M = {f . f = k?of() + k:lzu . (k’(),kl) S K},

with an S*®S*-invariant subspace K = {(ko, k1) : (ko, 2"vo)+(k1, 2"v1) =
0 forn € N}.

(2) in the case Pyl =0, we have

M=A{f: f=kzu: k € K},

with an S*-invariant subspace K = {ky : (k1,2"v1) = 0 forn € N}.

Here we show some examples illustrating the variety of subspaces K
that can occur.
Ezample 3.4. (i) Suppose u = 1, then M = 2H? fy = 0 and vy =
v; = 0. So Corollary 3.3 (2) implies M has the representation

M=A{f: f=zk : k € K}
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with K = H? a trivial S*-invariant subspace.
(1) Suppose u is a nonconstant inner function, then M = K, ®zuH?,

fo=1—u(0)u # 0 and vy = u — u(0), v; = 0. So Corollary 3.3 (1)
implies M has the representation

M = {f . f = ko(l — (0)u> + klzu . (ko,kl) € K}
with an S* @ S*-invariant subspace K = K, x H? where 7 is the
inner factor of vy. Besides, Proposition 3.2 is used to show that K is
backward shift-invariant.

(73) Suppose u is a normalized reproducing kernel of H?, that is
w(z) =+/1—|a2(1 —@z)™', aeD\{0}, then M ={f: f(a)= 0},
fo=ala—2)(1—az)t#0and vy = 0, v; = a(l —az)"'. So
Corollary 3.3 (1) implies M has the representation

/ P
M={f: f=ak——2 1+ 2k L (ko, k1) € K},
1—-az 1 -z
with an S* & S*-invariant subspace K = H? x {0}.
(iv) Suppose u(z) = (1 + 2¥)/v/2 with k > 1, then M = \/{1 —
2R gy R R R L = 27 1(1—2F) £ Oand vy = 2¥/(2V/2),
vy = 2712%71. So Corollary 3.3 (1) implies M has the representation

1— 2k 1+ 2k
M:{f3 f=ko

+ zk
2 NG

with an S* @ S*-invariant subspace K = {(ko, k1) : V2(S*)* 1k, =

—(S*)*ko, ko € H?}.

3.2. ¢ = 0 an inner function. In this case, M = Ker R; C \/{0v}.
Take any vector f = Mv € M satisfying Ry f = 0, which is equivalent
to A(1+ (9v,u)) = 0. If 1+ (fv,u) # 0, then A = 0, meaning M = {0}
a trivial S*-invariant subspace. So suppose 1+ (fv,u) = 0, and then
M = \/{6v}, which is nearly S*-invariant with a 1-dimensional defect
space F' = \/{S*(fv)} from Theorem 2.3. So Theorem 3.1 implies a
corollary on the representations of Ker R;.

: (ko,kl) c K}

Corollary 3.5. Given a nearly S*-invariant subspace M = \/{0v} with
defect 1, then B B
(1) in the case ag := (Bv, 1) # 0, let fo = Pyl = @g||v]|~20v, we have
M=A{f: f=kofo: (ko,0) € K},
with an S* & S*-invariant subspace K = C x {0}.
(2) in the case ag := (Bv,1) = 0, we have

M={f: f=|5*0v)| ki6v: ki € K},
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with an S*-invariant subspace K = C.

Proof. (1) in this case, using Theorem 3.1 (1), we represent M by

ol S*(fv) |
M = {f: f_k0f0+zk1HS Gl (ko, k1) € K}

= {f . f ko(% + ||S*( )H 1]{31(6’0 — CL()) (k’o,kl) c K}

|| ||2
Since M = \/{0v}, it yields
ko € C and ||S*(0v)|| "k (6v — ag) = phv with pu € C,

which is equivalent to kg € C and k; = 0 due to ag # 0. So the
statement (1) is true. The statement (2) can be similarly shown by
Theorem 3.1 (2). O

3.3. g = f1 f, with f; € GH* for j =1,2. Inthiscase, M =KerR; C
Vi —47))} Take any vector f = Af;( —flv) € M such that
Rif =0, Wthh is equivalent to A\(1 + (f;* ( 11)) u)) = 0. It is clear
M = {0} is a trivial S*-invariant subspace for 1+ (fflTﬁfw, u) # 0.
Now we always assume 1 + <ff1(Tf—2—1v),u) = 0, and obtain M =
VA 1(TE—1 v)}, which is nearly S*-invariant with a 1-dimensional de-
fect space F' = \/{fl_lTEq(S*v)} from Theorem 2.5. Denote the Tay-
lor coefficients of T—flv and f; ! by {ax}ren and {by }ren, respectively.
So (f;* T, 1) = aobo, and using Theorem 3.1, we deduce a corollary
on the representatlons of Ker R;.

Corollary 3.6. Given a nearly S*-invariant subspace
M = \/{fl_l(Tﬁfw)} with defect 1, then

(1) in the case agby # 0, let fo = Pyl = aObOHfl’lTE_wH_Qfl’lTE_lv;
then we have

M=A{f: f=kofo: (k,0) € K},

with an S* & S*-invariant subspace K = C x {0}.
(2) in the case agby = 0, we have

fﬁlT——l'U
_11 f2 . kl € K}
1T (S5 0)]

with K = C an S*-invariant subspace.

M=A{f:f=k
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Proof. (1) in this case, Theorem 3.1 (1) gives
i (T—1v — ag)

2 (ko k1) € K},
TR
due to Zf;lTE—l(S*U)] = fflz[S*(Tg_lv)] = ffl(TE—w—ao). Further
by M = \/{ffl(szflv)}, it follows that

fl_l(Tf—fw — ap) .
o = pf; (Te—1v) with p € C,
T o UE

which is equivalent to ky € C and k; = 0 by ag # 0.
(2) in this case, it follows either ay = 0 or by = 0 and fy = Py/1 = 0.
If by = 0, Theorem 3.1 (2) implies that
fl_l(Tgfw — ap) .
17500 " Dk € K},
17T, (50l
which is valid if and only if g = 0 and k£ € C. O

M={f: f=kofo+k

ko € C and k;

M={f: f=k

3.4. g = 6 with # nonconstant inner function. Because of its link
with model spaces, this case is of particular interest. For every h €
Ker Ry, the equation (2.2) is equivalent to h + (h,u)fv € 0HZ. So

M =Ker Ry C (H*N0HZ) & \[{0v} = Ky @ \/{0v}.
Take any vector h = hy + Av € M with hy € Ky and A € C, such that
R{h = 0, which is equivalent to
A1+ (Bv,u)) = —(hy, u). (3.1)

Now we divide this into two subsections to represent M = Ker R; in
terms of backward shift-invariant subspaces.

3.4.1. O|u. In this case, the equation (3.1) now is changed into A(1 +

(Ov,u)) = 0. If 1+ (fv,u) # 0, then A = 0 and M = Ky a nearly

S*-invariant subspace. So we suppose 1 + (fv,u) = 0, and then M =

Ky @ \/{0v} is nearly S*-invariant with a 1-dimensional defect space

F = \{6S*v} from Theorem 2.7. Using Theorem 3.1, we obtain a

corollary on the representation of Ker R;.

Corollary 3.7. Given a nearly S*-invariant subspace M = Ko®\/{0v}

with defect 1, and let fo = Pyl =1—6(0)0+60(0)v(0)||v|26v, we have

D VT v(0) 6(0)v(0)
M {f:f=k (k09(0>+k1||5*v||>0+(k0 Tk

+||S*U”_1k1)91) : (k‘g, k?l) S K}, (32)
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with an S*®S*-invariant subspace K = {(ko, k1) : k; satisfies (3.3) fori =
0,1}, where

__ 7
ko — (kof(0) + k1 HUS(PJH)H € Ky and kg (ﬁq)jﬁgm + [|S*v|| "'k € C. (3.3)
Proof. By Theorem 3.1 (1), we obtain
G(v—v(0
M=A{f:f= kiofo+k?1(v—v()) t (ko, k1) € K},

5=
which equals Ky @ \/{fv} implying the desired representation in (3.2).
It is clear the second relation in (3.3) holds for S*k;, i = 1,2. At the

same time, the first relation in (3.3) together with the fact Ky is an
S*-invariant subspace verify that

— U(O)kl
Yy := Sk — S™(ko6(0)6
S

9) e K.

Then it turns out that
= v(0)
S*ko — (S*k0(0
A 2

— Yy + 80k (0) =Y ”<H0;’f;<”0> =00

S*k1)0

— 0)k1(0
= Yy + (6(0)ko(0) + —U(H*;*;h ))TQQ € Ky,
since (T30,0) = (1,z) = 0 holds. This means the first relation in (3.3)
also holds for S*k;, i = 1,2. So K is an S* @ S*-invariant subspace. [

3.4.2. 01 w. In this case, we decompose u into u = u; +uy with nonzero
u; € Ky and ug € OH?. Then the identity (3.1) becomes

A1+ (B0, ug)) = —(ha,ur). (3.4)

Especially Theorem 2.7 implies Ker R; is nearly S*-invariant with a
2-dimensional defect space F' = \/{0S5*v,u;}. For later use we present
a remark concerning the projection P,1.

Remark 3.8. Let M = Ker Ry C N := Ky & \/{0v}, and denote N =
M & \/{G} with G = g + pbv, where g € Ky and p € C. Then
6(0)v(0)
[[o]”
(1 - 6(0)0,9) +6(0)v(0)p

— Ov). )
T2+ ol 9o (35)

Pyl = 1-6(0)0+ v
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For simplicity, we denote wy := 1+ (v, up) and

u1(0) + 60(0)v(0)wy

P 0]

Applying Theorem 3.1, we present a corollary on Ker R;.

Corollary 3.9. (1) In the case wyg # 0, M = N © \/{u; + webv} is
nearly S*-invariant with defect 2, and letting

fo= Pyl =1-0(0)0+0(0)v(0)|v]| *0v — pg(us + webv), (3.6)
vo = P(uy +Welv — 0(0)wav + 0(0)v(0)||v]| *wg|v]* — pglur + webv|?),
= [|S™[| 7 P(wgu(v — v(0))) and va = [lua]| ™ P(Z|ual?),

we have

v(0) 6(0)v(0) ky L 2Wg
1Sl ol " S oll el

Yy +Wg00) : (Ko, ki, ko) € K, (3.7)

{f: f = ko — (ko(0) + )0 + (ko )0v

+(—kopo + ko—
[|u 1”

with an S* @ S* @ S*-invariant subspace K = {(ko, k1, k) : k; satisfies
(3.8) fori =0,1,2 }, where
ko — (k’ge( ) + ky ”S*U”)Q € Ky,
6(0)v(0)
Fo=fue + sty — Fefg € C (3:8)
(ko, 2"vg) + (k1, 2"v1) + (ko, 2"ve) =0 for alln € N.

(2) In the case wg =0, M = N © \/{w} is nearly S*-invariant with
defect 2, and letting

fo =Pyl =1-0(0)0 — w (0)[lur | “ur +6(0)0(0)||v]| ~*bv,
vo = Pur —ui (0)[[wn[| ) and  vo = P(||lua]|7'Z|ua*),
we have

. o0) ) BOW0) | Ky
U1 =k = (0 + eyt + (o= e + o

0
u1(0) + ko - Jui @ (ko, k1, ko) € K},

lua P |

)Ov




PERTURBATIONS OF TOEPLITZ OPERATORS 15

with an S*®S*®S*-invariant subspace K = {(ko, k1, k2) : k; satisfies (3.9)
fori=0,1,2}, where

ko — (ko(0) + karaer)f € Ko,

koo L0000 |1 5%0|| "Lk, € C, (3.9)

[[o]1?

(ko, 2"vg) + (ko, 2"v2) =0 forn € N.

Proof. For the case wy # 0, the equation (3.4) implies A = —w; ' (hy, u;)
and then M = Ker Ry = {f : f=k—w, " (k,u,)0v, k € Ky}. By some
calculations, it follows

M =N o \/{u +wgbv}. (3.10)

Letting ¢ = u; and p = Wy in (3.5), we obtain fj in (3.6). By Theorem
3.1 (1), it follows
6(v —v(0)) 2uy
Sl
which together with (3.10) imply the representation of M in (3.7).
Note the third formula in (3.8) holds for S*k;, i = 0, 1, 2. Following the
similar lines for proving (3.3) is S*-invariant, it is easy to check the
first two relations of (3.8) are valid for S*k;, ¢ = 0,1,2. So K is an
S* @ S* @ S*-invariant subspace. In particular, if wy = 0, the equation
(3.4) implies

M=A{f: f=kofo+k (Ko, k1, ko) € K}

M =N o \/{u},

which is a special case of (3.10) with wy = 0. Hence we can prove the
statement (2) from the similar proof of statement (1) with wy = 0. O

In order to help understand the case ¢ = § with € an inner function,
we present an example for Corollary 3.9.

Example 3.10. Let 0 = 2™ (m > 1) and u = uy + ug with u; = 2™71/4
and uy € 2™ H?. Tt easy to check the kernel of R; is

M = \/{1, z, 2" N @ \/{zmv} o \/{zm_l/4 + wpz"v},

which is nearly S*-invariant with 2-dimensional defect space
F = \/{z"S*v, 2" '} from Theorem 2.7. If wy = 1 + (z™v,up) # 0,
then Corollary 3.9 (2) indicates the following representation for M:

0
M = {f: f=ko— klﬁzm + (k1| S*v|| 7t — dky2awg) 2™

hoz (2™ 4 dwgz™v) ¢ (ko, ki, k) € K},
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with an S* @ S* @& S*-invariant subspace K = {(ko, k1, k2) : k; satisfies
(3.11) for i = 0,1, 2} where

ko — klﬁzm € Kym,
kr || S*v|| ! — 4kyzwg € C, (3.11)
(ko, 2"vo) + (k1, 2"v1) =0forn € N,
with
vo = 4712 4 we™, vy = ||S* || TP (wgu(v — v(0))).
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