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Abstract

Ever-expanding volumes of biomedical text require au-
tomated semantic annotation techniques to curate and
put to best use. An established field of research seeks to
link mentions in text to knowledge bases such as those
included in the UMLS (Unified Medical Language Sys-
tem), in order to enable a more sophisticated under-
standing. This work has yielded good results for tasks
such as curating literature, but increasingly, annotation
systems are more broadly applied. Medical vocabularies
are expanding in size, and with them the extent of term
ambiguity. Document collections are increasing in size
and complexity, creating a greater need for speed and
robustness. Furthermore, as the technologies are turned
to new tasks, requirements change; for example greater
coverage of expressions may be required in order to
annotate patient records, and greater accuracy may be
needed for applications that affect patients. This places
new demands on the approaches currently in use. In this
work, we present a new system, Bio-YODIE, and com-
pare it to two other popular systems in order to give
guidance about suitable approaches in different scenar-
ios and how systems might be designed to accommo-
date future needs.

Introduction

The recent explosion in availability of textual materials has
created opportunities to benefit from large-scale automated
text analysis, and in no domain is this more true than the
biomedical domain, where volumes of research literature are
increasing exponentially (Fujiwara and Yamamoto 2015),
patient records are surging into electronic form, and the po-
tential for real world impact is extensive. Semantic anno-
tation aims to facilitate work such as epidemiology, clini-
cian decision support and research case sample identification
through the ability to dereference mentions in text to con-
cepts in a knowledge base. This allows more sophisticated
inference to be performed than through text search alone,
such as identifying mentions of all antipsychotic drugs.

Named entity linking (NEL) is an established field of
research that aims to achieve this goal. It is at an ear-
lier stage of development in the biomedical domain than
in the general domain, perhaps in part because of the suc-
cess of MetaMap (Aronson 2006) in providing a result suit-
able for many needs. MetaMap was designed to provide first

draft topic labels for PubMed articles, for manual correc-
tion, which is a different task to accurately dereferencing
mentions in text for applications potentially affecting clini-
cal decisions. This repurposing warrants appropriate evalua-
tion. Additionally, as larger volumes of text require process-
ing, computational speed becomes increasingly important,
so this too must be evaluated.

Named entity recognition (NER) describes the task of
finding parts of text that appear to be the name of some-
thing, and is a valuable contribution in its own right. Named
entity linking can be seen as a second step to this, in which
the names, once found, are looked up in the database and a
match located, and this is the approach taken in many sys-
tems, including MetaMap. It might be seen as a ”pull” ap-
proach, in that linking is driven by seeking a match for the
mention already found in the text. An alternative approach
is to begin with a list of all possible names of entities of in-
terest (a ”gazetteer”), and look for matching strings in the
text. It might be said in that case that the links are ”pushed”
onto the document by the gazetteer. MetaMapLite (Demner-
Fushman, Rogers, and Aronson 2017) is an example of such
a system. In the general domain, we have seen that ap-
proaches based on an initial named entity recognition (NER)
stage have different properties when compared with ap-
proaches based on finding string matches in a gazetteer, and
different strengths and weaknesses. Where text is ill-formed,
perhaps with poor capitalization, such as might be found in
rapidly penned patient notes, NER may perform poorly, be-
coming a bottle-neck for the performance of the system as a
whole. Gazetteer-based approaches have the potential to be
faster and more robust, though they lack the ability to iden-
tify ”unknowns”; that is, entities that aren’t currently in the
database but perhaps ought to be. However, for many appli-
cations this isn’t needed, and where it is, a gazetteer-based
approach may be supplemented with an NER approach, re-
taining the advantages of both rather than making one a de-
pendency of the other.

In both cases, it is important to introduce some flexibil-
ity into term matching, as there are likely to be synonyms
and common spelling errors that aren’t included on the offi-
cial list of names for an entity, such as that contained in the
UMLS (Unified Medical Language System, a popular com-
pendium of medical vocabularies). In the ”pull” approach,
having found a mention in text, matching candidates are
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sought in the database, and some flexibility may be em-
ployed in how this is done. The string found in text may
be permuted, for example by trying different morphologi-
cal word endings, before searching in the database. In the
”push” case, the labels in the database are permuted, thus
lengthening the gazetteer, allowing it to match more terms.
An advantage to permuting the labels in the database is that
it can be done off-line, ahead of time, saving time and po-
tentially increasing robustness at runtime, albeit at the cost
of an increased memory requirement for the pre-calculated
data resource. In this paper we discuss the practical impact
of coverage extension strategies on the systems discussed.

The second way in which performance can be improved is
through the quality of disambiguation. Where a string in text
might refer to multiple entities (for example ”OD” might
refer to ”overdose”, ”once daily” or ”osteochondritis disse-
cans”), one interpretation must be chosen. A limited domain
containing relatively unique terms faces less of an issue with
homonyms. Disambiguation work in the biomedical domain
has been mainly confined to acronyms and abbreviations.
However, as the coverage and richness of vocabularies in-
creases, we can expect that the need for disambiguation will
increase, and that we may have more need to learn from
work in the general domain. Certainly there is a need for
evaluation, to scope the problem and assess the success of
strategies.

In this work we present a new biomedical named entity
linking system arising within the GATE natural language
processing ecosystem, called Bio-YODIE. We contrast Bio-
YODIE with MetaMap and MetaMapLite in order to elu-
cidate the strengths and weaknesses of each approach, and
draw generalizations about which approach might be best
suited in a variety of situations. We demonstrate that Bio-
YODIE performs competitively. In the next section we de-
scribe Bio-YODIE, before moving on to evaluation.

The Bio-YODIE Biomedical Named Entity

Linking System

Bio-YODIE has emerged in parallel evolution with
MetaMapLite, implementing broadly the same philosophy.
Based on GATE (Cunningham, Maynard, and Bontcheva
2011) technology, YODIE (Gorrell, Petrak, and Bontcheva
2015) was originally a general domain system, dereferenc-
ing mentions to DBpedia (Auer et al. 2007). Bio-YODIE
is the biomedical version of the system, though inheriting
a research history from the general domain. It differs from
MetaMapLite in that disambiguation has always been a pri-
ority in the YODIE project, and remains so in Bio-YODIE.
Bio-YODIE has been integrated into CogStack (Jackson et
al. 2018) and is in active use in large scale clinical contexts.

Bio-YODIE comprises two main components. Firstly, the
resource preparation step processes the UMLS and other in-
formational resources required at runtime into an efficient
form in which as much work has been done as possible
in advance to minimize processing at runtime. Secondly,
the pipeline itself applies annotations to the documents that
include a UMLS Concept Unique Identifier (CUI) along
with other pertinent information from the UMLS. Resource

preparation takes the form of scripts that can be distributed
in order that others may prepare resources from their own
licensed UMLS download on the subset of their choice. The
resources comprise a gazetteer and a database allowing en-
tities to be retrieved by label (valid name mention in text).
A number of scores and other relevant information are made
available in the entry for each entity. The scripts can be used
to generate resources in any language for which there is
UMLS content. They also include a type list, so that only
the required semantic types (for example ”Sign or Symp-
tom”, ”Finding”) need be included.

The pipeline begins by running a gazetteer to locate the
terms that may indicate an entity mention. After using a stop
list to remove low precision terms, these mentions are then
used to retrieve all the possible candidates for that term. A
number of scores are then used to pick the most likely; this
is discussed in more detail in the disambiguation section be-
low. The system can be run using the GATE Developer GUI,
or from the command line; for example GCP (GATE Cloud
Processor) is routinely used to run Bio-YODIE in multiple
threads over the CRIS database of 30 million patient notes.
Figure 1 shows the result of Bio-YODIE having been run
over an example document in French. The pane to the right is
a pop-up pane displaying information about the referent as-
signed to ”utilisateurs de drogues”. On the left, the individ-
ual steps in the Bio-YODIE pipeline are visible. Bio-YODIE
is available on GitHub.1

Figure 1: Result of running Bio-YODIE on example French
medical text

Coverage

One approach to improving performance is accommodating
more synonyms. This is challenging, however, as a more
permissive approach may make more mistakes, and some
ways of accommodating variation may be slow to execute. In
Bio-YODIE a new approach was trialled. The UMLS, being
a thesaurus, contains many alternative ways of expressing
the same concept, offering untapped potential for synonym
acquisition. We trialled an experimental approach. A script

1https://github.com/GateNLP/Bio-YODIE



From To

inflammatory inflammat
(presence) serum or plasma serpl ql

antigen concentration point time unspecified (presence) ag
Indomethacin indomethacin

doudenal duodenal
steatoses steatosis

sutura suture
musculus muscle
arteriosis arteriosus

sphincters sphincter
audiometric audiometry
darbepoetin darbopoetin

Table 1: Representative examples of automatically derived
synonyms

was prepared that took alternative labels for the same entity
in UMLS, pairwise, and matched up the words contained in
them. Where words were similar but not identical (as deter-
mined using a threshold on length-adjusted Levenshtein dis-
tance) they were considered synonyms. Having paired and
removed these matching words, the remainder was also con-
sidered synonymous. Consider for example ”pancreatic can-
cer” and ”neoplasm, pancreas”. ”Pancreatic” and ”pancreas”
become synonyms, leaving ”cancer” to match ”neoplasm”,
which also gets added as a synonym. In some cases, a re-
dundant word becomes synonymous with the empty string;
these are also added. Scores are assigned to synonym pairs
based on the frequency with which that synonym appeared,
adjusted for the number of alternative labels for that CUI;
CUIs with many labels tend to inflate the count dispropor-
tionately.

Thresholds were applied to the automatically derived syn-
onyms. These were tuned on the MIMIC 2014 training data.
A threshold of 12 was chosen for most synonyms; however
where an item is to be replaced with the empty string, a
high threshold of 1000 was imposed. An example of such
an item is the ending ”NOS”, meaning ”not otherwise spec-
ified”, which can usually be dropped from a term without
a change in its meaning. However, generally speaking, re-
moving words from terms is somewhat perilous, resulting as
it does in something more ambiguous, so therefore a high
threshold was chosen, reducing the list of items that may be
discarded to just eleven items, most of which are the brack-
eted semantic types that often appear at the end of a term,
as in for example ”headache (finding)”. A manual edit of
the synonyms was then performed to remove erroneous and
problematic items; for example ”declined” and ”decline”
can have quite different connotations. The final synonym list
had 7097 items. Having applied this to the gazetteer, an ad-
ditional 54644 items were included, constituting around 2%
of the total; permutations were applied only to the shorter
terms, that are more likely to be matched in text, so this small
addition has a disproportionate impact on the result without
substantially increasing RAM requirements at runtime. Fig-
ure 1 gives twelve items taken from the top of the synonym
list, as a representative illustration. Its coverage of abbrevia-
tions, plural forms, capitalization variation, adjectival forms
and spelling mistakes is typical of the work.

Increasing recall without impacting negatively on preci-
sion has been hard to achieve so far in this domain. However,
manual inspection of the output reveals that often the spuri-
ously annotated items are quite sensible, though not match-
ing exactly what was given in the corpus. Where spurious
and incorrect items are semantically close to the gold stan-
dard answer, prioritizing recall makes sense. In order to in-
vestigate coverage in the light of this observation, a small
section of the MIMIC 2014 corpus was prepared with ad-
ditional annotations for adjectival forms, and where a men-
tion in text could be linked validly to several CUIs, all were
included. Results show that the data-driven approach of de-
riving synonyms from the UMLS that we trial here has ben-
efits over linguistic variation in expanding semantically co-
herent coverage. Although we were not able to demonstrate
an improvement on the evaluation corpus, we believe the ap-
proach has merit, and future work will involve a more thor-
ough evaluation before including it in Bio-YODIE.

Disambiguation

Main approaches to named entity linking involve applying
candidates to text on the basis of string matches. The main
areas therefore by which disambiguation performance might
be improved are through better matching of strings and bet-
ter selection of the right candidate from among several. It
is this latter area on which we focus in this section. Infor-
mation that might be used to select the best match can be
divided into two types; those that don’t evaluate candidates
on the basis of the context in which the mention appears,
and those that do. The former category might be considered
prior probabilities of one form or another. The latter we refer
to as context clues.

Priors A prior probability for the likelihood of a CUI oc-
curring is a valuable information source. Essentially, we
wish to know how important this entity is, how widely men-
tioned. Such a prior probability can be obtained in a number
of ways. For example, in the general domain, the number of
incoming links to the Wikipedia page for an entity gives a
measure of its popularity and results in an extremely strong
baseline. A second prior probability of interest is the likeli-
hood of a particular term referring to a particular entity. For
example, does ”OD” more commonly indicate ”overdose”
or ”osteochondritis dissecans”? This will be referred to in
this work as the ”link probability”. In the biomedical do-
main, manually linked corpora are scarce, but possibilities
do exist to obtain these priors. The two we have found the
most successful are considered here. Prior probabilities are
also convenient in that they can be calculated in advance, re-
quiring no run-time processing, which would slow down the
system.

Corpus Prior Annotated corpora can be easily used to
calculate frequencies for CUI mentions. Furthermore, where
a fully manually linked corpus is available, link probabili-
ties can be obtained. The MIMIC corpus offers a training
set of 299 documents, which can be used to calculate pri-
ors. The SLAM data has been split into two parts, one of
which, in conjunction with the MIMIC training portion, has



been used to create a set of prior probabilities, which are
then used as scores in the system. Corpus priors appropriate
to the use case have the potential to improve performance
considerably–more than any other method tested–but must
be created by the user with their own data. Bio-YODIE of-
fers the possibility to drop in these priors.

Co-occurrence Graph Previous work has demonstrated
the value of graph disambiguation approaches such as
PageRank in making use of information such as the MR-
REL table in UMLS, which provides information about how
entities relate to each other (for example they might be nar-
rower or broader concepts etc.). Personalized PageRank has
been turned to the task of making a final joint disambigua-
tion; however, it improves only a little on PageRank (Agirre,
Soroa, and Stevenson 2010), and PageRank can be calcu-
lated over the graph in advance, making it faster at runtime.
In calculating a full PageRank for the whole graph, we in
essence create a new kind of prior; how connected is this
entity? How important is it in the context of other entities?
The fact that Personalized PageRank improves only a little
on this perhaps emphasizes how difficult a good prior proba-
bility is to beat. Including a PageRank score provides a way
to make use of any available graph information.

We calculated a (static) PageRank over the MRCOC (co-
occurrences) table in UMLS. This table gives concept co-
occurrences in PubMed articles, which are gold-standard.
We used only those since 2000, and only those that occur
more than once.

Context Clues Prior probabilities give an indication of
how likely a concept is to appear, but they don’t make use of
information in the surrounding document about what con-
cept might appear in this context. Various approaches to
evaluating a candidate in context have been trialled in the
context of YODIE and other work. Bio-YODIE provided
an opportunity to try something new. The recent surge of
research into neural approaches to word representation has
demonstrated the potential in replacing words with vectorial
embeddings to bring in value from large volumes of unla-
beled data and exploit co-occurrence to create richer rep-
resentations of words. These representations might then be
compiled to create vectors for entities and context, that can
be compared for congruence. We made use of word2vec (Le
and Mikolov 2014) embeddings calculated over PubMed,
PubMed Central and Wikipedia biomedical topics.2 We cal-
culated a vectorial representation for the entities by adding
word vectors from their abstracts. We calculated a vector
representation for the context of the mention, again, by
adding word vectors. These vectors were then compared us-
ing cosine to produce a score giving an indication of the
goodness of fit of that entity in context. Evaluation revealed
however that the approach contributed little. It was also no-
table that the system became much slower when the context
scoring was in place, since calculations are necessarily per-
formed at runtime. This experience echoed that of previous
work in the general domain (Gorrell, Petrak, and Bontcheva

2From here: http://bio.nlplab.org/

2015), in demonstrating that prior probability is an excellent
source of information that it is hard to add anything to, and
that work using context clues, whilst appealing, incur a high
cost with regards to speed. It also raises questions however
about the suitability of the data to demonstrate an improve-
ment in this area.

Evaluation

MetaMap and MetaMapLite have been chosen for com-
parison systems for the evaluation because they are pub-
licly available, popular systems. Another strong contender
would be the cTAKES system; however the approach taken
to named entity linking in this system is highly similar to
that taken by MetaMapLite, offering a similar range of cov-
erage extension functionality in addition to basic dictionary
lookup, and no disambiguation, making it redundant for our
purposes (cTAKES also contributes a wide range of fur-
ther language processing functionality but that is not under
consideration here). Both MetaMap and MetaMapLite were
wrapped in GATE plugins in order to perform the experi-
ments conducted for this work. The plugins are available un-
der open source licenses 3 4. Further recent evaluation work,
including cTAKES, has been shared by Demner-Fushman et
al (2017).

MetaMap

The basis of MetaMap’s entity linking is a complex named
entity recognition approach. Having found entities, near
matches are then sought in the UMLS. The linguistically
grounded approach to finding and permuting the mentions in
text seems likely to add intelligence, but the cost is high in
terms of runtime processing. MetaMap uses SICStus Prolog
to provide a microservice architecture to parse text, iden-
tify mentions and locate matches in the UMLS. Extensive
linguistically motivated permutation of the string in text is
performed in order to broaden the matches to entity labels in
the UMLS and achieve a higher recall. Linguistic cues are
also used to assign a score to the quality of the match, which
is then used for disambiguation. Parameters can be used to
select the semantic types of interest and the UMLS distribu-
tion to use among other things.

MetaMapLite

Recently, the MetaMapLite system has emerged from the
same team (Demner-Fushman, Rogers, and Aronson 2017),
offering faster processing times, and transitioning to the
”push” approach. The gazetteer approach is linguistically
void, though some permutations have been precalculated,
and the resulting system lacks the linguistically based dis-
ambiguation approach offered in MetaMap. Disambiguation
is unaddressed at the time of writing. 5 It is written in Java
and provides an API. It includes a gazetteer, which it uses to
find the matches in text. A configuration file makes it possi-
ble to specify a range of parameter preferences.

3https://gate.ac.uk/userguide/sec:misc-creole:metamap
4https://github.com/GateNLP/gateplugin-MetaMapLite
5https://metamap.nlm.nih.gov/MetaMapLite.shtml

http://bio.nlplab.org/


Secs Prec L Rec L F1 L Acc Scott’s Pi

MetaMap 3811 0.574 0.568 0.571 0.857 0.856
MetaMapLite 986 0.654 0.549 0.597 0.877 0.876
Bio-YODIE 573 0.582 0.605 0.593 0.883 0.882

Table 2: MIMIC results for the three systems on 2014 test
data

Corpus

The MIMIC II data6 offers three corpora manually annotated
with CUIs for a subset of the UMLS semantic types. Two
test corpora contain 133 and 100 documents respectively,
and a training corpus of 299 documents is also available.
This corpus is available on request to researchers meeting
the application requirements. The patient notes include dis-
charge summaries and ECG and echo reports, providing a
rich and varied sample of medical text in American English.
It has been used here to perform the evaluation.

Results

Table 2 shows that in terms of processing time, the two
“push” approaches, MetaMapLite and Bio-YODIE, outper-
form MetaMap, as expected given their much simpler pro-
cessing at runtime. The question is, can this speed improve-
ment be achieved without loss of accuracy and coverage?
The answer it seems is yes. In terms of accuracy, both Bio-
YODIE and MetaMapLite outperform MetaMap by a couple
of percent, with Scott’s Pi confirming the result. In terms of
recall (coverage) and precision, however, we see differing
merits to the systems. Bio-YODIE achieves the better re-
call by several percent. However, MetaMapLite has the sub-
stantially higher precision of all three systems. In terms of
F1, Bio-YODIE and MetaMapLite have the superior result,
with MetaMapLite ahead by just a fraction of a percent. In
summary, simpler approaches have shown their merit in this
case.

Discussion

As we have seen above, in the general domain, ”push” sys-
tems show stability and robustness, but don’t naturally iden-
tify unknown entities, requiring additional machinery to add
this functionality if it is required. Historically, ”pull” sys-
tems have received more attention because named entity
recognition is the more established field, presenting an ini-
tially more manageable task that is useful in the context of
automated database population. Many named entity linking
systems arose from this existing work. However, this as-
sumption is limiting in this case.

The most notable difference between the three systems re-
viewed, as shown in the previous section, is with respect to
coverage; the systems differ in their balance between pre-
cision and recall. Since it is hard to beat prior probabili-
ties with regards to improving disambiguation, coverage im-
provements offer the most potential for improving overall
performance. There is plenty of scope for improving recall.

6https://mimic.physionet.org/

Future work should involve evaluation on additional cor-
pora, since it is not clear the extent to which idiosynchra-
cies in this corpus might have influenced the result presented
here. We also suggest that gold standard corpora for named
entity linking should include all CUIs that might match a
mention rather than just picking one. We note that small cor-
pora make it hard to discern the impact of improvements.
We draw the reader’s attention to earlier work (Tissot et al.
2015) showing the difficulty experienced by annotators in
consistently following complex annotation manuals; in the
medical field there can be many edge cases.
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