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Abstract

The egress literature abounds with studies and models of emergency pedestrian evacu-

ation behavior. Each model tries to incorporate more details and features of the crowd

movement dynamics to improve its accuracy. This paper combines a relatively simple

pedestrian motion model with a position dependent Voter model to study the effects of

opinion sharing on crowd evacuation characteristics. Effect of the presence of leaders

on the final outcome of the evacuation is studied in detail. An analytical solution for a

simplified version of the egress dynamics with opinion exchange is presented, followed

by a set of numerical simulations. Interesting findings about the effect of the strength

of interaction between individuals, number and distribution of leaders and initial bias

of the evacuees on the final distribution of evacuees over available exits, mean number

of steps to evacuate, etc. are presented.

Keywords: Egress modeling, Hybrid model - motion and opinion sharing model,

Analytical solution, Effect of leaders

1. Introduction

The planning authorities take into account various factors when deciding on a par-

ticular evacuation procedure for each building in case of an emergency. Factors like
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maximum capacity of an exit, maximum allowed occupancy of the building, minimum

time to evacuate, etc. play important roles in this planning. Researchers have tried5

to model the evacuation procedure to study the various parameters involved and to

optimize the evacuation plan. Several existing emergency evacuation simulators try

to take into account as many factors as possible to effectively calculate the time to

evacuate and also test the efficacy of different evacuation procedures or to compute

an optimized plan for egress. However, a careful look at the state-of-the-art in egress10

literature shows that although tremendous progress has been made in modeling pedes-

trian movement in emergency, the effect of ‘herding’ tendencies on egress dynamics

has not received as much attention. This paper starts with a simple egress situation but

incorporates the effect of group interaction on route choice and hence the movement

dynamics of individuals. The movement dynamics in turn affects the instantaneous15

formation and dissipation of small groups of evacuees. To the best of our knowledge,

these two complementary dynamics (decision and movement) has not been analytically

and numerically investigated in the context of egress in the past.

1.1. Literature Review

A comprehensive literature review of the state-of-the-art in egress research is pro-20

vided here to motivate the research carried out in this paper and also to serve as a quick

resource for researchers in the field.

1.1.1. Fluid Flow Models

Hughes et.al. [1, 2, 3] modeled the movement of pedestrians as fluid flow by identi-

fying the governing equations for the fluid flow model. This work identifies the human25

crowd as analogous to thinking fluids and studies the effect of barrier placement to im-

prove the flow of the crowd. Colombo et.al. [4] studied the effect of panic with the con-

tinuum fluid flow model. These models, though conforming largely with experimental

data fails to take into account the role of interactions among egressing individuals in

determining their exit choices and overall movement dynamics.30
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1.1.2. Cellular Automata Models

Cellular automata principles have been used to model the pedestrian flow in [5].

In [6], Helbing used velocity equations for individuals and incorporates personal pref-

erences and environmental effects to model the movement of pedestrians, while in

[7], deceleration and other changes in velocity were utilized to account for others in35

pedestrian movement. However, the exit choice is fixed. Burstedde et.al. [8] used a 2D

cellular automaton to model the pedestrian dynamics. Using a method similar to poten-

tial field, he studied the model’s statistical properties using Monte Carlo simulations.

The individual interactions are not explicit but implicit through the usage of floor field.

Using a similar cellular automaton along with potential field method, Varas et.al. [9]40

discussed the merits of door size, position of door relative to obstacles in the room and

their effects on the time to evacuate. The model was used to study the evacuation from

a classroom at full capacity. Seitz et.al. [10] studied leader-follower behavior with loss

of line of sight of leader and subsequent decision making. This is a movement model

that incorporates leaders but the interaction between leader and follower is fixed and45

pre-determined. Though these models have their unique way of representing the mo-

tion of individuals, there is scope to improve the decision mechanism that supports the

motion model.

Kirchner et.al. [11, 12] tried to model the movement of people in emergency evac-

uation using the principles of cellular automata and the social force model developed50

by Helbing et. al.[6]. In this work, the building was divided into discrete cells and the

interplay between two force fields was studied - a static field to account for factors like

the desired exit, obstacles in the way and a dynamic field to take into account the effect

of other nodes/people. A model with static field and a friction coefficient to control

the competitive behavior was presented in [11] and it matches experimental data from55

an airplane evacuation. In [12], the effect of others is indirectly taken into account

through the traces they leave on the path followed (dynamic field). Kirchner et.al. [13]

studied the effect of various cell sizes and different maximum velocities on the model.

Kluepfel [14] presented a complete study of how different velocities of individuals can

be computed taking into account various factor like age, gender, etc. and modeled the60
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competition between people as analogous to Newtonian friction. Henein et.al. [15]

took the work of Kirchner et.al., added another field that takes into account the force

interaction between individuals and simulated injuries due to force interaction and its

effect on the evacuation time. This model is one more step toward adding all relevant

interactions that takes place during evacuation. Nevertheless, in all these studies, the65

individual route choice is predetermined and effect of interaction among individuals on

the exit choice is not taken into account.

Parisi et.al. [16] used the social force model to study the effect of different degrees

of panic. The different degrees of panic is simulated through different desired indi-

vidual’s velocity. It is described as ’faster is slower’ effect in [6]. The effect of door70

sizes with different panic level on the evacuation time is studied in detail. The panic

level is found to affect the formation of clusters among the nodes and the distribution

of cluster mass/size is found to have to a ’U’ shaped characteristic curve with the panic

level/desired velocity [17]. Again, this model gives a comprehensive simulation for

only the movement dynamics of evacuation.75

1.1.3. Lattice Model

Lattice gas models have been used to model and verify a classroom evacuation in

[18]. The particles in the simulation execute a biased random walk toward the exit

and the model takes into account personal space/minimum distance to avoid collision

as well as obstacles, but in this work, the exit choice was pre-determined and lacked80

an explicit model for route choices. Takimoto et.al. [19] used the lattice gas model of

pedestrian movement to study the relationship between escape time through an exit and

the starting position of people in the room. Additionally, the effect of exit width on the

distribution of escape time was also examined. Song et.al and Guo et.al. [20, 21] com-

bined the lattice gas model with the social force model and thus tried to incorporate85

interaction among individuals implicitly through the force fields. The average evac-

uation time found using simulations combining both models were found to be more

accurate compared to the lattice gas model alone. This further strengthens the need for

a decision making model that more explicitly takes into account exit choice as well as

one-on-one and group interactions.90
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1.1.4. Discrete Event Model and Game Theoretic Model

Lino et.al. [22] modeled the crowd egress dynamics with the principles of queue-

ing in networks. Singh et.al. [23] utilized a discrete event model. The effect of leaders

and sub groups in crowd dynamics was examined in detail, but still does not involve

inter personal opinion sharing to support the excellent movement model. Lo et.al. [24]95

used a game theoretic approach to model the exit choice of individual. A virtual agent

played against each individual(s) till Nash equilibrium was arrived for each step to de-

cide on the exit choice of the individual(s). This also falls into category of implicit

decision/opinion sharing. Work has been done to model and simulate a crowd guid-

ance mechanism to help the crowd to safety in shortest possible time. Gao et.al. [25]100

take into account the confidence level of individuals in either accepting or rejecting

guidance. Wang et.al. [26] tried to build an intelligent crowd guidance system by

giving a probability of accepting of the guidance. Directed graphs and Markov Deci-

sion Processes were used to solve the optimization with respect to avoiding blocking

of pathway. This work also incorporated model for fire propagation and crowd impa-105

tience in the optimization. These works highlight the importance for a guidance system

to help optimize the evacuation time.

1.1.5. Psychological Model

Proulx [27] stresses the need for better understanding of human interaction under

emergency. Hasan et.al. [28] examined the effect of person’s social network on their110

decision to evacuate on receiving a hurricane warning. It was found that individuals’

social links and the amount of trust they have on their links strongly influences their

decision to evacuate. Goldstone et.al. [29] used agent based modeling to study the

group behavior from a psychology point of view but this lacks the complementary

motion model to become a complete egress model. Spieser et.al. [30, 31, 32, 33]115

studied just the psychological dynamics in opinion control. Using Gustav LeBon’s

suggestibility theory [34], a collective behavior model was utilized for developing a

discrete-time non linear model of crowd psychological behavior. The elements of a

queue were agitated and a control algorithm to bring the agitated elements to normal

state using one or more control node(s) was derived. Though the psychological aspect120
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is well modeled, lack of a motion model limits its utility as a complete egress model.

On other hand, Pan et.al. [35, 36, 37, 38] attempted to build a simulation system

that takes social interaction among individual nodes through simulated perception of

current environment and a set of rules/decision tree to come up with a valid action for

each set of sensed input. This work combines both motion and interaction model albeit125

the interaction among crowd is still implicit and there is no direct interaction/sharing

of exit choice opinion among the nodes. Kuligowski and Zheng et.al. [39, 40] gave

comprehensive overview of existing egress simulation techniques.

As evident from the literature reviewed above, there is a need for a model that com-

bines the two coupled aspects of egress - a motion model and also an explicit opinion130

sharing framework between the exiting individuals. In an emergency, a group will make

their choices of different escape routes by taking into account not only their individual

predispositions, distances to exits, familiarity with the environment, obstacles in their

path, perceived sense of danger, etc., but also through imitation of and influence from

people who are physically nearby. It is also possible that a few amongst the crowd will135

display a strong attraction towards one of the exit choices available, borne out of prior

knowledge of the environment or their natural predisposition to be leaders or confident

in their decision making. The effect of strong opinion holders on the egress dynamics

poses an interesting problem.

This work studies a simplified model of movement along with an opinion sharing140

framework to study the combined effect of both.

2. Modeling of crowd movement dynamics with opinion sharing

For the purpose of this paper, a long corridor with two exits (an exit to left (EL)

and an exit to right (ER)) is considered. At each instant, each individual of the crowd

can choose to use either of the two exits and correspondingly, move one step toward145

right or left end exit of the corridor. To account for the explicit swapping of exit choice

information among individuals, the voter model dynamics is utilized. According to this

dynamics, at arbitrary time steps, one random individual is spontaneously influenced

by one of his physically close neighbors, chosen at random. If the neighbor happens
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Figure 1: Illustration of a long narrow corridor with a group moving toward either side

to be moving in the same direction as him, he finds reinforcement in his belief that he150

is indeed going in the optimal (safest) direction. If the neighbor happens to be rushing

towards the other exit, that introduces doubt and leads to him changing his decision.

Plausibly, this influence is modeled to get weaker as the individual and his neighbor

are further away from each other. In the analytical model, all individuals are assumed

to start at the center of the corridor and an interaction zone starting at the center of155

the corridor and stretching to 20% of the total length of the corridor on either side is

established. The individuals can successfully affect other’s exit decision only if both

are within the interaction zone. To account for the motion model, after every deci-

sion step, every individual of the crowd moves one step towards their respective exit

choice. However, if an individual changes his/her exit choice they are assumed to be160

able to join up with the new group instantaneously. The rationale behind this assump-

tion is borrowed from considering the crowd movement as a choked fluid flow through

a narrow bottleneck, where people move much slower as a group due to crowding in a

narrow space. Consequently, the passage between the two groups is largely empty and

the individuals switching between groups can join their new group relatively quickly.165

To study this motion with opinion model analytically, a Master equation approach, de-

veloped previously in [41, 42] is utilized. For completeness and clarity, the master

equation and a polynomial solution is derived below.

2.1. Analytical Solution

Let, at a given instant, the number of people without strong opinions moving toward170

ER be denoted by NR and the number moving toward EL be denoted by NL. The total

number of indecisive people moving is thus N = NR + NL. In addition, there are

IR people strongly predisposed to move toward the right exit while IL having a strong
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bias toward the left exit, for a total of I = IR+ IL evacuees with strong opinions. This

is illustrated in Fig. 1175

Let us now define three variables - the crowd polarization parameter, p = NR−NL

N ,

the influencer ratio, u = IR−IL
I and the global influence ratio, ζ = I

N . The crowd

polarization parameter p ∈ [−1, 1] captures the ratio of people moving right vs. moving

left. Thus, p = 1 means that everybody is moving towards the right exit at that instant,

p = −1 means that everybody is moving towards the left exit at that instant and p = 0

means that half are moving towards right and the rest toward left. The influencer ratio,

u denotes the relative influence or control that people with strong opinions, (who we

will subsequently identify as ‘leaders’) have over the independent decision makers’

possible exit choices. u = ±1 denotes each of the independent thinkers are moving

towards the exit on the right side (or left side) of the long corridor, u = 0 indicates

that there is equal number of leaders attracting the crowd towards both the exits. The

global influence ratio, ζ is the fraction of the number of influencers to the number of

indecisive people. ζ = 0 implies there are no influencers in the crowd. As ζ increases,

the number of strong opinion holders in the crowd increases until at ζ = 1 the whole

crowd comprises individuals holding strong opinions. The master equation for this

stochastic system is given by

Ṗp = rp+ 2

N
Pp+ 2

N
+ gp− 2

N
Pp− 2

N
− (rp + gp)Pp (1)

where,

rp = P (p → p−
2

N
) =

(

NR

N

)(

NL + IL
N + I − 1

)

gp = P (p → p+
2

N
) =

(

NL

N

)(

NR + IR
N + I − 1

)

rp+ 2

N
=

(

NR + 1

N

)(

NL − 1 + IL
N + I − 1

)

gp− 2

N
=

(

NL + 1

N

)(

NR − 1 + IR
N + I − 1

)

(2)
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Substituting Eqn. 2 in Eqn. 1, we get

Ṗp =

(

NR + 1

N

)(

NL − 1 + IL
N + I − 1

)

Pp+ 2

N

+

(

NL + 1

N

)(

NR − 1 + IR
N + I − 1

)

Pp− 2

N
(3)

−

[(

NR

N

)(

NL + IL
N + I − 1

)

+

(

NL

N

)(

NL + IL
N + I − 1

)]

Pp

For large N , assuming that I < N , ILPp+2/N+IRPp−2/N ≈ IPp, with proper scaling

of time as τ = t/N2 and noting that NRIL−NLIR = NI
2

(p− i), the master equation

can be simplified [41] to its final form as,

∂Pp

∂τ
=

1

2

∂2

∂p2
[B(p)Pp]−

∂

∂p
[A(p)Pp] (4)

where, B(p) = 2
(

1− p2
)

(5)

A(p) = I (u− p) (6)

Equation 4 describing the time evolution of the probability density function of the

polarization parameter p, can be recognized as the Fokker-Planck equation and can be

treated with generic methods developed for such partial differential equations. Wong

et.al. [43] has reported certain general conditions under which the problem reduces

to an eigenvalue problem of the Sturm-Liouville type and gives rise to polynomial

solutions. If it is assumed that an equilibrium density function exists, and

lim
τ→∞

∂Pp

∂τ
= 0 (7)

then it is simple to show that the equilibrium density pe(m) satisfies

d

dp

(

(1− p2)pe(p)
)

− I(u− p)pe(p) = 0 (8)

if the constants of integration are assumed to be 0. Substituting Pp(τ) = f(τ)pe(p)ϕ(p),

in Eqn. 4 and using separation of variables,

df(τ)

dτ
= −λf(τ) (9)

d2

dp2
(

(1− p2)pe(p)ϕ(p)
)

−
d

dp
(I(u− p)pe(p)ϕ(p)) = −λpe(p)ϕ(p) (10)
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Assuming discrete eigenvalues, Eqn. 9 can be easily solved to yield,

fn(τ) = kne
−λnτ (11)

while using Eqn. 8 in Eqn. 10 gives the Sturm-Liouville form,

d

dp

(

(1− p2)pe(p)
dϕ(p)

dp

)

+ λpe(p)ϕ(p) = 0 (12)

Necessary and sufficient conditions for Eqn. 12 to yield a complete orthonormal set of

polynomials as eigenfunctions have been studied by Wong et. al. [43]. They can be

summarized as follows:

B(p1)pe(p1) = B(p2)pe(p2) = 0, (13)

where p1 ≤ p ≤ p2

A(p) = ap+ b (14)

B(p) = cp2 + dp+ e and (15)
∫ p2

p1

pnpe(p)dp < ∞, n = 0, 1, ..., n < ∞ (16)

From Eqn. 5,6 and noting that −1 ≤ p ≤ 1, it is easy to see that the necessary and

sufficient conditions are satisfied. The above conditions restrict the density function

pe(p) to be of the form [43],

pe(p) =
1

2α+β+1

Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)
(1− p)α(1 + p)β , α, β > −1 (17)

while the polynomial eigenfunctions ϕn(p) orthonormalized with respect to the equi-

librium density function pe(p) are the Jacobi polynomials,

ϕn(p) =
(−1)n

2n
×

√

(2n+ α+ β + 1)Γ(n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)

×

√

Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)n!
× (1− p)−α(1 + p)−β

×
dn

dpn
[

(1− p)n+α(1 + p)n+β
]

(18)
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For pe(p) defined as in Eqn. 17, the functions

A(p) = γ(β − α)− γ(α+ β + 2)p

= Iu− Ip (from Eqn.6)

B(p) = 2γ(1− p2)

= 2(1− p2) (from Eqn.5)

and λn = γn(n+ α+ β + 1)

(19)

Solving 19 yields

γ = 1,

λn = n(n+ I − 1),

α = IL − 1 and

β = IR − 1

(20)

This restricts IR, IL ≥ 1. The joint probability density function p(p0, p; τ) have the

form,

p(p0, p; τ) = pe(p0)pe(p)

∞
∑

n=0

e−λnτϕn(p0)ϕn(p) (21)

where pe, ϕn and λn are given by respectively Eqns. 17, 18 and 19, and initial po-

larization factor p0 = p(τ0). This completely specifies the progression of the joint

probability density function.

The results shown in Fig. 2 are for N = 200, p0 = 0, IR = 11 and IL = 2.180

In other words, initially exactly 50% of the 200 undecided evacuees start moving right

and 50% start towards the left exit. As they start moving as two discrete groups, there is

opinion exchange and a few people change their mind and join the other group moving

in the opposite direction. Figure 2 shows the probability distribution of how the crowd

is expected to be polarized at each subsequent time steps. Numerical results from 2500185

Monte Carlo simulations overlayed on the analytical results verify the accuracy of the

results and the validity of the assumptions made. Interestingly, with increasing number

of average interactions per person, the probability distribution flattens out, while the

mean slowly moves towards higher values of p. The gradual favoring of the right exit

by more people is a result of the larger number of independent nodes moving to the190

right (IR = 11) compared to the left (IL = 2).
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Figure 2: Analytical and numerical results for probability distribution of final crowd polarization factor with

different number of average interaction per person. Here, N = 200, p0 = 0, IR = 11 and IL = 2.

From the point of view of faster evacuation, it is beneficial to be able to influence

the final polarization to match the flow capacity of the individual exits. For example,

in our experiments, if the right exit has twice the flow capacity of the left exit, then it is

preferred that the crowd polarization (p) is equal to 0.33. The analytical and numerical195

results suggest that the the presence of strong opinion holders has an enormous effect

on polarizing the crowd, thereby affecting the total evacuation time by utilizing the

available exits more or less effectively.

2.2. Constant velocity dynamics

In the previous section, movement of individuals from one group to another is200

assumed to occur at a faster time scale compared to the group movement. This dynam-

ics was modeled on the assumption that individuals move faster than a tightly packed

crowd trying to navigate a narrow corridor. But this assumption fails to hold if we

consider a larger space where individuals are free to move at their own pace, limited

only by their physical capabilities. In that scenario, formation of distinct clusters of205

people moving together is unlikely, rather a more uniformly spread out distribution

over the movement axis seems to be more probable. To investigate the implications of

this scenario, a constant velocity model is investigated next. Each node, i is assumed

12
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to be moving at their maximum speed toward their respective choice of exit, σi, where

σi ∈ {EL, ER}, ∀i ∈ N ∪ I . Unlike the previous case, the strength of interaction be-210

tween two individuals is now modeled as a function of the distance separating them. In

this case, we model the strength of interaction as SOI(dij) = e−δ×dij , where δ is the

decay rate and dij is the distance between nodes i and j at that instant. Incorporating

the SOI factor, the modified Voter model dynamics is now as follows (Alg. 1).

Essentially, for a higher decay rate, the interaction is similar to that implemented215

with the previously discussed narrow central interaction zone, inside which all inter-

actions are constrained to occur. For lower decay rates, even more distant individu-

als have a higher probability of successfully changing the opinion of the other. This

strength of interaction creates a personal interaction zone for each individual separately

and it moves with the individual. The size of the interaction zone is determined by the220

decay rate.

Leaders are recognized by their ability to influence a large number of people. This

is modeled by relaxing the distance restriction on the SOI for such individuals, i.e.,

leaders are assumed to be able to influence undecided individuals successfully, regard-

less of the distance between them. With this setup various numerical simulation ex-225

periments were carried out and the results are presented and discussed in the following

section.
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Algorithm 1: Hybrid motion model with strength of influence voter model

Data: N, IR, IL, δ

Result: Decision sharing model with SOI

1 Initialization: p0, {σi : i ∈ N ∪ I};

2 while egress is not complete do

3 while each node hasn’t interacted once do

4 Select each node i in random order, where i ∈ N ;

5 Select random neighbor j for each, where j ∈ N ∪ I ;

6 Determine SOI(dij) = e−δ×dij ;

7 Set σi = σj with probability SOI(dij);

8 end

9 Each node i moves one step towards their exit choice σi, where i ∈ N ∪ I

10 end
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Figure 4: The effect of p0 and δ on the final distribution (at the exit) of polarization factor p. Here,

NR +NL = 100 and I = 0.
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3. Results and Discussion

3.1. Movement without leaders (I = 0)

The first set of simulations tries to isolate the effect of initial bias and the effect230

of varying degree of interactions between evacuees. All simulations were conducted

with N = 100 without the presence of any strongly opinionated individuals (i.e. I =

0). The distribution of final crowd polarization were obtained by running identical

experiments 2500 times. The top row in Fig. 4 shows the final distribution of crowd

polarization (p) with increasing δ and p0 = 0. The bottom row is for p0 = 0.5, to show235

the effect of starting with a relatively higher initial polarization. We can interpret that

with more interactions amongst the individuals, they end up coalescing completely at

either one of the exits (Fig. 4a). If the initial crowd polarization is non zero (p0 6= 0)

then the crowd coalesce more at the exit towards which they are initially biased (Fig.

4d). When the decay rate (δ) is increased, the number of successful interactions goes240

down and hence the distribution of crowd at the exit become less predictable. The

crowd does not get enough chances to successfully interact and coalesce to a unified

decision before they reach the exits (Fig. 4c). The initial crowd bias helps to tilt the

final distribution towards the respective exit nevertheless. The entire crowd ending up

in one of the two exits is generally undesirable unless the state of emergency renders245

one of the exits unusable.

Figure 5(c) shows the plot of final polarization factor characteristics (mean and

entropy) with different strength of interactions. The mean of final polarization factor (in

the absence of leaders) depends only on the initial polarization (p0), but independent of

the amount of interactions among nodes. This reinforces the previous argument that the250

initial crowd bias helps to tilt the final distribution towards the corresponding exit. The

entropy is low for lower δ. This conveys that with more interaction the final distribution

become more ordered. The entropy goes up with higher δ since the distribution become

less predictable. With more initial crowd bias the entropy goes down as the p0 6= 0

creates a more ordered initial crowd opinion leading to a relative more ordered final255

crowd opinion. Figures 5(a) and 5(b) show the plots of mean location of the groups

moving respectively towards right and left. With lesser interaction the crowd moves
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quickly towards their respective exit. This is expected since with more interactions

among the individuals there is more possibility for them to switch their exit choice

midway and thus end up increasing the average number of steps required to reach their260

desired exit. With a initial biased population towards the right exit (p0 > 0), the average

number of steps required by the crowd moving towards the right exit decreases and the

average number of steps required by the crowd moving towards left exit increases.

Since the initial bias of the crowd reinforces the right opinionated group and conflicts

with the left opinionated group, the movement towards the exit in the right side is265

bolstered and the movement in the opposite direction is impeded. The next sub-section
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Figure 5: (a) Movement dynamics for nodes moving towards right exit, (b) Movement dynamics for nodes

moving towards left exit and (c) Final polarization factor characteristics with different decay rates and initial

polarization factors (p0 = 0 and p0 = 0.5). For all graphs NR +NL = 100 and I = 0.
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delves into the dynamics of the crowd in the presence of strong opinion holders (I > 0).

3.2. Movement in the presence of leaders (I > 0)

3.2.1. Constant u - Variable I

The next set of experiments were conducted to study the effect of global influence270

ratio (ζ) during egress. The influencer ratio, i.e u = (IR − IL)/I = −1/11 is kept

constant; initial polarization is maintained at p0 = 0. As in previous section, N = 100.

Figure 6 shows the distribution of the final polarization of the undecided crowd when

varying number of influencing nodes are embedded in the crowd. The distribution

was obtained through running the experiment under the same conditions 2500 times.275

The graphs point out two significant characteristics. With greater magnitude of I , the

distribution of polarization factor becomes sharper and shifts towards the side with

more number of influencers, in this case towards the left since IL > IR. With an
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Figure 6: Effect of global influence ratio (ζ) with initial polarization p0 = 0, u = −1

11
, δ = 10 and

NR +NL = 100
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increasing global influence ratio, ζ, their reach expands and thus they are able to impact

the final outcome with more certainty.280

Figure 7(c) displays the mean and entropy of the equilibrium p distribution with

varying ζ. The mean shifts towards the side with higher number of influencers and

the entropy decreases as the distribution becomes sharper. With more influencers in

the crowd, the probability of successful interaction increases since the influencers are

not restricted by the distance rule and thus brings down the entropy, i.e. uncertainty285

in the outcome. The movement dynamics of the crowd is depicted in Figs. 7(a) and
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Figure 7: (a) Movement dynamics for nodes moving towards right exit, (b) Movement dynamics for nodes

moving towards left exit and (c) Final crowd polarization characteristics for different ζ. For all graphs

u = −1

11
, p0 = 0, δ = 10 and NR +NL = 100.
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7(b). Since the crowd is attracted to move towards the left exit by a larger number of

strongly opinionated individuals, the movement towards the left is quicker compared

to the movement towards the opposite side. But, there is a detrimental effect with

increasing number of leaders. The average number of steps required by the crowd to290

reach an exit goes up and this is the effect of a larger number of successful interactions

which implies that individuals are more likely to remain indecisive and thus they end

up in the corridor for longer period. The next set of experiments were modeled to study

the effect of influencer ratio u on the crowd dynamics.

3.2.2. Constant I - Variable u295
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Figure 8: Effect of different influencer ratio (u) with initial polarization p0 = 0, I = 10, δ = 10 and

NR +NL = 100

The distribution of the crowd polarization at the exit with N = 100, initial condi-

tion p0 = 0, δ = 10 and I = 10 with different u is illustrated in Fig. 8. As in previous

sections, the distribution was obtained by running the simulation 2500 times under

same initial conditions. The more skewed the influencer ratio, the higher the probabil-

ity that the crowd moves en masse towards that particular exit. Even, the presence of300
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strongly opinionated individuals evenly attracting towards both exit, (i.e. u = 0) has a

desirable effect on the crowd dynamics. The distribution is more condensed than in the

case with no influence at all (I = 0).

Figure 9(c) presents the mean and entropy of the final polarization factor for differ-

ent u. The mean has monotonic but non-linear correlation with the influencer ratio (u).305

The entropy falls as abs(u) increases, since the distributional uncertainty is reduced the

more skewed the influence on the population. The influencers ensure that the crowd

coalesce more predictably with u 6= 0. Figure 9(a) depicts the movement dynamics of

the crowd moving toward the exit on the right side for u > 0. With increasing u from
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Figure 9: (a) Movement dynamics for nodes moving towards right exit, (b) Movement dynamics for nodes

moving towards left exit and (c) Final crowd polarization characteristics for different u. Here, p0 = 0,

I = 10, δ = 10 and NR +NL = 100.
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0 to 1 the movement towards the right side exit becomes quicker since the influencers310

attract the crowd towards the right side exit more strongly. Figure 9(b) portrays the

movement of crowd which movers towards the exit on the left side of the corridor for

u < 0. With decreasing u from 0 to −1, the average number of steps required by the

crowd to egress through the left side exit goes down. The influencers are able to shep-

herd the crowd more effectively towards the left side exit with decreasing u. Thus it315

can be concluded that with lesser total number of strong opinion holder (I) and u 6= 0,

the crowd can be split into any ratio for optimally utilizing the exits and thus achieve

quicker evacuation of the crowd from the hazardous situation.

3.2.3. Constant u and I - Variable p0 and δ

The last set of experiments were conducted to study the effect of different initial320

bias (p0) and decay rate of communication (δ) with constant numbers of strongly opin-

ionated individuals (IL = 5 and IR = 2) amongst the crowd (N = 100). Figure 10(a)

brings out the characteristics of final crowd polarization factor with different initial

crowd polarization (p0) and decay rates (δ). With a small number of strong opinion

holders, the mean of the final polarization factor is only slightly affected by the initial325

crowd bias for different strength of interaction and different initial crowd polarization.

This leads to the conclusion that with a relatively few strong opinion holders the crowd

can be directed such that they end up utilizing the exits optimally.

Figure 10(b) shows the effect of strength of interaction on the final polarization

factor characteristics. With lesser interactions, the effect of strong opinion holders on330

the mean diminishes slightly. This is because individuals other than the influencers

have lesser probability of successful interactions and thus the secondary passing of

influencers’ opinions is restricted with increasing δ. From an information content point

of view, the entropy decreases when the initial crowd bias (p0) favors the influencer

ratio (p0 < 0 and u < 0 or p0 > 0 and u > 0). Since the initial crowd polarization and335

influencer ratios reinforce one another the uncertainty and consequently the entropy

goes down. When the initial crowd polarization opposes the influencer ratio (p0 < 0

and u > 0 or p0 > 0 and u < 0), the entropy increases. The entropy increases with

increasing δ. With lesser probability of successful interaction, the effect of influencer
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Figure 10: Final crowd polarization characteristics (a) For different p0 and (b) For different δ.

NR +NL = 100.

propagate more slowly and hence the increase in entropy with increasing δ.340

4. Conclusion

This work is unique in the sense it combines a motion model with a explicit opinion

sharing model to study the effects of opinion sharing on crowd evacuation from a long

corridor with exits at each end. People with leadership skills and strong bias towards a

particular exit play a pivotal role in determining how the crowd is dynamically attracted345

towards each of the exits. The effect of leaders on the dynamics of the hybrid model is

studied in detail.

In contrast to existing models, which usually focuses more on developing realistic

motion models, this work tries to combine the effect of opinion sharing and movement

among egressing individuals and also discusses interesting effects of strongly opin-350

ionated leaders in shaping the crowd movement dynamics. Also, different strengths

of interaction were tested and an analytical solution for a interaction zone restricted

interaction were presented.
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