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Grasping Unknown Objects Based on Gripper Workspace Spheres

Mohamed Sorour, Khaled Elgeneidy, Aravinda Srinivasan, Marc Hanheide, and Gerhard Neumann

Abstract— In this paper, we present a novel grasp planning
algorithm for unknown objects given a registered point cloud
of the target from different views. The proposed methodology
requires no prior knowledge of the object, nor offline learning.
In our approach, the gripper kinematic model is used to
generate a point cloud of each finger workspace, which is then
filled with spheres. At run-time, first the object is segmented,
its major axis is computed, in a plane perpendicular to which,
the main grasping action is constrained. The object is then
uniformly sampled and scanned for various gripper poses that
assure at least one object point is located in the workspace of
each finger. In addition, collision checks with the object or the
table are performed using computationally inexpensive gripper
shape approximation. Our methodology is both time efficient
(consumes less than 1.5 seconds in average) and versatile.
Successful experiments have been conducted on a simple jaw
gripper (Franka Panda gripper) as well as a complex, high
Degree of Freedom (DoF) hand (Allegro hand).

Index Terms— grasping, manipulation.

I. INTRODUCTION

Object grasping problem is usually approached based on

physical analysis (classical approach) [1]–[4], geometry [5]–

[8], or machine learning (ML) [9]–[11]. The first requires

sufficient knowledge about the object (shape, mass, mate-

rial, ... etc.) and as such inconvenient for unknown object

grasping. Whereas the last has gained huge momentum in

the past decade thanks to its ability to model very com-

plex systems and the advances in hardware computational

power. However, ML approaches requires extensive offline

processing and sufficiently large training data sets, and at

the moment, generalization to unknown objects, versatility to

different gripper structures as well as algorithm processing

time [12] remains a challenge. On the other hand geometry

based approaches generally offers less computation time,

with no sacrifice on generality or success rates, under which

this work is categorized.

In [13], a set of contact points that fulfill certain geometric

conditions are computed for unknown objects in point cloud,

these are ranked to find the most stable grasp. Their algo-

rithm computes grasping points in lower than 1 second du-

ration, however is limited to 2 fingered grippers, and no data

regarding grasping success rate is presented. Grasp planning

of unknown objects from point cloud data is presented in [5],

using geometric information to categorize objects into shape

primitives, with predefined strategies for each. Success rate

of 82% is achieved, however no computation time data was

reported. This approach is similar to the pioneering work

in [6], [14] with the later employing machine learning in

grasp selection. In [15], similar approach is employed, more

suitable for generalization, however, only simulations are
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provided with no computation time data. In [7], object shape

reconstruction is performed online from successive image

data, their method is general for different kinds of multi-

fingered hands, however execution time is reported as being

significant. While in [16], fast shape reconstruction algorithm

is presented as means of improving grasping algorithms.

Another geometric approach is used to synthesize force

balanced grasps in [17], the algorithm is described fast, with

execution time below 4 seconds [12], [18], however no exact

data is given, as well as being tailored for 2 fingered grippers.

In [8], the smallest computation time can be found (34ms),

where a grasp planner is designed to fit only a jaw gripper by

searching for two parallel line segments in the object image.

However their method doesn’t take into account the 3D shape

of object and thus is only suitable for simple regular objects

with parallel surfaces. They reported grasp planning is done

using only one image, which raises questions about how the

object location is computed? In [19], the authors presented

a grasp planner using single depth image of a non-occluded

object. Their work, however, is limited to 2 fingered grippers

and the computation time varies highly up to 8 seconds. In

[20], geometry based planner is implemented, execution time

ranges within 2~3 seconds, however, is limited to parallel

plate grippers.

Recently, the authors in [21] proposed a grasp planner

based on similarity metric of local surface features between

object and gripper’s finger surfaces. Experiments on heap of

objects were successfully conducted, however execution time

is above 13 seconds using a 2 fingered gripper. The execution

time is expected to multiply in case of employing multi-

fingered hands which limits its use in real-time applications.

Similar approach is presented in [22], with rather more

freedom to modify gripper shape to match that of the object.

However, computation time was not reported.

In this work, we introduce a novel algorithm for grasp

planning, the input of which is a point cloud of an unknown

object, while the output is the gripper pre-grasp pose in the

form of homogeneous transformation matrix. In an offline

step, a point cloud of the gripper workspace is generated

using its kinematic model, then filled with spheres. At run-

time, we register 3 point clouds of the scene taken from

different angles to have better representation of the object,

whose pose is computed, and its bounding box is sampled.

These sampling points will be used for scanning the object

using the gripper workspace spheres, by transforming the

gripper workspace centroid to these points and iterating

through several gripper orientations around the object ma-

jor axis (along which, the object longest side exists). The

objective is to find the best gripper pose, at which at least

one object point is located inside each workspace finger as

fast as possible, and hence comes the workspace spheres as a

computationally affordable means of checking object points
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Fig. 1: Gripper model offline processing, featuring the Franka-Emika panda gripper (upper) and the Allegro right hand (lower), each fitted
with realsense D435 depth camera. Respectively from left to right: the real hardware, the CAD model, is then converted to a point cloud,
which is then down sampled. Afterwards, the gripper workspace is sampled and filled with a predefined number of spheres. Lastly the
gripper shape is approximated by a set of special ellipsoids.

being in or out the gripper’s finger workspace.
In contrast to object shape approximating methods, here

we use gripper approximation using few special ellipsoids

(SE) as well as table plane approximation to simplify

collision detection between grasp pose candidates and ob-

ject/table. The contribution of our approach is twofold:

• Versatility: it can be applied to different gripper struc-

tures, we perform experiments featuring Franka Panda

gripper (2 fingered) and Allegro right hand (4 fingered

with 16 DoF).

• Computationally inexpensive: the algorithm can per-

form grasp planning in less than 0.7, 1.8 seconds for

the parallel jaw and 4 fingered grippers respectively.

The paper is organised as follows, section II introduces

the gripper model offline processing. The object major axis

computation and sampling is briefed in section III. The

grasping algorithm is detailed in section IV. Experiments

and results are reported in section V. Conclusions are finally

given in section VI.

II. THE GRIPPER

In this section, we present the gripper model processing

step of the grasping algorithm. This step is done once

and offline, so its associated processing time does not add

computation cost for the real-time execution. In the sequel we

use extensively the notion of special ellipsoid for different

purposes, this is a variation of the ellipsoid equation given

by:

(x− x0)
l

al
+

(y − y0)
l

bl
+

(z − z0)
2

c2
= 1, (1)

where a, b, c are the principal semi axes of the ellipsoid,

and x0, y0, z0 denote the offset from origin. As the power

l increases, better cuboid approximation is obtained, as

depicted in Fig. 2. A compact form of the left hand side

in (1) will be referred to in the sequel for convenience by:

EvalSE(Eo, Ep, C, l), (2)

where Eo, Ep, C denote the special ellipsoid offset and semi-

principal vectors, and the cloud point(s) whose belonging

to the SE parameterized by Eo, Ep is to be evaluated

respectively.

A summary of the gripper processing operations is shown

in Fig. 1, where the gripper computer aided design in (CAD)

model Fig. 1(b) is converted to a point cloud in Fig. 1(c),

which is then downsampled in Fig. 1(d), these steps are

shown for the Franka-Emika panda gripper [23] (upper)

and the Allegro right hand [24] (lower). To this end, let
gCg ∈ R

ng×3 denote the downsampled gripper point cloud

expressed in the gripper frame (Fig. 1(d)), where ng is the

number of cloud points.

Next, the direct geometric model (DGM) of the gripper

is formulated, this relates the gripper finger tip pose to the

joint space configuration. The DGM is simple in the case of

parallel jaw gripper (identity matrix). However, it is complex

for the allegro hand, for which we have 4 DGMs, one per

finger. By sampling the joint space (each joint range is

divided into equally spaced values) of each finger, we use the

DGM to get the corresponding sampled operation space of

each finger tip. The sampled operation space of each finger

is then filled up with spheres, this is done by selecting a

number of points inside the sampled operation space and use

these as offsets for the set of spheres. The largest possible

radius of sphere at each of these offsets is used such that

each of the spheres remain entirely inside the workspace

Fig. 2: Cuboid shape approximation using special ellipsoid in (1),
with l = 2, 4, 10, 30 respectively from left to right.



of the corresponding finger. Gripper workspace spheres are

shown in Fig. 1(e) (upper), for the Franka panda right and

left fingers in red and green, and in Fig. 1(e) (lower) for

the Allegro hand’s thumb, index, middle, and pinky fingers

in red, green, blue, and grey respectively. Let the set of

gripper’s finger workspace spheres gSf = {gSf
o ,

gSf
r } be

defined by the set of sphere offsets gSf
o ∈ R

nsp×3 and the set

of sphere radii gSf
r ∈ R

nsp×1, expressed in the gripper frame

with f ∈ {1 . . . nf} denoting the gripper finger index, and

nsp, nf ≥ 2, the number of spheres and fingers respectively.

Analogous to (2), a compact form for the left hand side of

the sphere formula evaluation can be given by:

EvalSphere(So,Sr, C), (3)

where So, Sr, C denote the sphere offset vector and radius,

and the cloud point(s) whose belonging to the sphere param-

eterized by So, Sr is to be evaluated respectively.

Finally the gripper shape is approximated by a set of

special ellipsoids (1) as shown in Fig. 1(f). These provide

a computationally efficient means to check if a particular

gripper pose collides with the object or not, simply by

evaluating (1) for each object cloud point, for the set of

gripper special ellipsoids defined by the set of offsets gEgo ∈
R

ne×3 and the set of semi principal axes gEgp ∈ R
ne×3,

expressed in the gripper frame, with ne denoting the number

of gripper special ellipsoids.

III. THE OBJECT

The scene observed by the depth camera is assumed to

contain only one object, as shown in Fig. 3(a). A good point

cloud representation of which is acquired via 3 view points,

the relative transformation of which are accurately measured

(since they are performed by moving the end effector of

the Franka panda arm), and as such a single scene point

cloud is reconstructed, as in Fig. 3(b). The point cloud is

then downsampled in Fig. 3(c) to save computation time in

further required processing.

The object is assumed to be placed on top of a planar

surface (table), which is first segmented by finding all points

that fit a plane model using random sample consensus

(RANSAC) as a robust estimator. The object is then seg-

mented using semantic 3D object models [25] implemented

in point cloud library (PCL) [26].

A. Object Pose Computation and Sampling

In concept this work assumes a set of semantic rules,

human inspired for successful grasping. The first is that an

object should be approached in an orientation perpendicular

to its major axis (the axis lies along the longest object

dimension). As such we need to compute the object homo-

geneous transformation matrix with respect to the gripper

frame, here we developed a simple algorithm to do that at

a low computational cost. In addition to approximating the

object’s bounding box general dimensions which will be used

in object sampling.

To do this we first compute the object’s centroid point

from the downsampled object cloud, search for the 2 farthest

opposite points of the object, using these we divide the

cloud into 2 point clouds based on their distance to the

aforementioned far points. By computing the centroids of

(a) (b)

(c) (d)

(e) (f)

Fig. 3: Object point cloud processing, featuring the storage bin as
the object in (a). Registered and segmented multi-view point cloud
in (b) is then downsampled (c) and object/table coordinate frames
(transformation matrices) are computed (d). The object’s bounding
box is sampled in (e), and the table special ellipsoid is constructed
in (f).

these 2 point clouds we construct the z-axis, along which

is the longest object dimension. Then the obtained z-axis

vector is projected onto the xy plane alongside the object’s

point cloud. The z-axis line divides the point cloud into 2

sets, the centroid of each is again computed, then used to

obtain an orthogonal axis to the z-axis, which we arbitrarily

designate it as the x-axis. The y-axis is then obtained by cross

multiplication of the x and z axes to form the orthogonal

object frame located at the object centroid. By projecting the

normalized object frame onto that of the gripper we obtain

the object transformation matrix expressed in gripper frame
gTo. Using this method, the obtained coordinate frames for

the object and the table are shown in Fig. 3(d), with the larger

frame being that of the object. To this end, we define cCo ∈
R

no×3 as the downsampled object point cloud expressed in

the camera frame shown in Fig. 3(c), where no is the number

of object cloud points. The camera frame is related to the

arm’s end effector frame by a static transformation matrix
eTc, acquired during camera calibration.

Furthermore, we use the object’s general dimensions

obtained to sample the bounding box along the object’s

coordinate axes, as depicted by blue dots in Fig. 3(e), let
oCs ∈ R

ns×3 denote the point cloud of the sampled object

bounding box, with ns the number of sample points. These

sample points will be used in scanning the object cloud for

points that belong to the gripper workspace spheres (refer to

Fig. 1) for a given gripper pose with respect to the object.

B. Table Special Ellipsoid

The table coordinate frame and transformation matrix gTt

are used to construct the table special ellipsoid, colored

orange in Fig. 3(f). This provides a computationally efficient

means to detect gripper collision with table for a given

gripper pose, by evaluating the table SE at each point of



the downsampled gripper cloud expressed in the table frame
tCg = gT−1

t
gCg . It is defined by the 3D offset point tEto ∈

R
1×3 and the vector of semi principal axes tEtp ∈ R

1×3,

expressed in the table frame.

IV. GRASPING ALGORITHM

The output of the grasping algorithm provided in Algo-

rithm 1 is the desired end effector transformation matrix

expressed in its frame eTe∗ , which should be implemented

by the robot arm to position the gripper in a good pose for a

successful grasp. The input to the grasping algorithm is the

set of point clouds, gripper workspace spheres and special

ellipsoids parameterisation detailed in previous sections. We

assume that the object is within the arm’s workspace, and as

such the output gripper pose can be realized using the arm.

Algorithm 1 Grasping pose algorithm

Input: downsampled object point cloud cCo,

sampled ”object bounding box” point cloud oCs,

downsampled gripper point cloud gCg ,

gripper workspace spheres gSf
o , gSf

r ,

gripper special ellipsoids gEgo, gEgp,

table special ellipsoid tEto, tEtp
Output: desired effector transformation eTe∗

1:
gS

f(∗)
i,j = ∅, gC

i,j(∗)

o = ∅, d∗ = ∞
2:

eTgc =
eTg

gToRot(x, π/2)
3: for each point ocis in oCs do

4:
eTi

gc = Trans(ocis)
eTgc

5: for each orientation angle θj in nos do

6:
eTi,j

gc = eTi
gcRot(y, θj)

7:
eTi,j

e = eTi,j
gc

gT−1
gc

eT−1
g

8:
eCi,j

g = eTi,j
e

eTg
gCg

9: if (EvalSE(tEto,
tEtp,

eT−1
t

eCi,j
g , 10) < 1) then

10: break

11: end if

12: if (EvalSE(gEgo,
gEgp,

gTi,j
c

cCo, 10) < 1) then

13: break

14: end if

15: di,j = DistanceEU(gF i,j
gc − gF i,j

o )

16:
gSf

i,j = ∅, gC
i,j

o = ∅
17: for each finger f in nf do

18: for each workspace sphere gsf in gSf do

19: if EvalSphere(gsfo ,
gsfr ,

gCi,j
o ) < 1 then

20:
gSf

i,j =
gSf

i,j +
gsf , gC

i,j

o = gC
i,j

o + gci,jo
21: end if

22: end for

23: end for

24: if gS1
i,j 6= ∅ and . . . and gS

nf

i,j 6= ∅ then

25: if di,j < d∗ then

26:
gS

f(∗)
i,j = gSf

i,j , gC
i,j(∗)

o = gC
i,j

o , eTe∗ = eTi,j
e

27: end if

28: end if

29: end for

30: end for

31: return eTe∗

A. Gripper Pose Candidates

First, the origin of the gripper workspace centroid (GWC)

frame Fgc is initialized with a gripper orientation perpen-

dicular to the major axis of the object (represented by
eTo). This is done in the GWC frame for convenience,

and the axis of rotation is gripper frame dependant, the

rotation axes supplied in algorithm 1 corresponds to the

Allegro right hand. Then for each point ocs in the object

bounding box sampling cloud oCs, we first translate the

GWC origin to the sample point ocis with i ∈ {1 . . . ns},

where Trans() operation in Algorithm 1 denotes a 3D
translation. This is done in the pre-rotated GWC frame,

hence the pre-multiplication. Afterwards, we iterate through

sampled orientation angle values θj = θinit + j ∗ θr/nos

about the object’s major axis, with θinit, θr, nos, j ∈
{1 . . . nos} denoting the initial orientation angle, the angle

range, number of orientation samples, and index respectively.

Now that we have got the first orientation iteration at the first

object sampled point, we transform it back to the effector

frame to obtain the transformation candidate eTi,j
e , applying

which to the gripper point cloud, we obtain the first gripper

pose candidate eCi,j
g . Different gripper pose candidates are

shown in Fig. 4 (a),(b),(c) for the Allegro right hand, and

in Fig. 4 (d),(e),(f) for the Franka panda gripper. These

poses correspond to the same object sampling point (per

gripper), depicted by blue dot on the object (visible in Fig.

4 (a),(b),(d),(e) only), for different orientation samples.

B. Candidate Evaluation

Firstly, the gripper pose candidate is evaluated against

collision with the table, this is done by transforming the

candidate into the table frame: tCi,j
g = eT−1

t
eCi,j

g and

substituting by each point of the obtained cloud in the

table special ellipsoid (parameterized by tEto,
tEtp) using

(2). If (2) returns a value < 1 at any point of the gripper

candidate cloud, this means collision with table is detected

and this iteration terminates. Fig. 4 (a) and (d) depict gripper

poses that collide with the table for Allego hand and Franka

gripper respectively. Similarly the pose candidate is evaluated

against collision with the object, this time by transforming

the object cCo into the gripper candidate frame using the

transform (eTi,j
e

eTg)
−1eTc in which the gripper ”shape

approximating” special ellipsoids are defined. Again, when

using (2) returns a value < 1 at any point of the object

”candidate” cloud, a collision with object is detected and the

iteration terminates. Note that for object collision evaluation,

we compute (2) iteratively for each element in the set of

gripper SEs whose dimension is ne. However, we chose

not to include it in a separate for loop in Algorithm 1 to

lighten the notation. Fig. 4 (b) and (e) depict gripper pose

candidates that collide with the object for Allego hand and

Franka gripper respectively.

If the gripper pose candidate does not collide with either

the table or the object, we first compute the Euclidean

distance di,j for the current pose candidate between the

GWC gF i,j
gc and the object gF i,j

o frames origin. Then we

evaluate the transformed object point cloud gCi,j
o against each

finger’s set of workspace spheres gSf using (3), to construct

a new subset gSf
i,j ⊂ gSf of workspace spheres per finger



(a) (b) (c)

(d) (e) (f)

Fig. 4: Gripper pose candidates, with gripper point cloud and special ellipsoids in cyan and black respectively. Object point cloud in
magenta, table special ellipsoid in orange. Finger workspace points in red (Allegro’s thumb and Franka’s right finger), green (Allegro’s
index and Franka’s left finger), blue (Allegro’s middle), and grey (Allegro’s pinky).

that has at least one object cloud point inside as well as

registering these object points in gC
i,j

o ⊂ gCi,j
o . In the final

step, each newly constructed workspace spheres set gSf
i,j

is checked not to be empty. In other words, this means that

each gripper finger at the current pose candidate has a contact

solution on the object. The algorithm then evaluates the best

gripper pose based on its closeness to the object centroid

by comparing di,j and d∗, the latter being the Euclidean

distance of the best gripper pose initialized to a large value

at the beginning of the algorithm. Similarly, gS
f(∗)
i,j , and

gC
i,j(∗)

o denote the best gripper workspace sphere sets and

the corresponding object cloud points, initialized to null sets

∅ at the algorithm start. Using this approach, the best gripper

pose together with the workspace spheres subsets are shown

in Fig. 4 (c), and (f) for the Allegro right hand, and the

Franka gripper respectively.

V. EXPERIMENTS

In this section, the experimental results of the proposed

grasping algorithm are presented, using the parameters pro-

vided in Table I. Two sets of experiments have been per-

formed, one per gripper type. Each gripper was mounted

to the Franka Emika arm (7 DoF), controlled in real-time

with Franka control interface. The communication between

the robot controller, the realsense camera, and the grippers

is done through ROS. Motion planning is achieved using

MoveIt! [27] based on the pose targets generated by our

algorithm. The algorithm is written in C++, running on

standard labtop with 8th generation core i7 processor with

no GPU.

TABLE I: Grasping algorithm parameters

Parameter Allegro Hand Franka Gripper

ne (special ellipsoids) 5 5

ns (samples) 147 147

nf (fingers) 4 2

nsp (workspace spheres) 77 10

ng (points) 870 499

no (points) 300 ∼ 800 300 ∼ 800

nos (orientation samples) 4 4

A. Insights

Experiments feature 13 objects which were grasped with

both the Allegro right hand, and the Franka 2 finger gripper,

the objects we selected such that they are within the grasping

volume dimensions of each gripper while maintaining a

size/shape/texture variation. In sequence, the point cloud of

the object is constructed from 3 view points using the Intel

RealSense-D435 depth camera [28], the grasping algorithm

computes a grasping pose based on the generated point cloud,

the arm then moves to this pose, at which point the gripper

performs the grasping action. The grasping action used in

both grippers is a simple position control to a closed fingers

configuration. Finally, the arm moves upward for 20 cm. An

object is deemed grasped if it remains in static condition

inside the gripper for more than 10 seconds. A sample of

the grasped objects is shown in Fig. 5 by the Allegro right

hand (upper) and the Franka gripper (lower), whereas Table

II provides both the execution time (ET) and the success rate

(SR) of each experiment.

The execution time reported in Table II is measured only

for the algorithm computation time in addition to point cloud

registration and segmentation, since the point cloud acquiring

process from several poses can be achieved more efficiently

from multiple cameras mounted on the robot cell frame,

TABLE II: Grasping metrics per gripper for different objects

Allegro Hand Franka Gripper
Object ET SR ER SR

Storage bin 1.77s 80% 0.39s 100%

Mug 1.07s 90% 0.23s 80%

Thermos 1.61s 40% 0.33s 0%

Realsense box 1.39s 100% 0.41s 90%

Cookies package 1.24s 80% 0.62s 40%

Plant pot 1.43s 100% 0.36s 80%

Plastic cup 0.31s 40% 0.31s 0%

Tooth paste 1.64s 60% 0.24s 100%

Toilet paper roll 1.09s 100% 0.26s 100%

Doll 1.18s 40% 0.37s 40%

Dish brush 0.99s 20% 0.29s 80%

Banana 1.53s 20% 0.27s 100%

Sprayer 0.58s 80% 0.25s 40%

Average 1.22s 65% 0.34s 65%



Fig. 5: Grasping several objects by both grippers, the Allegro right hand (upper) and the Franka panda gripper (lower). Objects from left
to right: storage bin, tooth paste, toilet paper roll, realsense box, plant pot, mug, soft doll, and dish brush respectively.

a couple of Kinect2 depth sensors in opposite side facing

configuration will be used in the future. Hence, we get a

point cloud well representing the object in few milliseconds.

Each object is grasped by each gripper for a total of 10 trials,

out of which the success rate percentage is computed.

B. Discussion and Future Work

In Table II, despite the relatively low average success rate

per gripper, we can see that some objects can be grasped with

high success rate, emphasizing the fact that some grippers are

more suitable for grasping certain objects, mainly due to size

constraints in the case of Allegro hand. Where the objects

”banana”, ”Dish brush”, have too low height to be grasped

without hitting the table. The same applies to the Franka

gripper, as the objects ”Thermos”, ”Cookies package” were

too big for the maximum grasping range to accommodate

for, given the usual depth position error. On the other hand,

the algorithm computation time is highly efficient with an

average of 0.34, 1.22 seconds for the Franka gripper and

Allegro hand respectively. The latter is due to the large

number of workspace spheres per finger (77 in Table I) when

compared to 10 spheres for 2 fingers in parallel jaw grippers.

This can be reduced by optimizing the generated spheres

filling up the finger workspace for multi-DoF hands, which

is expected to have high impact on the computation time.

In order to enhance the success rate, the authors propose

exploring more gripper orientations in case of the parallel jaw

grippers and to add an optimization step to select grasping

points for high DoF hands. The former points motivates our

future work in addition to applying the algorithm on other

gripper types. The authors are also planning to apply the

algorithm on standard benchmark objects for comparison

purposes.

VI. CONCLUSION

In this work a novel grasping algorithm based on finger

workspace spheres has been introduced. It is versatile and can

be applied to any type of gripper, here applied to a complex

hand with 16 DoF as well as a simple jaw gripper with 2 DoF.

The average computation time is very low ranging from 0.3

to 1.7 seconds depending on the complexity of the gripper.

Successful experiments have been conducted to validate the

proposed approach.
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