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Abstract 
While a number of studies have investigated driving behaviors, detailed microscopic driving data 

has only recently become available for analysis. Through Basic Safety Message (BSM) data from 

the Michigan Safety Pilot Program, this study applies a Markov Decision Process (MDP) 

framework to understand driving behavior in terms of acceleration, deceleration and  maintaining 

speed decisions. Personally Revealed Choices (PRC) that maximize the expected sum of rewards 

for individual drivers are obtained by analyzing detailed data from 120 trips and the application of 

MDP. Specifically, this paper defines states based on the number of objects around the host vehicle 

and the distance to the front object. Given the states, individual drivers’ reward functions are 

estimated using the multinomial logit model and used in the MDP framework. Optimal policies 

(i.e. PRC) are obtained through a value iteration algorithm. The results show that as the number of 

objects increases around a host vehicle, the driver prefer to accelerate in order to escape the 

crowdedness around them. In addition, when trips are segmented based on the level of 

crowdedness, increased levels of trip crowdedness results in a fewer number of drivers accelerating 

because the traffic conditions constrain them to maintaining constant speed or deceleration. One 

potential application of this study is to generate short-term predictive driver decision information 

through historical driving performance, which can be used to warn a host vehicle driver when the 

person substantially deviates from their own historical PRC. This information could also be 

disseminated to surrounding vehicles as well, enabling them to foresee the states and actions of 

other drivers and potentially avoid collisions. 

 

Keywords: Driving Behavior, Markov Decision Processes, Basic Safety Messages, Multinomial 
Logit Model, Instrumented Vehicle Data, Automation 
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1. Introduction 

The availability of detailed driving performance data provides new opportunities to investigate 
different aspects of driving behavior. Some of these aspects are exhibited through vehicle motion 
(e.g., speed, acceleration). In this paper, driving behavior is defined as instantaneous driving 
decisions in terms of acceleration, deceleration and maintaining constant speed, which vary based 
on contexts. Detailed models are available for the dynamics of vehicle components (Guzzella and 
Sciarretta, 2007, Kiencke and Nielsen, 2005). In some models, the driver is a feedback controller 
that seeks to achieve a particular control goal, such as tracking a reference (Burnham et al., 1974, 
Prokop, 2001). In other cases, the driver is represented by an autonomous system, often driven by 
a random process. For instance, (Macadam, 2003) proposes a model with linear and non-linear 
elements that include actuator saturation, slew-rate, and time delay, (Liu and Pentland, 1997) 
suggests a hidden Markov model, and (Cooper, 1991) proposes non-linear Autoregressive–
moving-average (ARMAX) models. (Kiencke et al., 1999) introduces a hybrid driver model which 
consists of discrete modes and continuous control functions. 

Driving behavior models (Toledo et al., 2007) generally describe vehicle movements in 
different traffic conditions. These prediction methods include speed, acceleration and lane 
changing models and are critical in microscopic traffic simulators. Other application areas where 
aggregate traffic flow characteristics are extracted from individual driving behavior, such as safety 
and capacity analysis, could also benefit from such models. 

Early driving behavior models focused on car-following theory. These models explain the 
behavior of a following vehicle assuming it reacts to the lead vehicle’s actions (Brackstone and 
McDonald, 1999, Rothery, 1992). Recently, the increased use of microscopic traffic simulation 
models has stimulated the development of general acceleration models and lane changing behavior 
studies. General acceleration models (Gipps, 1981, Yang and Koutsopoulos, 1996) define multiple 
driving regimes (e.g., free-flow, emergency) while considering different behaviors in each regime 
at various car-following types (e.g., reactive and non-reactive). For instance, drivers in the free-
flow acceleration regime may focus on attaining their desired speed. In lane changing models, 
(Gipps, 1986, Salvucci et al., 2001)  there are typically two components: considering and executing 
the lane change maneuver (Karan and Chakraborty, 2016, Mohammadi et al., 2019). More recently, 
car following models driven by trajectory data that incorporate other contributing factors (e.g., 
distraction, reaction time) and address driver heterogeneity, have been developed (Li et al., 2016, 
Ossen and Hoogendoorn, 2005, Ossen and Hoogendoorn, 2011, Farah and Koutsopoulos, 2014, 
Hoogendoorn et al., 2013, Toledo et al., 2007, Koutsopoulos and Farah, 2012, Papathanasopoulou 
and Antoniou, 2015, Hoogendoorn et al., 2011, Ossen et al., 2006, Choudhury et al., 2009). 

Finally, some studies have used Inverse Reinforcement Learning to recover driver reward 
functions and, consequently, driving styles. For instance, Shimosaka et al. (2015) tried to predict 
driving behavior by considering multiple reward functions and the maximum entropy method. 
Similarly, Kuderer et al. (2015), studied the possibility of learning a driver’s style and navigation 
behavior through demonstration. Another study analyzes a driver’s car following behavior using 
Continuous Inverse Optimal Control (Hayeri et al., 2016). More recently, researchers have used  
Deep Reinforcement Learning (Ye et al., 2019) and Mixed Observable Markov Decision Process 
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(MOMDP) (Sezer, 2018) to learn driving behavior and decisions from simulation data. 
This study benefits from the availability of BSM data, which allows the authors to explore 

driving behaviors from a different perspective. The aim is to extract drivers’ personally revealed 
choices (PRCs) from their acceleration/deceleration profiles. By treating instantaneous driving 
decisions as the realization of an optimal policy in an MDP framework, it is possible to define 
states over time in terms of objects surrounding a vehicle. The framework derives a driver’s value 
for different actions they take (i.e. acceleration, braking or maintaining speed), which are 
quantified in terms of accumulated discounted rewards. When the expected sum of the driver’s 
rewards is maximized, their personally revealed choices can be inferred, given different states. 
MDP is well suited for this study because of the Markov property of instantaneous driving 
decisions and the stochasticity of their outcomes. A stochastic process has the Markov property if 
the probability of future states depends only upon the present state, not on the sequence of events 
that led to it, i.e., past states. MDP is a reasonable approach for providing a framework for 
modeling decisions, which in this case are the decisions of a driver to accelerate, decelerate or 
maintain speed. MDP discretizes time in a way that is consistent with the near-instantaneous 
decisions that drivers make. MDP can also account for outcome randomness; it takes the complex 
driving environment problem and breaks it down to a state-action structure, making the problem 
tractable. The methods applied in this paper can potentially form a foundation for human driver 
personally revealed choice extraction using field-collected empirical data. In the near future, self-
driving cars will claim a substantial share of the roadways. For a more collaborative driving 
experience, these cars will need to coordinate and anticipate the action space and propensities of 
human drivers in their vicinity. Currently, most of the focus and resources are pooled towards 
developing the sensor-interpretation-planning-execution loop in connected and automated vehicles 
(CAVs), but an efficient way of modeling human drivers’ propensities in traffic will pave the way 
for a more ‘human-like’ driving style. Moreover, knowledge about individual driving behaviors 
can be used to generate alerts and warnings for the driver of a host vehicle and be passed on for 
the purpose of improving safety. 

From a methodological standpoint, the paper contributes by using high volume and diverse 
driving data to learn driving decisions. Specifically, reward and states are defined theoretically and 
real-life driving decisions are analyzed to explore their correlations with contextual factors i.e., 
proximity to surrounding objects. The study reveals the personal preferences of drivers in each 
state. Since states are defined based on the number of objects around the host vehicle and the 
distance to the front object, the MDP reveals PRCs based on the level of the crowdedness around 
the host vehicle by accounting for the Markov property of drivers’ decisions and the stochasticity 
of their outcomes. 

2. Methodology 

A dynamic traffic problem where state transitions can happen spontaneously due to the action of 
other vehicles and situations not under the control of the driver can potentially be at odds with the 
MDP assumption of stationary policy process. However, even with that amount of uncertainty, we 
as rational drivers still plan our trajectories and take actions according to our (often non-optimal) 
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plans/policies. We posit that human drivers base these decisions on a planning process that uses 
historically learnt “standard” state-transition probabilities and their relation to traffic density, etc. 
In fact, we go one step further and impose exceptions to these standard probabilities based on 
locally relevant information. In this paper, we capture how historically learnt information (through 
large volumes of aggregated data) can be used to come up with a plan/policy for multiple steps of 
driving. MDP is a suitable candidate for modeling such processes. In the application, the short-
term departures from non-stationarity are neglected in exchange for long term converged 
probability values. This study aims to understand short-term behavior, driver decisions of 
acceleration, deceleration, and maintaining constant speed are conceptualized using the Markov 
Decision Process (MDP) (Bellman, 1954). A specific structure needs to be imposed on the MDP 
framework that models driver behaviors in terms of different maneuvers, which is explained below.  

2.1. Markov Decision Processes 

The Markov Decision Process, according to (Bellman, 1954) is defined by a set of states (𝑠 𝜖 𝑆), a 
set of all possible actions (a ϵ A), a transition function (𝑇(𝑠, 𝑎, 𝑠′)), a reward function (𝑅(s)), and a 
discount factor (𝛾). To make the model mathematically tractable, the discount factor is restricted 
to 0 < 𝛾 < 1. In this study, the tuple {𝑆, 𝐴, 𝑇, 𝑅, 𝛾} represents an MDP. The agent (e.g. decision 
maker, driver, etc.) takes an action based on the current state and an intuitively determined policy. 
The outcome of this action is stochastic and is parameterized as the transition probability function. 
Having transitioned to a new state, the decision maker accumulates some reward associated with 
that state. The process of decision-making continues infinitely. Generally, the term “Markov” 
implies that the future and the past states are independent given the present state. Specifically, for 
an MDP, this means that the future outcomes depend only on the current state and performed 
action. A policy 𝜋(𝑠) is a prescription for the action to be taken, given a current state. The total 
expected discounted reward for the agent following the policy is defined as (Sutton and Barto, 
1998):  
 𝑉𝜋(𝑠) = 𝑅(𝑠) + 𝛾 ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)𝑠′ 𝑉𝜋(𝑠′)                              (1) 

 

This equation quantifies how valuable the state (s) is under the policy(𝜋(𝑠)). 
Likewise, the value or utility of a state-action pair (𝑄𝜋(𝑠, 𝑎)) is given by the following 

equation (Sutton and Barto, 1998):   
 𝑄𝜋(𝑠, 𝑎) = 𝑅(𝑠) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑠′ 𝑉𝜋(𝑠′)                               (2) 

 

Policy 𝜋(𝑠) is referred to as the optimal policy 𝜋∗(𝑠) (hereafter PRC), if it satisfies the 
Bellman’s optimality equation (Bellman, 1954) given by: 
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 𝜋∗(𝑠) = argmax𝑎 𝑄∗(𝑠, 𝑎)                                                                   (3)  
 A PRC can be defined as a policy that maximizes the expected cumulative reward an agent 
can achieve for the given MDP.  In other words, no other choice can provide a more expected 
cumulative reward for all defined state-action pairs of the given MDP.  Later, more details on how 
to solve the MDP problem and find the optimal policy are discussed.  

2.2. MDP and Reinforcement Learning Distinctions 

Before moving to MDP in driving contexts, it is useful to discuss the distinctions between MDP 
and reinforcement learning (RL). In an MDP framework, shown in Figure 1.A, given (not learned 
nor estimated) states, actions, rewards and transition probabilities are used to obtain the optimal 
policy under each state. In RL however, as shown in Figure 1.B, either reward or transition 
probabilities or both are unknown (actions and states are given). Therefore, the agent learns the 
reward and transition probability through acting and experiencing i.e. exploration. That said, a 
typical RL algorithm comprises of two steps. The first step is to learn the missing MDP model 
elements, which are the reward and/or the transition probabilities. Second, the algorithm must 
solve the learned MDP to obtain the optimal policy given the states. Figure 1.B depicts the 
framework of an RL where the learning comes from a combination of exploration and exploitation. 
Learning solely through exploration might not maximize the reward because the agent tries to 
obtain more information about the reward by trying out things with unknown rewards. On the other 
hand, pure exploitation (making the best actions given the state obtained from the previously 
solved MDP) might lead to being stuck with policies with small amounts of reward. Typically, 
trade-offs between exploration and exploitation are used in order to benefit from both. 
 Figure 1.C presents the approach used in this paper. Using instrumented vehicle data, all of 
the inputs for the MDP framework are estimated (learned) first and then used to find the optimal 
policy. This approach is between MDP and RL (in a pure MDP, the rewards and transition 
probabilities are often given or pre-determined by researchers); after learning the reward and 
transition probability from observed data (similar to RL), all inputs become available in order to 
obtain the optimal policy (which is similar to MDP). Since the process of estimating MDP 
parameters, such as the rewards and transition probabilities, are pre-estimated from observed data, 
RL “learning” methods such as epsilon-greedy Q learning are not addressed in this paper. However, 
the obtained reward is different from the rewards of typical RL practices. The reward in RL is 
unknown to only the agent (known to the trainer, researcher, designer etc.) and once the agent acts 
and lands in a specific state, it realizes the reward associated with landed state and contributes that 
knowledge for the next decision. The reward in this paper, however, is unknown to both the driver 
(agent) and researcher and the drivers do not receive feedback in terms of actions that maximize 
their rewards. We estimated the rewards using a discrete choice model. Therefore, individual 
drivers have different rewards. Ideally, in order to train drivers with the purpose of making better 
driving decisions, or to train autonomous vehicle computers to behave similar to human drivers or 
to make safe decisions, RL is preferred because the rewards can be given to the agent (driver, 
computer) in real-time (Kamrani et al., 2018b) in terms of distance to the front objects, some 
calculated driving volatility (Kamrani, 2018, Arvin et al., 2019b, Kamrani et al., 2018a) and risk 
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factors (Arvin et al., 2019a, Kamrani et al., 2019) etc. 
 

 Figure 1. Framework of Markov Decision Process (A), Reinforcement Learning (B) and the Paper (C) 
 

A. Markov Decision Process (MDP) 

B. Reinforcement Learning (RL) 

C. This paper approach 



  8 

 

2.3. MDP in Driving Maneuvers Context 
The MDP comprises of 1) the driver as the decision maker or agent; 2) states, which can be defined 
by surrounding traffic conditions, current vehicle speeds, and traffic along the route; and 3) a set 
of actions such as acceleration, deceleration, maintaining speed, and lane change. Depending on 
the defined states and actions, MDP can provide a transition probability matrix and a reward 
function which provide the numerical measures of payoff associated with transitions from one state 
to another. The state transition probability can depend on (but is not limited to) vehicle dynamics, 
current speeds of surrounding vehicles, minimum stopping distance, maximum acceleration or 
deceleration rates, distance between vehicles, reaction time, and time to collision. 

2.3.1. Actions 

The variability of drivers’ actions can be attributed to several factors such as aggressiveness, gap 
acceptance, psychological states, mindsets, attitudes, and preferences. A preferable MDP set of 
actions for the explained setting include accelerating, braking, changing lanes to the left, changing 
lanes to the right, and maintaining constant speed. However, lane changing is excluded in this 
study due to the variable limitations in the available dataset. Therefore, the actions are: 
 

• A: Acceleration; increasing speed at a rate higher than a specified threshold 

• C: Maintaining Constant speed; no acceleration or deceleration, while maintaining speed 

within a specified threshold  

• D: Deceleration; decreasing speed at a rate higher than a specific threshold 

It is necessary to define thresholds in high-resolution data in order to overcome subtle 
deviations in speed that may be noise and hard to attribute to driver decisions, especially when 
acceleration values define driver decisions. As an example, let us say that a driver has activated 
cruise control or decided to maintain constant speed by not changing the acceleration pedal’s 
displacement. If the magnitude of the acceleration during that time is recorded ten times per second, 
zero acceleration values will rarely be observed. To remove noise, the data is aggregated over one 
second and a threshold is used to characterize drivers’ decision to maintain constant speed. Values 
of accelerations that fall between -2.5% to 2.5% of the data around zero are considered constant 
speed. Accordingly, positive and negative values of acceleration are defined as acceleration and 
deceleration decisions, respectively.  

2.3.2. States 

Figure 2 (left) illustrates the states of instantaneous driving decisions. The red car (host) is in the 
state (s) where there are four vehicles around it. The driver decides to change lanes and overtake 
the vehicle in front of it (the yellow car). Among all different outcomes (stochasticity), by choosing 
to change lanes he/she ends up in a new state, denoted by 𝑠′ (which also depends on the other 
drivers’ maneuvers and decisions). It should be noted that in a given state, different drivers make 
different decisions (i.e. take different actions). In this example, the driver of the red car decided to 
change lanes, but even maintaining constant speed can change someone’s state due to the dynamics 
of surrounding traffic. 
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To show the states formally, a spatial layout of the proximate vehicles is illustrated in Figure 
2 (right). The central cell of the matrix represents the host vehicle. The surrounding cells represent 
the surrounding space, which can be empty or occupied by a vehicle or other objects (0 for empty 
and 1 for occupied). There are eight cells around the host vehicle; each can either be 0 or 1 forming 
28 = 256 different possible states. The number of possible states will decline if a vehicle is in the 
left or right lanes or if there are only two lanes in the same direction (32 states).  

 

Figure 2. Examples of the Driving States and Actions taken by Drivers 

 

Determining the current state (one of the 256 possibilities) of a vehicle, based on the structure 
shown in Figure 2 requires a complete awareness of its surroundings (360 degrees). The 
technology that provides such awareness and related data is already available in certain 
instrumented vehicles (IVs), which can create vision-based high-density maps through cameras 
and laser scanners. The data at hand only provides the total number of objects around the host 
vehicle without their spatial positions and distance to the front object. Due to one-second data 
aggregation, the average number of objects and the average distance to the front object (over one 
second) define the states (Figure 3). 

Figure 3 also provides an example of how to determine the host vehicle’s state. There are 
two objects around the host vehicle; therefore, according to the table on the right, rows 5 and 6, 
which correspond to the number of objects between two and three, should be referenced. Since the 
front vehicle (yellow car) is beyond the distance median, the current state of the host vehicle is 
determined as five. 

 

0 1 0

0 H 1

0 1 1

1 0 1

1 H 0

1 0 1

State s 

State s′ 
Action: lane change 

Traffic direction 

s 

s′
Traffic direction 

Action: lane change 

state estimation 
change

State estimation 
change
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Figure 3. Definition of States Based on Number of Objects and Distance to the Front Object  
  

2.3.3. Transition Probabilities 

Figure 4 depicts an example of the MDP structure where the states are shown by circles, decisions 
by dashed arrows (A: acceleration, D: deceleration, C: constant speed) and transition probabilities 
by solid arrows. For each set of initial states, actions and landed states (𝑠, 𝑎, 𝑠′) , a transition 
probability is defined as 𝑇(𝑠, 𝑎, 𝑠′). This quantifies the probability of ending up in state 𝑠′ given 
that the agent’s initial state was 𝑠  and it took action a i.e. 𝑃(𝑠′|𝑠, 𝑎) . For each trip, having 
determined the states (according to Figure 3) and actions (according to acceleration values), the 
probabilities are specified by counting the occurrence of each set (𝑠, 𝑎, 𝑠′)  and dividing them by 
total number of possible occurrences. Therefore, there are three matrices (for acceleration, 
deceleration and maintaining constant speed) each 8 by 8, where rows are the initial states (1 to 8) 
and columns are the landed states (1 to 8). For example, the element (1, 2) in acceleration matrix 
indicates the probability of transitioning from state 1 to state 2 (the driver accelerated). 

2.3.4. Reward 

Consider an aggressive driver who tends to reduce speed later than a calm driver, or may drive in 
close proximity to other drivers. Such behaviors are likely to be personally optimal for him/her. 
Therefore, the reward in a driving context is unknown, and varies from one driver to another. Even 
for the same driver, it might change depending on several factors such as trip purpose, traffic 
condition, time of the trip, etc. The goal is to find a reward structure based on the personal reward 
function that uncovers PRCs, which drivers use to make instantaneous driving decisions. In the 
MDP structure of this study, the reward function is dependent on both the taken action and the 
landed state.  
 

Note: Low and high in the table are different for each trip. 
High: Distance to the front object ≥ median distance  
Low: Distance to the front object < than median distance 
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Figure 4. MDP structure used in the study 

 

Utility functions have long been used in transportation to represent and explain travel behavior 
(e.g. mode choice) (Train, 1986, Train and Winston, 2007, Train, 1978, Ramming, 2001). In such 
cases, there are clear economic arguments for specifying a utility function. For example, a choice 
between using a bus vs. car for daily commutes is likely made by considering the respective cost 
and time, the comfort, and convenience of the modes for specific trip purposes. Multinomial logit 
(MNL) model is justified for reward estimation, given that the model provides a framework for 
calculating relevant probabilities using a simple mathematical form. This framework can be further 
expanded to include relevant variables that associate with reward probabilities. To estimate the 
reward for each state-action pair, the MNL model is applied separately for each trip. In other words, 
120 MNL models are estimated by treating each second of each individual trip as one observation. 
In this setting, observations are assumed independent from each other. The dependent variable 
(discrete choice) is the driver’s action and the current state is considered as independent categorical 
variable. The utility perceived by the driver consists of an observable component and an unknown 

random error. Therefore, the utility can be represented as (Koppelman and Bhat, 2006): 

                                    Uit =Vit + εit        (4) 

where  Uit is the utility of the alternative i for driver at time t,  

Vit is the observable portion (systematic component) of the utility, and 

εit is the error or unknown component of the utility. 

The systematic component of the utility can be expressed as: 
           Vit = V(Xi) + V(Sd)      (5) 

 

where Vit is defined as before and V(Xi) is the portion of utility of alternative i associated with the 
attributes (or states) of alternative i. Also V(Sd) represents socio-economics of the driver d, though 

2

3

4

A T(1, A, 2)

T(1, A, 4)

T(1, A, 3)

T(1, A,1)

1 R(A,1)

R(A,2)

5
6

7

8

T(1, A, 5)T(1, A, 6)

T(1, A, 7)

T(1, A, 8)

R(A,3)

R(A,4)

R(A,5)

R(A,6)

R(A,7)

R(A,8)

C

D
Note: To avoid clutter, transitions 
from State 1, given acceleration 
decision and related rewards are 
shown. 
A: acceleration 

D: deceleration 

C: constant speed 

Circles (1 to 8): states 

T(s, A, s'): probability of transition 
from sate s to s' given acceleration 
decision 

R(A, s'): reward of landing in state s' 
given acceleration decision 

 



  12 

 

such information was not available in the data analyzed. The importance of states can be estimated 
as:  
 

V(Xi) = 𝛽0 + 𝛽1X1 + 𝛽2X2 +…+ 𝛽k Xk      (6) 
 

where 𝛽k is the parameter which estimates the strength of association of state k on the utility of an 
alternative and Xk is the presence or absence of state k (there are 8 states based on the number of 
surrounding objects and distance to the front object) for alternative i. In this context, the utilities 
of the alternatives to Accelerate (A), Decelerate (D), or maintain constant speed (C) are shown as 
follows with alternative C serving as the base: 

 𝑉(𝑋𝐴) = 𝛽0,𝐴 + 𝛽1,𝐴𝑆𝑡𝑎𝑡𝑒 1 + ⋯ + 𝛽7,𝐴𝑆𝑡𝑎𝑡𝑒 7                                      (7) 𝑉(𝑋𝐷) = 𝛽0,𝐷 + 𝛽1,𝐷𝑆𝑡𝑎𝑡𝑒 1 + ⋯ + 𝛽7,𝐷𝑆𝑡𝑎𝑡𝑒 7                                     (8) 𝑉(𝑋𝐶) = 0 × 𝑆𝑡𝑎𝑡𝑒 1 + ⋯ + 0 × 𝑆𝑡𝑎𝑡𝑒 7                                                  (9) 

 

where 𝛽0,𝐴   and 𝛽0,𝐷  are the estimated intercepts for acceleration and deceleration alternatives, 
respectively; 𝛽∗,𝑗are parameter estimates for state-specific dummies (for 8 states, we have * = 1 to 
7 dummy variables,  j = acceleration, deceleration, and maintaining constant speed). Note that 
State is a categorical variable and therefore we use n-1 categories in the MNL model, with least 
crowded and long distance to the front object as the base. 

 

If the utility of acceleration is highest among the alternatives, then a driver chooses acceleration. 
The basic equation defining an MNL model probability of choice between alternatives is given by: 
 𝑃𝑖 = exp {𝑉𝑖}∑ exp {𝑉𝑗}𝑗=𝐴,𝐷,𝐶                                                                       (10) 

 

where 𝑃𝑖 is the probability of choosing i among j choices and V is the systematic component of the 
utility (the error component is Gumbel distributed). This equation (10) indicates that if an 
alternative has a higher utility, its probability of being chosen is higher. That said, by estimating 
the coefficients of the MNL model, the probability of driver actions given the state are used as the 
reward in the MDP model:  
 𝑅𝑖 = exp {𝑉𝑖}∑ exp {𝑉𝑗}𝑗=𝐴,𝐷,𝐶                                                                       (11) 

 

 Using the probabilities obtained from the MNL model as respective rewards assumes that 
the reward of an action given the state is proportional to the probability of that action given the 
state. Notably, several assumptions of the logit model such as the Independence from Irrelevant 
Alternatives can be investigated further by using nested structures. And the panel nature of the data 
can be addressed by estimating panel-data mixed logit models. Given the focus of the study on 



  13 

 

demonstrating how the rewards can be linked with microscopic behavioral decisions, the simple 
MNL model was deemed sufficient. Now, we have all the necessary inputs to solve the MDP 
problem, i.e. states, actions, transition probability and a reward function. Next, we discuss the 
solution approach called value iteration. 

2.4. Value Iteration 

In the context of this study, solving an MDP is equivalent to finding the PRCs. The value iteration 
algorithm (Bellman, 1954) is used to find the PRC for each state. The steps of the algorithm are as 
follows: 
 

Step 1: For each state (s ∈ S) initialize V(s) = 0 

Step 2: Set a threshold (θ) as stopping condition 

Step 3: For each state (s ∈ S) – (loop over states): 
3.1 ∆ ← 0 

Repeat – (loop over actions): 
3.2 v ← V(s) 
3.3 V(s) ← 𝑚𝑎𝑥 ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)[𝑅(𝑠′ 𝜋(𝑠), 𝑠′) + 𝛾𝑉(𝑠′)] 
3.4 ∆ ← 𝑚𝑎𝑥 (∆, |v −  V(s)| ) 

Until ∆ < θ 

Step 4:  PRC = 𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑎  ∑ 𝑇(𝑠, 𝜋(𝑠), 𝑠′)[𝑅(𝑠′ 𝜋(𝑠), 𝑠′) + 𝛾𝑉(𝑠′)] 
 

Given each state, the algorithm gives one of the actions (either acceleration, deceleration or 
maintaining constant speed) as the optimal policy. As discussed earlier, since the reward function 
estimates are different from one driver to another, we call the optimal policy as the Personally 
Revealed Choice (PRC) as opposed to the optimal policy.  

A toy example was used to verify the performance of the algorithm. Specifically, Figure 5 
depicts a grid world as a classic example in MDP, where an agent can either go up, right or stay. 
The cells of the grid are different states. The agent’s action outcome is stochastic, which is defined 
based on the transition probability matrix shown in Figure 6. If the agent decides to go up, there is 
a 70% chance it ends up in the upper cell and has equal chances of 10% of either staying in its 
current state, moving left, or moving right. Similarly, if it decides to go right, 70% of the time it 
ends up in the right cell and there are equal chances of 10% that it ends up in its current cell, or 
above or below. In the case where the agent decides to stay, it  will always remain in its current 
cell. Certain outcomes are impossible in some states. For example, if the agent is in state two and 
decides to “ go right,” given that the agent’s right and bottom sides are blocked, the probability of 
landing in the right cell (70%) and landing below (10%) will be distributed to other available 
outcomes equally (in this example, the probability of landing in 4 or staying in 2 become 50% 
each, i.e. 10+(70+10)/2. The rewards for states (shown in parentheses) are zero except for states 
five and eight where their rewards are -1 and +1 respectively. This reward structure implies that 
the optimal policy is the one that moves the agent toward state eight to maximize the cumulative 
discounted reward. Therefore, the optimal policy (shown in arrows) for the agent is to go up when 
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in states 1 to 5, go right in states 6 and 7, and remain when in state 8. This toy example was 
introduced to the algorithm to assure that the algorithm also produces optimal policies, shown as 
arrows in Figure 5. By changing the rewards, we also checked if the algorithm yields respective 
intuitive optimal policies. 

3. 6 

(0) 

4. → 

7 (0) 

→ 

8 (+1) 

stay 

3 (0) 

↑ 

4 (0) 

↑ 

5 (-1) 

↑ 

1 (0) 

↑ 

2 (0) 

↑ 
  

(Note: states from 1 to 8, reward are shown in parentheses, arrows represent optimal policies) 
 

Figure 5. Grid World Toy Example 

Figure 6. Transition Probabilities of the Toy Example (the transition probability of action “stay” is 
an identity matrix) 

5. Data 

The data used in this study relates to the Basic Safety Messages (see Figure 7) sent and received 

by vehicles that participated in the Safety Pilot Model Deployment (SPMD) in Ann Arbor, 

Michigan  (Henclewood, 2014). The data is stored in the Department of Transportation ITS JPO 

(Joint Program Office) Data website (https://data.transportation.gov/Automobiles/Safety-Pilot-

Model-Deployment-Data), maintained by the U.S. Department of Transportation. The data was 

collected for two months (April and October 2012) in the real-world from more than 2,800 

vehicles equipped with DSRC devices that transmitted instantaneous vehicle geocodes and 

kinematics such as speed, acceleration, heading, yaw rate, etc. This study uses a subset of SPMD 

data, collected by vehicles equipped with Data Acquisition Systems (DAS). It includes vehicle 

position (altitude, latitude, and longitude), motion (speed and acceleration), status of major 

components (accelerator, brakes, lights, cruise control, and wipers), and instantaneous driving 

contexts (surrounding objects and distance to the front object with an approximate detection range 

of 256 ft./78 meters). There were 259 trips undertaken by 71 unique vehicles. Since we are 

interested in drivers’ decision-making driver mechanisms, the 10 Hz data (10 observations per 

https://data.transportation.gov/Automobiles/Safety-Pilot-Model-Deployment-Data/a7qq-9vfe
https://data.transportation.gov/Automobiles/Safety-Pilot-Model-Deployment-Data/a7qq-9vfe
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second) were aggregated to one observation per second. Aggregation also helps remove some 

noise in acceleration values, as discussed earlier. After exploring the data, 120 trips were found 

to be appropriate for this study because in order to obtain a reasonable transition probability, the 

driver has to encounter different states during his/her trip. 

 Figure 8 shows how the data needed for the analysis were prepared. Driver decisions are 

determined from the value of acceleration (step 1). In addition, each vehicle’s current state is 

specified by examining the average number of objects, average distance to the front object, and by 

referring to Figure 3 (step 2). Landed state, which is the stochastic outcome of the driver’s decision, 

is the one-second lag of the current state (step 3). Red arrows on Figure 8 show the process. 

 

Figure 7. Safety Pilot Model Deployment Site, Ann Arbor, Michigan (Henclewood, 2014) 
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Figure 8. The data preparation steps 

 

6. Results 

6.1. Data Descriptive Statistics 

Table 1 provides the descriptive statistics of the 120 processed trips. The results seem reasonable 
(e.g., average speed is about 40 mph and average trip duration is 18 minutes). On average, at the 
trip level, there is an object in front of the host vehicle 77% of the time. The distance to front object 
on average is 44.2 ft, with a standard deviation of 20.43 ft.  

 
Table 1. Descriptive Statistics of the Selected Trips (n=120) 

 

6.2. Discrete Choice Model 
The MNL model is used to estimate rewards by assuming that rewards are proportional to the 
probability of actions given the state. For each of the 120 trips, an MNL model is estimated where 
the choice outcomes are acceleration, deceleration and maintaining constant speed (as the base), 
and the independent variable is the categorical variable of state. Table 2 presents the descriptive 
statistics of the 120 MNL estimates. The table indicates, on average, that acceleration decisions 
are less likely to be taken than maintaining constant speed decisions in states 2, 3 and 4 (compared 

Variable Explanation  Mean SD Min Max 

Speed (mph) Average vehicle speed during the trip 40.49 35.12 3.10 70.61 

Acceleration (ft/s2) Vehicle acceleration during the trip 1.05 0.62 0.26 4.46 

Deceleration (ft/ s2) Vehicles deceleration during the trip -1.48 0.95 -6.20 -0.29 

Duration (min) Duration of the trip 18.16 32.96 1.32 217.53 

Average Number of 
Objects 

Average number of objects around the host 
vehicle during the trip 

1.63 0.88 0.03 3.53 

Object present 
(yes) 

Binary variable indicating if there is an object 
in front of the host vehicle 

0.77 0.25 0.03 1 

Distance to Front 
Object* (ft.) 

Average distance from the head of host 
vehicles to the front object during the trip 

44.20 20.43 11.38 94.57 

*Only for cases when a front object is present. 
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with state 1). In states 5 to 8, however, an acceleration decision is more probable than maintaining 
constant speed. Similar interpretations can be seen for deceleration decision using the mean of 
respective coefficients in Table 2. The results show a wide range of estimates with high standard 
deviations across trips encompassing positive and negative coefficients, making the results about 
overall driver preference inconclusive.  
 

Table 2. Descriptive Statistics of MNL Estimated Coefficients (n=120) 

Choice Variable Category 
Estimate 

Mean 

Estimate 

Std. Dev. 
Min Max 

Constant Speed (base)  -- -- -- -- -- 
Acceleration Intercept -- 0.97 3.86 -2.56 20.15 

State 1 -- -- -- -- 

2 -0.68 4.8 -19.34 19.31 

3 -0.9 4.33 -18.77 14.53 

4 -0.39 5.05 -20.15 18.37 

5 0.15 5.53 -32.13 17.5 

6 0.58 7 -19.87 18.38 

7 0.44 6.1 -20.31 18.29 

8 0.23 7.07 -34.53 18.98 

Deceleration Intercept -- 0.21 4.48 -18.6 20.15 

State 1 -- -- -- -- 

2 0.21 6.05 -20.15 36.68 

3 -0.43 5.22 -19.52 18.04 

4 -0.11 5.17 -19.25 18.93 

5 1.3 6.27 -19.72 19.73 

6 0.92 7.07 -20.15 19.61 

7 0.98 6.23 -19.81 20.15 

8 0.73 7.92 -35.22 18.98 

 

Notes: State 1 is least crowded for the subject vehicle and State 8 is most crowded. The 
estimates presented are the results of 120 MNL models. The Min/Max values come from 

model(s) whose coefficients may not be statistically significant (5% level).    
 

 Although the estimated coefficients of state-action pairs for individual trips could be used as 
respective rewards, they all are zero for the base choice (constant speed) and they change if we 
consider acceleration or deceleration as the base. Therefore, the probability of choices given the 
states, which is invariant to the base choice selection, is used as per Equation 11. Figure 9 presents 
boxplots of estimated rewards of states 1 and 8 for maintaining constant speed and deceleration 
acceleration actions. The figure shows that the acceleration decision in both states 1 and 8 has a 
higher median compared to other decisions. However, when it comes to state 8 which is most 
crowded state in terms of traffic, the median of constant speed reward (0.09) is considerably lower 
than the acceleration reward (0.31) and the deceleration reward (0.26). This is reasonable because, 
in heavier traffic, drivers stop and go more frequently than travel at constant speed.  Therefore, in 
state 8, we would expect a lower reward (i.e. probability) for traveling at constant speed. 
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 Figure 9. Reward Distribution of States 1 and 8 for maintaining Constant Speed, Acceleration and Deceleration (n = 12) 
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 Having estimated the rewards, the question is what action given state maximizes the total 
discounted reward. Note that although drivers make decisions, they do not have control of the 
landing states because of the stochastic nature of driving environments and decision outcomes. 
Using the state-action transition probability coupled with state-action rewards, we obtain the 
optimal policy (i.e. PRC) for individual drivers. 
 

 

6.3. Personally Revealed Choices (PRCs) 
The estimated rewards along with the other inputs are introduced to the value iteration algorithm 
in order to obtain the optimum policies that maximize the total expected accumulated discounted 
reward. A discount factor of 0.95 was used in this study. The discount factor is an important 
parameter since it determines the relative weights of immediate versus long term planning. For 
each trip, the value iteration algorithm yields a PRC given the state. There is no predetermined 
goodness for each state. This means a driver might be OK with  other vehicles around while another 
driver would rather avoid them. Some of these personal preferences are captured through the 
reward values. 
 Importantly, as we assumed that the reward is proportional to the estimated MNL 
probabilities, one possible way of maximizing the total accumulated reward is to select the actions 
with the highest probabilities (i.e. highest reward) as the PRCs. With this naïve approach, however, 
the stochasticity of decision outcomes, the sequence of decisions, and the future expected rewards 
are not accounted for. For comparison purposes, we have provided the results based on this 
approach in Figure 10, left. 

Figure 10, right, presents the PRC results from MDP. We have shown the proportion of PRCs, 
which add up to 100% for each state. Figure 10’s caption explains how to read the figure. The 
peaks and valleys in both figures are intuitive because the average number of objects are the same 
for states 1 and 2 and the only difference is the distance to the front object i.e. in state 2 the front 
object is closer to the host vehicle. This holds true for state pairs of (3, 4), (5, 6) and (7, 8). That 
naïve approach of PRC determination results does not show much trend in the proportion of PRCs. 
However, the MDP results show an ascending trend in the proportion of acceleration. Overall, 
acceleration is the most probable PRC throughout the states (ranges from 35% in state 2 to 58% in 
state 7) while the proportion of deceleration does not change significantly across the states. 

Drivers have different levels of calmness and aggressiveness. An aggressive driver’s PRC 
could be acceleration even when they are surrounded by three or more vehicles (i.e. state 7 or 8). 
Moreover, the layout of objects around the host vehicle also affects PRCs. If the objects were 
mostly in front of the vehicle throughout a trip, an intuitive PRC would suggest maintaining 
constant speed or deceleration. However, if the objects are on the rear or sides of the host vehicle, 
then perhaps acceleration might be the PRC in order to avoid a crash and crowdedness. That said, 
even the same layout of objects for two different drivers can result in different PRCs due to their 
differences in perceptions, information processing, situational factors, preferences, and 
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experiences. Given all the complex factors contributing to PRC results, the overall outcomes are 
reasonable and intuitive.  

 

Figure 10. Personally Revealed Choices given specific states (left: naïve approach, right: MDP) 
(n=120 trips). Example of reading the figure (right): in state one, 49% of drivers’ PRC was 
acceleration, 23% was deceleration and 28% maintaining constant speed. 

 

 

6.4. PRCs at Different Levels of Crowdedness 

To supplement information on PRCs with respect to changes in the number of objects, trips were 
segmented based on the level of crowdedness. On a crowded roadway where the average number 
of objects around a vehicle throughout a trip is higher, the distribution of PRCs may be different 
than a trip taken during less crowded conditions. Figure 11 presents the distribution of the average 
number of objects. Based on the distribution, three levels of crowdedness are defined: non-
crowded, semi-crowded and crowded. Non-crowded trips have an average number of objects 
between 0 and 1, semi-crowded trips have an average number of objects between 1 and 2, and 
crowded trips have an average number of objects of more than 2.  

In non-crowded trips (Figure 12), an ascending trend of the acceleration proportion from 
states 2 to 8 is obvious. This observation is very interesting because as the surroundings of the host 
vehicle become more crowded, the majority of drivers’ PRC is acceleration. The intuitive 
interpretation of this behavior is that they prefer to avoid (or escape from) crowdedness by 
increasing their speeds. The successfulness of that decision depends on many factors such as 
instantaneous traffic conditions, surrounding drivers’ decisions, etc. Although a PRC may not yield 
a drivers’ desired outcome, the driver perceives the highest personal satisfaction from that decision 
compared to the other available options. 
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Figure 11. Distribution of Average Number of Objects Surrounding the Host Vehicle (n=120 trips)  

Figure 12. Personally Revealed Choices made on non-crowded Trips (n=32 trips) 
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 In the semi-crowded trips results (Figure 13), state 4 has a balance among the proportions 
of each decision. After that, the proportion of the deceleration decision remains almost the same 
but around 10% from the constant speed proportion is replaced with the acceleration decision as 
the level of crowdedness around the host vehicle increases. Comparing non-crowded with semi-
crowded trips shows that the proportion of acceleration has almost shrunk to half, indicating that 
more drivers considered deceleration or constant speed as their PRCs. 

Figure 13. Personally Revealed Choices made on semi-crowded Trips (n=44 trips) 
 

In crowded trips (Figure 14), the effect of trip crowdedness is more distinguishable. The 
acceleration decision is only dominant in states where the front object is far from the host vehicle. 
In our state definitions, each state pair [(1, 2), (3, 4), (5, 6) and (7, 8)] has a similar number of 
objects but the front object is closer to the host vehicle in the higher state. The impact of the front 
object can easily be seen by paying attention to the oscillations of acceleration deceleration and 
constant speed proportions across the states. In other words, closer front objects increased the 
rewards for deceleration and constant speed for some drivers, which is intuitive. This change in 
the reward can be due to two reasons. First, some drivers intentionally decide to replace 
acceleration with deceleration and constant speed because of the more crowded traffic conditions. 
Second, even though some drivers have not chosen to do so, the traffic conditions impose the 
above-mentioned replacement on them.  In other words, drivers may be forced to follow (or be 
more constrained) rather than having the option to make decisions freely.  
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Figure 14. Personally Revealed Choices in crowded Trips (n=44 trips) 
 

6.5. Comparison of PRCs and Real-world Observed Choices 

Having found PRCs for each trip, it is beneficial to observe how long each driver can follow his/her 
PRC. It is evident that even though PRCs are obtained through the MDP method, drivers are not 
able to follow their PRCs all the time. For instance, a driver could prefer to accelerate in a particular 
state and that decision would be preferred, but traffic conditions (and many other hidden reasons) 
make the driver constrain the driver and compromise his/her PRC at that moment i.e. the driver 
cannot behave optimally. In fact, investigating the level of PRC following can help us see to what 
extent a driver’s behavior matches their PRCs, i.e. how much of observed behavior are explained 
by PRCs.  

Figure 15 presents the distribution of PRC following among the 120 trips. The numbers 
above the bars indicate the number of trips and each bar label on the horizontal axis shows the 
percentage range of time where drivers followed their PRCs. For example, the bar shown in the 
red box indicates that drivers could follow their PRCs, on average, about 70% of the time (the bar 
midpoint) in two of the trips (the range is between 66% and 74%). Likewise, if we cumulatively 
look at the top three bars in Figure 15, the level of PRC following is at least 30% in 71% of the 
trips (85 trips). The weighted average (based on trip duration) of following PRCs is 36%, meaning 
that the proposed PRCs are followed across the trips 36% of the time. Before we discuss the 
potential application this study in the conclusion section, we will discuss its limitations. Given that 
the study is based on applying a theoretical model and using detailed data, reasonableness checks, 
and the intuitive consistency of the results and interpretation are the primary validation tests. The 
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results of this study are consistently intuitive, and the results are reasonable and consistent with 
the findings of previous studies. 

 

Figure 15. Distribution of following PRC among Drivers (n=120) 
 

7. Limitations 

The significant limitation of this study lies in the data. Although the DAS dataset provides 
relatively accurate data for acceleration and speed, the amount of information about the objects 
surrounding the host vehicle is limited. Only the number of objects and distance to the front object 
are provided. As was noted in the methodology section, the authors had to deviate from the 
complete method for defining the states due to the lack of information on object positions around 
the host vehicle. Notably, the state vector could be expanded with additional data (besides distances 
to the front object and number of surrounding objects) to obtain a more accurate representation of 
the state of the driver. Having a simpler model to partially explain driving behavior or the 
environment has plenty of precedence e.g., a lot of car-following models that are being used today 
are simple representations of real-world conditions and ignore many factors contributing to a host 
vehicle’s acceleration and deceleration decisions. Thus, we recognize that the number of states 
(ideally) used to represent the problem are prohibitively large, but with simplifications we have 
reduced the number of states to a manageable size. 

The data limitation also constrained the possibility of defining more states and, consequently, 
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more sophisticated reward functions. For the purpose of this study, the reward function was 
assumed to be dependent on the decision made and the landed state in order to simplify the 
computation. In addition, the lack of driver perception-reaction times in the data and consequently 
in the models are recognized as another limitation of this study. It is also acknowledged that the 
data in hand does not have any information on factors that impact the transition from one state to 
another leading to a method to obtain transition probabilities that does not captures all of the factors 
that influence transition probability. Indeed, complex driving decisions are influenced by many 
factors including the attributes of the driver and characteristics of the context. More information 
about the biometrics of the driver and characteristics of the situation (vehicle kinematics and 
environmental variability) can paint a more complete picture of driving events. Having more 
variables can help with more in-depth analysis of driving behavior and hence a deeper 
understanding of driving decisions. Similar analysis with richer datasets containing the layout, 
speed and distances of surrounding vehicles as well as information about the weather, lighting, 
surface condition would probably yield better and more reliable results. Also, note that the results 
are obtained by aggregating different driver behaviors and the comparisons of proportions at the 
trip level. However, the MDP method provides more value when investigating individual behavior 
separately. Therefore, as more data from the same person becomes available, the proposed method 
will enable deeper learning about a person’s driving behavior. 

8. Conclusions 

This study uses high frequency and diverse driving data to learn driving decisions. Specifically, 
reward and states are defined theoretically, and real-life driving decisions are analyzed in order to 
explore correlations with contextual factors i.e., proximity to surrounding objects. MDP is applied 
to learn personally revealed choices of drivers in terms of acceleration, deceleration and 
maintaining a constant speed. Eight states are defined based on the number of objects surrounding 
the host vehicle and distance to the front object. Individual driver reward functions are estimated 
using multinomial logit model. The results show that with increasing objects around a host vehicle, 
drivers would rather accelerate to avoid crowdedness around them. 

Segmenting trips based on the level of crowdedness indicated that with increased level of 
crowdedness, fewer drivers choose acceleration as their PRCs because they are constrained to 
either keep constant speed or decelerate due to traffic condition. In addition, the level of following 
PRCs show that the obtained PRCs match drivers’ real behavior 36% of the time. 

One potential application of this study is to generate short-term predictive information about 
driver decisions, which can be used to warn the driver when they deviate substantially from their 
own PRCs based on their own historical driving performance. This can be implemented as a more 
intelligent ADAS, which can determine if the speed-up behind a slow-moving vehicle is due to 
driver impairment, or with a specific plan of overtaking it. Moreover, this determination need not 
be one-sided – disseminating a driver’s preferred actions to surrounding vehicles may enable their 
drivers to foresee the states and actions of other drivers. An instrumented vehicle equipped with 
such model parameters can determine and anticipate the behavior of surrounding legacy vehicles 
and incorporate that information when selecting the most appropriate response and optimizing its 
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future trajectory. In order to develop applications, a considerable amount of trip data will be needed 
for each driver under different traffic conditions, which should not be a problem as instrumented 
vehicle big data are rapidly emerging. 
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List of Acronyms 

 

BSM: Basic Safety Messages. Information exchanged between connected vehicles at approximately 10x 
per second that contain data elements such as position, speed, acceleration, heading and etc.  
 

CAV: Connected and Automated Vehicle. A vehicle that is capable of sensing its environment and moving 
safely with little or no human input as well as sending and receiving information from other vehicles, 
infrastructure, bikes, pedestrian etc.  
 

DAS: Data Acquisition Systems. A collection of software and hardware that allows one to measure or 
control physical characteristics of something in the real world 

 

MDP: Markov Decision Process. A mathematical framework for modeling decision making in situations 
where outcomes are partly random and partly under the control of a decision maker. 
 

MNL: Multinomial Logit Regression Model. The regression analysis to conduct when the dependent 
variable is nominal with more than two levels. 
 

PRC: Personally Revealed Choices. Equivalent to Optimal Policy in Markov Decision Process framework and 
that is the solution for an MDP which describes the best action for each state in the MDP. 
 

RL: Reinforcement Learning. An area of machine learning concerned with how an agent ought to take 
actions in an environment in order to maximize some notion of cumulative reward. 
 

 

 

 


