Abstract
Autism symptomology has a profound impact on cognitive and affective functioning, yet we know relatively little about how it shapes patterns of ongoing thought. In an exploratory study in a large population of neurotypical individuals, we used experience sampling to characterise the relationship between ongoing cognition and self-reported autistic traits. We found that with increasing autistic symptom score, cognition was characterised by thinking more in words than images. Analysis of structural neuroimaging data found that autistic traits linked to social interaction were associated with greater cortical thickness in a region of lingual gyrus (LG) within the occipital cortex. Analysis of resting state functional neuroimaging data found autistic traits were associated with stronger connectivity between the LG and a region of motor cortex. Importantly, the strength of connectivity between the LG and motor cortex moderated the link between autistic symptoms and thinking in words: individuals showing higher connectivity showed a stronger association between autistic traits and thinking in words. Together we provide behavioural and neural evidence linking autistic traits to the tendency to think in words which may be rooted in underlying cortical organisation. These observations lay the groundwork for research into the form and content of self-generated thoughts in individuals with the established diagnosis of autism.
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1. Introduction
Autism Spectrum Disorder (ASD) encompasses a set of neurodevelopmental conditions that share core psychological, sensory, and social characteristics and that begin within the first few years of life[1]. Autism is expressed in a wide range of symptoms including differences in sensory processing[2], executive function[3], attention[4], imagination[5], and social functioning[6-8]. In the sensory domain, autistic individuals often find sensory information overwhelming and unusually aversive[9], and in the motor domain, autistic individuals show alterations in movement, such as gait[10] and an increased tendency for repetitive motoric action[11], potentially as a countermeasure to the hypersensitivity to sensory stimuli. In terms of higher order processes, autistic individuals show evidence of impaired or delayed development of an intuitive “theory of mind”[12]. Although we have a relatively clear understanding of how autistic traits relate to performance on structured neurological tasks[13], we know substantially less about how these traits influence patterns of ongoing thought. In this exploratory study, we used experience sampling to explore how autistic traits within a neurotypical population relate to the types of thoughts participants experienced within a laboratory setting.
Studying autistic traits in neurotypical individuals is a popular technique that enables researchers to leverage larger, easier to access populations and gain insights into the differences that may be seen in autism[14-18]. It is possible that if autism is an example of “neurodiversity”, then autistic traits historically considered as part of a “disorder” are actually examples of normal variation in neurocognitive functioning[19, 20]. Individuals diagnosed with ASD could therefore show differences in specific domains that are sufficiently far from those seen in the population “on average” as to be considered clinically meaningful. This framework has received support in ethical domains, as it encourages a less stigmatising approach to improving the quality of life in autistic individuals without the harmful idea that they need to be “cured”[21]. It also highlights the areas in which autistic individuals show positive variation, such as attention to detail and pattern-detection[22]. This approach is also supported by genetic evidence that suggests autistic traits in neurotypical individuals share a common aetiology with those seen in clinical populations[23]. Together this evidence suggests studying these autistic traits in neurotypical samples like the one used here can provide information about the mechanisms behind these traits that are shared by autistic individuals. 
Experience sampling allows the investigator to capture the patterns of thought that occupy individuals in the laboratory and in daily life[24]. This technique has established that spontaneous thought is a heterogeneous state that contains replicable components that can be reliably identified across individuals[24-28]. In the current study we used Multi-Dimensional Experience Sampling (MDES) which directly examines this heterogeneity by asking individuals to report on multiple features of their experience. Across multiple studies we have found that decompositions of MDES data reveals latent components that describe how on-task experience is, whether it is vividly detailed, its modality (i.e. whether it is in the form of images or words), and its emotional tone[27, 29]. Studies show that these components correlate with measures of intelligence, well-being, and clinical symptomatology[29-32]. In addition, MDES highlights the important role of task context on the nature of ongoing experience. For example, tasks with lower levels of cognitive demand produce fewer on-task thoughts[33, 34] and increase individuals’ tendencies to think deliberately about other things[35, 36]. In our study, we explored the association between autism and the patterns of thought highlighted by MDES using a paradigm that moderates task demands by inducing a working memory load.
Preliminary evidence suggests that autistic traits could have an important influence on patterns of ongoing thought. Studies demonstrate that individuals with ASD have deficits in imagination[5] and future thinking[37, 38], and across different cultures, prospection makes up a large proportion of daily experience[39-44]. Autistic individuals exhibit deficits in executive function[3] and attention switching[45, 46], and differences in these aspects of cognitive control have been linked to changes in the flexibility with which self-generated thoughts occur[29, 47-53]. More specifically, there is a range of literature suggesting that differences in autism can be attributed to an inability to adapt behaviour and thinking flexibly to the current context using clues from the external environment[54]. Studies using the task design from the current study have shown that typically developing individuals adapt their patterns of thoughts based on the demands of the task[55], a process that may show a negative relationship to autistic traits.
Finally, it has been hypothesised that a key component of ASD is that individuals with this condition think in pictures[56, 57]. This theory is motivated by the fact that autistic individuals show relatively intact or enhanced abilities on a range of visuospatial tasks, including the Block Design subset of the Weschler Intelligence Scales[58], the embedded figures task[59, 60], and Raven’s Progressive Matrices (RPM)[61]. A study using a similar typically developing undergraduate population to in the current study found that autistic traits in two subscales of the autism quotient (AQ) were related to improved RPM performance, and this prediction was stronger for visuospatial rather than verbal-analytic items[62]. Another study suggests enhanced visuospatial processing in a range of tasks can be identified related to the AQ in neurotypical individuals[63]. Autistic individuals also complete semantic tasks with a greater accuracy when matching pictures to words rather than words to words[64]. These results are often interpreted as an overall preference for pictures over words in autistic cognition[56], especially when considered alongside deficits in language processing[65] and anecdotal evidence for thinking in pictures[66]. A review of tasks that are typically done verbally that can be done visually suggests mixed evidence for a preference for these strategies[57]. For example, autistic individuals showed no articulatory suppression during a dual-task experiment, suggesting less reliance on inner speech[67], but use verbal strategies when maintaining information in working memory but not during planning[68]. Taken together these results have been interpreted as relating to an improved ability to see patterns due to “weak central coherence”[69], a tendency in typically developing individuals to look for additional meaning when there is none[60], or a general preference for thinking in pictures[56]. The present study will therefore look for relationships between overall levels of different dimensions of ongoing thought as well as their context-specific regulation to assess whether there are identifiable links to autistic traits in a neurotypical sample of undergraduates. 
Importantly, several recent studies demonstrate the feasibility of experience sampling in people diagnosed with ASD[70-72], showing that autistic individuals respond at a comparable rate and demonstrating that it is a reliable method for identifying differences in thought patterns during daily life. The extension of MDES to examine autistic traits in a normative population, therefore, provides important information about how ongoing thought relates to autistic traits that could act as a foundation for extending the method into a more clinically relevant population. 
Since measures like MDES are subjective, studies of ongoing thought often combine these with objective metrics from behaviour or neuroimaging[25]. This process of triangulation offers the opportunity to confirm the subjective reports using a more objective metric, and in the current study enables the MDES data to be understood in the context of contemporary accounts of neurocognitive alterations in autism. Prior  studies of autism highlight structural and functional differences in visual[73-75], auditory[76-78], and motor cortices[79-81], as well as regions of the brain implicated in social processes[82-88](regions such as medial prefrontal cortex and lateral parietal cortices that are key nodes within the Default Mode Network; DMN). A meta-analysis of structural MRI studies found that there were both grey matter increases and decreases in autistic individuals. Increases were found in DMN regions such as the posterior cingulate and middle temporal gyrus, as well as visual regions including left lingual gyrus (LG)[89]. Regions with decreased grey matter included many regions adjacent to these, as well as the right amygdala and left precentral gyrus. Similarly, a meta-analysis of functional fMRI research found increases and decreases in activation in many of the same regions, largely dependent on the task being performed[90]. In tasks requiring visual processing, for example, autistic individuals displayed greater activation in the thalamus, medial frontal gyrus, and caudate, but showed decreased activation in the cingulate, precentral gyrus, middle occipital gyrus, and left LG. Meta-analyses of functional connectivity have identified predominantly hyperconnectivity of cortical-cortical connections, and hypoconnectivity of subcortical-cortical edges[91]. Studies extending these analyses to autistic traits in neurotypical populations are less common, and have had mixed findings, with some reporting similar structural and functional differences to those seen in autistic individuals[14, 18, 92, 93], and some demonstrating null findings[17].
In the current study, we reanalyse data from a cohort of healthy undergraduates for whom we have already described links between patterns of ongoing thought and a number of neural and behavioural metrics[26, 29, 31, 32, 94]. The current exploratory analysis examines the relationship between spontaneous thought and autistic traits in a neurotypical population. These individuals underwent both structural and resting state MRI scanning, and performed a simple cognitive task in the laboratory on three different days in which MDES was used to measure patterns of ongoing thought. Our specific aim was to explore the relationship between autistic traits and (i) patterns of ongoing thought in the lab, and (ii) measures of structural and functional organisation of the cortex. Following this initial exploratory analysis, we conducted a post hoc examination of whether any underlying neural differences we observed explained the relationship we identified between autistic traits and patterns of ongoing thought in this neurotypical population.  
2. Methods
2.1 Participants
We report how we determined our sample size, all data exclusions, all inclusion/exclusion criteria, whether inclusion/exclusion criteria were established prior to data analysis, all manipulations, and all measures in the study. The data presented here came from a cohort described in previous published work[26, 29, 31, 32, 94]. Ethical approval for this study was obtained from both the Department of Psychology, University of York, and the York Neuroimaging Centre ethics committees. All participants gave informed consent prior to taking part and were compensated with either payment or course credit for their participation. All participants were healthy, right-handed, native English speakers with no history of psychiatric or neurological illness, and these exclusion criteria were determined prior to data analysis. Out of this cohort, 199 participants (128 females, mean age=20.11, S.D.=2.24, range=18-31 years) completed the laboratory-based thought sampling experiment that was initially used to generate the thought components for this study. Of these, 181 participants (119 females, mean age=20.09, S.D.=2.22, range=18-31 years) completed the ASD symptomatology questionnaire and were included in the initial behavioural analysis. Finally, after exclusion for problems associated with MRI scanning (see below), 165 participants (110 female, mean age=20.16, S.D.=2.27, range=18-31) were entered into the cortical thickness analysis and 165 participants (108 female, mean age=20.07, S.D.=2.28, range=18-31) were entered into the resting state fMRI data analysis. No part of the study procedures was preregistered prior to the research being conducted.
2.2 Experimental task and experience sampling
The experience sampling procedure was the same as reported in previous studies[31]. Experience was sampled in a task paradigm that alternated between blocks of 0-back and 1-back in order to manipulate attentional demands and working memory load (see Supplementary Figure 1). The scripts for running this task can be found at: https://github.com/htwangtw/MindWanderingTask. Non-target trials in both conditions were identical, consisting of black shapes (circles, squares, or triangles) separated by a line. In these trials the participant was not required to make a behavioural response. The shapes on either side of the line were always different. The colour of the centre line indicated to the participant the condition (0-back: blue, 1-back: red; mean presentation duration=1050ms, 200ms jitter). The condition at the beginning of each session was counterbalanced across participants. Non-target trials were presented in runs of 2-8 trials (mean = 5) following which a target trial or multidimensional experience sampling (MDES) probe was presented. 
During target trials, participants were required to make a behavioural response on the location of a specific shape. In the 0-back condition, on target trials, a pair of shapes were presented (as in the non-target trials), but the shapes were blue. Additionally, there was a small blue shape in the centre of the line down the middle of the screen. Participants were required to press a button to indicate which of the large shapes matched the central shape. This allowed participants to make perceptually-guided decisions so that this condition does not require continuous monitoring. In the 1-back condition, the target trial consisted of two red question marks either side of the central line (in place of the shapes). There was a small shape in the centre of the screen as in the 0-back condition, but it was red. Participants had to indicate via button press which of the two shapes from the previous trial the central shape matched. Therefore, the decisions in this condition were guided by memory and this part of the task required constant monitoring in case each non-target trial had to be used to guide this decision. 
The contents of ongoing thought during this paradigm was measured using MDES. MDES probes occurred instead of a target trial on a quasi-random basis. When a probe occurred the participants were asked how much their thoughts were focused on the task, followed by 12 randomly shuffled questions about their thoughts (see Table 1). The task was changed part way through data collection: for the first cohort (164 participants), participants answered on a sliding scale from 0 to 1, which was altered to a scale from 1 to 4 for 35 participants. This was due to the fact that the 35 participants were collected as control participants in a study[95] that also involved task performance inside the scanner. The task was altered to match the necessary use of a four-button box during scanning. There were no other changes to the task design. All scores were normalised to the same scale prior to principal component analysis (PCA). PCA decomposition on the 164 and 35 participants separately produced similar factors as shown by highly correlated question loadings (detail: r(11)=.577; off-task: r(11)=.868; modality: r(11)=.944; emotion: r(11)=.838). This matches previous work that showed highly similar dimensions of thought across conditions[55] suggesting minimal effect of changing scale.   
	Dimensions
	Questions
	Low
	High

	Task
	My thoughts were focused on the task I was performing.
	Not at all
	Completely

	Future
	My thoughts involved future events.
	Not at all
	Completely

	Past
	My thoughts involved past events.
	Not at all
	Completely

	Self
	My thoughts involved myself.
	Not at all
	Completely

	Person
	My thoughts involved other people.
	Not at all
	Completely

	Emotion
	The content of my thoughts was:
	Negative
	Positive

	Images
	My thoughts were in the form of images.
	Not at all
	Completely

	Words
	My thoughts were in the form of words.
	Not at all
	Completely

	Vivid
	My thoughts were vivid as if I was there.
	Not at all
	Completely

	Detailed
	My thoughts were detailed and specific.
	Not at all
	Completely

	Habit
	This thought has recurrent themes similar to those I have had before.
	Not at all
	Completely

	Evolving
	My thoughts tended to evolve in a series of steps.
	Not at all
	Completely

	Deliberate
	My thoughts were:
	Spontaneous
	Deliberate


Table 1. Mind wandering questions asked to each participant during MDES. The first question was always “Task” then the other 12 questions in a random order. The scores from these questions were entered into a PCA.
The task was performed on three separate days in sessions that lasted around 25 minutes, and these were separated into eight blocks. In total, an average of 37.86 MDES probes occurred (SD=9.47). The answers to these questions were used to identify components of thought that demonstrated a consistent structure across participants. The responses were concatenated into a single matrix and entered into a PCA with varimax rotation in SPSS (Version 25) to ensure maximally distinct components. Four components were selected based on the scree plot (see Figure 1), and to enable consistent interpretation with previous studies using this technique[27, 29, 31, 96]. These components were labelled (in order of decreasing eigenvalues) based on their question loadings: Detail, Off-task, Modality, and Emotion. The loadings for these components can be seen in Table 2. Where these are represented in wordclouds, the size of the word represents the loading score and the colour the direction (blue: negative, red:positive).
	Question
	PC1
	PC2
	PC3
	PC4

	Task
	0.305
	-0.711
	-0.053
	0.241

	Future
	0.383
	0.596
	-0.048
	0.169

	Past
	0.419
	0.335
	0.120
	-0.442

	Self
	0.280
	0.703
	0.019
	0.105

	Person
	0.134
	0.757
	0.185
	0.028

	Emotion
	0.193
	0.102
	0.127
	0.861

	Words
	0.267
	-0.090
	-0.816
	-0.002

	Images
	0.328
	0.131
	0.764
	0.096

	Evolving
	0.651
	0.108
	0.002
	0.017

	Habit
	0.606
	0.090
	-0.154
	0.052

	Detailed
	0.729
	-0.197
	0.028
	0.097

	Vivid
	0.665
	0.167
	0.310
	0.036

	Deliberate
	0.429
	-0.628
	-0.187
	0.104


Table 2. Loadings for each question from Table 1 on the four components of thought. Component 1 is largely defined by vividness and detail, component 2 by a negative relationship to task focus and positive person and self-related thought. Component 3 loads negatively on thinking in words and positively on thinking in images, while component 4 is predominantly indicative of a positive emotional valence. 
2.3 Assessment of autistic traits and symptoms 
To assess ASD symptoms in this neurotypical population we administered the Autism Quotient (AQ) questionnaire[97]. This scale includes 50 questions divided across five subscales that measure traits associated with ASD diagnosis: social skills, attention switching, attention to detail, communication, and imagination. Each subscale is scored out of 10 with increasing scores indicating higher ASD traits. The total score (out of 50) is derived by summing each of the five subscales, and a cut-off of 32+ was initially determined as optimal for discrimination of ASD individuals from neurotypical participants like those in our study[77]. It was designed to quantify ASD traits in both individuals with and without an ASD diagnosis and was shown to have good test-retest and interrater reliability in both autistic and neurotypical populations[97], making it an appropriate scale for the purposes of this neurotypical study. It has additionally been shown to correlate moderately to highly with the Social Responsiveness Scale, a well-established, published screening measure of Autism[98, 99]. A study comparing the AQ to the Autism Diagnosis Observation Schedule-Generic (ADOS-G) and Autism Diagnostic Interview-Revised (ADI-R), two gold-standard diagnostic clinical assessments of Autism found that the AQ had a high sensitivity and positive predictive value combined with a low specificity and negative predictive value[100]. This means that the scale generally identifies autistic individuals by their high score on this measure (correct positives), but also misses a large portion of autistic individuals who score below the cut-off (false negatives). Taken together, these findings suggest that, while the AQ is useful in measuring ASD symptoms, it has limited use as a diagnostic tool and the cut-off scores are relatively poor indicators of an ASD diagnosis. In our sample, there was a mean AQ total score of 12.48 (S.D.=6.40), suggesting relatively low levels of autistic traits but with significant variation. The means for each subscale were as follows: AQ social (M=1.52, S.D.=1.94), AQ attention switching (M=3.46, S.D.=2.02), AQ attention to detail (M=3.77, S.D.=2.11), AQ communication (M=1.90, S.D.=1.93), AQ imagination (M=1.82, S.D.=1.87). Histograms showing the distribution of the AQ and its subscales can be seen in Supplementary Figure 2. Two participants scored over 32 (36 and 40), suggesting they were above the cut-off for this non-clinical scale. Additionally, several studies have found specific relationships between different subscales of the AQ and performance on a range of neurocognitive measures, suggesting that while they measure related traits that contribute to autism, they can be dissociated to understand links between different aspects of autism and neurocognitive processes[62, 101-103]. 
2.4 MRI data acquisition
All MRI scanning was carried out at the York Neuroimaging Centre. Structural and functional data were acquired using a 3T GE HDx Excite MRI scanner with an eight-channel phased array head coil tuned to 127.4 MHz. Structural MRI acquisition was based on a T1-weighted 3D fast spoiled gradient echo sequence (TR=7.8s, TE=minimum full, flip angle=20º, matrix size=256x256, 176 slices, voxel size =1.13x1.13x1mm). Functional data were recorded using single-shot 2D gradient echo planar imaging (TR=3s, TE=minimum full, flip angle=90º, matrix size=64x64, 60 slices, voxel size=3mm isotropic, 180 volumes). Participants completed a 9-minute eyes-open resting state scan during which there was a fixation cross on-screen. Participants were verbally instructed to look at the fixation cross and try to stay awake. 
2.5.1 Data pre-processing: behavioural data
All scores that were identified as outliers using SPSS (Version 25: quartile ± 1.5*interquartile range) were replaced by the median for further analyses to ensure the results were not driven by a small number of extreme values[104]. The use of 1.5*interquartile range is the default setting in SPSS and the use of this measure is preferable as the mean and standard deviation are greatly affected by outliers[105]. The median is similarly considered a preferable imputation measure as it is unaffected by a few extreme values[106]. There were two participants who were replaced with the median for the Social subscale of the AQ. Three participants were replaced with the median for mean off-task thought and two were replaced for mean emotion of thought. Two were replaced for difference between tasks in detailed thought, and seven for modality difference. Inverse efficiency score was calculated by dividing mean reaction time by accuracy (percentage correct trials/100: equivalent to 1 minus the proportion of errors). Four participants were replaced with the median for inverse efficiency during the 0-back, and nine participants were outliers during the 1-back. All data were z-scored prior to correlational analyses. No part of the study analyses was preregistered prior to the research being conducted. 
2.5.2 Data pre-processing: cortical thickness
The extraction of cortical thickness followed the procedure in previous studies[107]. FreeSurfer was used to estimate vertex-wise cortical thickness (5.3.0; https://surfer.nmr.mgh.harvard.edu), using an automated surface reconstruction scheme described in detail elsewhere[108-111]. The following processing steps were applied: intensity normalisation, removal of non-brain tissue, tissue classification and surface extraction. Cortical surfaces were visually inspected and corrected if necessary. Cortical thickness was calculated as the closest distance between the grey/white matter boundary and pial surface at each vertex across the entire cortex. A surface-based smoothing with a full-width at half maximum (FWHM) = 20 mm was applied. Surface alignment based on curvature to an average spherical representation, fsaverage5, was used to improve correspondence of measurement locations among subjects. 
2.5.3 Data pre-processing: resting state fMRI
Preprocessing of the resting state fMRI data was carried out using the SPM software package (SPM Version 12.0, http://www.fil.ion.ucl.ac.uk/spm/) based on the MATLAB platform (Version 16.a, https://uk.mathworks.com/products/matlab.html). The individual subject analysis first involved motion correction with six degrees of freedom and slice-timing correction. Structural images were coregistered to the mean functional image via rigid-body transformation, segmented into grey/white matter and cerebrospinal fluid probability maps, and images were spatially normalized to the MNI-152 template. Functional images were spatially smoothed using an 8mm Gaussian kernel. Due to the additional problems associated with motion in functional connectivity analyses[112]; additional denoising procedures were carried out using the CONN functional connectivity toolbox (Version 17.f, https://www.nitrc.org/projects/conn[113]). An extensive motion correction procedure was carried out, comparable to that previously reported in the literature[114]. In additional to the removal of six realignment parameters and their second-order derivatives using a GLM[115], a linear detrending term was applied as well as the CompCor method with five principle components to remove signal from white matter and cerebrospinal fluid[116]. Volumes affected by motion were identified and scrubbed if motion exceeded 0.5mm or global signal changes were larger than z=3. Nine participants that had more than 15% of their data affected by motion were excluded from the analysis [117], and three additional participants were excluded for problems associated with fMRI scanning. Global signal regression was not used in this analysis due to its tendency to induce spurious anti-correlations[118, 119]. A band-pass filter was used with thresholds of 0.009 and 0.08Hz to focus on low frequency fluctuations[120].    
2.6.1 Statistical analysis: behavioural data
We first performed an analysis to investigate the relationship between thought components and task performance, to better understand the relationship between ongoing thought and the task context. We conducted a repeated measures ANOVA in which the average of the four components of thought, and the difference between these thoughts across the two tasks were included as covariates of interest. This was used to understand whether there was any relationship between the levels of thoughts in general and task performance, as well as interactions across the two tasks (types of thought that might be beneficial or detrimental only in one task). The difference scores were included to understand whether flexibility (regulating thought in line with task demands) was related to task performance, as well as to match models exploring relationships to autistic traits (see below). The dependent variable was IES that was calculated as reaction time over accuracy (meaning lower scores equate to better task performance), with the tasks as the two levels. Bivariate correlations were used to further elaborate any significant effects. 
To assess relationships between the level of thoughts during experience sampling and autistic traits in our neurotypical participants, a repeated measures analysis of variance (ANOVA) was carried out. This was due to the large amount of dependence between the five subscales that are designed to measure related co-varying attributes. This included the five AQ subscales as levels of the dependent variable, and the mean scores for each component of thought, as well as their difference scores (mean 0-back minus mean 1-back) as covariates of interest. In this analysis, any between-subject effects can be interpreted as a relationship between that specific covariate and the mean (or total) of the five subscales. Effects that significantly differentiate between the subscales of the AQ would emerge as within-subject effects that could be more specifically probed using follow-up analyses. This method was chosen due to the exploratory nature of our study, in which we have no specific hypotheses and therefore aimed to describe the relationship with autistic traits in general while allowing for the possibility of detecting subscale specific effects. A multivariate ANOVA, on the other hand, would only be able to find relationships to the specific subscales. Bivariate correlations were used to further elaborate any significant effects. Analyses were performed in SPSS (Version 25), and figures were made using the Matplotlib[121] package in Python (Version 3.6.5). The data can be found at: https://github.com/adamgeorgeturnbull/autism. 
2.6.2 Statistical analysis: cortical thickness
Two separate models were created to assess the relationship between the AQ and whole-brain cortical thickness. As with the behavioural analysis, these were used to assess association with AQ total, as well as any specific relationships to the subscales. The first model included the total AQ score as a covariate of interest in a general linear model predicting cortical thickness on a voxelwise basis. The second model was identical to the first, but instead including all five subscales as covariates of interest within the same model. Age and gender were included as covariates of no interest. All results were corrected with a FWE cluster correction at p<.05 and a voxelwise threshold of p<.001. Significant clusters are described in Supplementary Table 1. Brain images in figures are made using BrainNet Viewer[122].
2.6.3 Statistical analysis: functional connectivity
The peak of the significant result from the cortical thickness analysis was used to create a sphere (radius 6mm) using FSL (version 5). This was entered into a seed-based connectivity analysis using the CONN functional connectivity toolbox (Version 17.f, https://www.nitrc.org/projects/conn[113]). In the same way as in the previous analyses, two models were set up: the first using the five subscales as the covariates of interest, and the second using the total score from the AQ. Mean motion (calculated in CONN), was included as a covariate of no interest. The results were corrected with a FWE cluster correction at p<.05 and a voxelwise threshold of p<.001[123]. Significant clusters are described in Supplementary Table 2. The conditions of the European Research Council grant that funded this research do not permit public archiving of individual raw or processed MRI data. There are no conditions by which external researchers who do not have professional access to the York Neuroimaging Centre can access the individual level raw or processed MRI data. The unthresholded images for the functional connectivity analyses can be found at https://neurovault.org/collections/5347/.
3. Results
3.1 Behavioural results
3.1.1 Dimensions of thought
We first applied Principal Component Analysis to the trial level experience sampling data to identify the patterns of covariance captured in our laboratory session. This identified four components of thought (see Scree plot in Figure 1). From their loadings on each of the questions (displayed as wordclouds in the upper panel of Figure 2) these were labelled as Detail, Off-task, Modality, and Emotion. These scores were averaged within each task (0-back, 1-back) to give a mean score per participant per task. Prior to performing t-tests, three participants’ off-task scores in the 0-back were identified as outliers and replaced with the median, as were two participants’ emotion scores in the 0-back and one in the 1-back. Paired t-tests revealed significant effects of task on each of the four components of thought. Participants engaged in significantly more Detailed thought in the 1-back condition (t(198)=-7.378, p<.001), and more Off-task thought in the 0-back condition (t(198)=10.027, p<.001). Additionally, participants thought more in images in the 0-back, and more in words in 1-back (t(198)=4.669, p<.001). Participants also had significantly more positive thoughts in the 1-back (t(198)=-2.146, p=.033). These results are summarised in the lower panel of Figure 2.
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Figure 1. Scree plots showing the eigenvalues of the 4 components of thought following a PCA analysis of the 13 MDES question responses. The change in slope following component 4 was used to select 4 components for further analyses.
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Figure 2. Distribution of thought patterns across tasks. A principal component analysis on the 13 questions asked at each occurrence of an MDES probe revealed four components. These were labelled: Detail, Off-task, Modality, and Emotion, based on the question loadings represented by the wordclouds. The size of the words indicates the magnitude of the loading for that question on each component, with the colour indicating the direction (red is positive, blue is negative). The mean levels of each type of thought in the easy task (0-back) and hard task (1-back) are represented in the bar charts, with error bars representing 95% confidence intervals.
3.1.2 Relationship with task performance
To better characterise the meaning of the patterns of thought, we examined their relationship to task performance (Figure 3, top). We conducted a repeated measures ANOVA in which the average of the four dimensions, and the task difference were included as covariates of interest, in a similar way to the model investigating autistic traits. The dependent variable was IES, with the tasks as the two levels. This revealed a main effect of task (F(1,189)=272.777, p<.001) indicating that performance was more efficient in the 0-back task (mean=0.844, S.D.=0.206) than in the 1-back task (mean=1.069, S.D.=0.246). There were no interactions between task and mean Detail (F(1,189)=0.231, p=.631), mean Modality (F(1,189)=3.661, p=.057), or mean Emotion (F(1,189)=1.331, p=.250). Nor were there any significant interactions between task and any of the thought task differences (Detail: F(1,189)=1.142, p=.287; Off-task: F(1,189)=0.039, p=.843; Modality: (F(1,189)=0.853, p=.357; Emotion: F(1,189)=2.601, p=.108). There was a significant interaction between task and mean Off-task thought (F(1,189)=5.033, p=.026). There was also a significant between subjects effect for mean Modality (F(1,189)=3.969, p=.048). Finally, there were no other between subject effects for either mean thought levels (Detail: F(1,189)=3.105, p=.080; Off-task: F(1,189)=0.188, p=.665; Emotion: F(1,189)=0.005, p=.810) and no significant effect of the differences in thought levels between the tasks (Detail: F(1,189)=0.952, p=.330; Off-task: F(1,189)=0.223, p=.637; Modality(F(1,189)=0.855, p=.356; Emotion: F(1,189)=0.292, p=.590). The within-subject effects can be seen in Table 3 and the between-subject effects can be seen in Table 4.
	Within-subjects effects
	Type III Sum of Squares
	df
	Mean Square
	F
	Sig.

	Task
	5.046
	1
	5.046
	272.777
	.000

	Task * mean detail
	.004
	1
	.004
	.231
	.631

	Task * mean off-task
	.093
	1
	.093
	5.033
	.026

	Task * mean modality
	.068
	1
	.068
	3.661
	.057

	Task * mean detail
	.025
	1
	.025
	1.331
	.250

	Task * detail difference
	.021
	1
	.021
	1.142
	.287

	Task * off-task difference
	.001
	1
	.001
	.039
	.843

	Task * modality difference
	.016
	1
	.016
	.853
	.357

	Task * emotion difference
	.048
	1
	.048
	2.601
	.108

	Error(task)
	3.496
	189
	.018
	
	


Table 3. Within-subject effects for a repeated measures ANOVA looking at the relationship between task performance measured by inverse efficiency and dimensions of thought. This table represents interactions between efficiency in each task condition and levels of thought. Mean levels of thought as well as the difference between the two tasks are included to look at links between types of thinking in general and context-dependent flexibility in types of thinking. There was a significant interaction between task condition and off-task thinking.
	Between-subjects effects
	Type III Sum of Squares
	df
	Mean Square
	F
	Sig.

	Intercept
	362.344
	1
	362.344
	4393.720
	.000

	Mean detail
	.256
	1
	.256
	3.105
	.080

	Mean off-task
	.016
	1
	.016
	.188
	.665

	Mean modality
	.327
	1
	.327
	3.969
	.048

	Mean emotion
	.005
	1
	.005
	.058
	.810

	Detail difference
	.079
	1
	.079
	.953
	.330

	Off-task difference
	.018
	1
	.018
	.223
	.637

	Modality difference
	.071
	1
	.071
	.855
	.356

	Emotion difference
	.024
	1
	.024
	.292
	.590

	Error
	15.587
	189
	.082
	
	


Table 4. Between-subject effects for a repeated measures ANOVA looking at the relationship between task performance measured by inverse efficiency and dimensions of thought. This table represents overall effects between mean efficiency and levels of thought. Mean levels of thought as well as the difference between the two tasks are included to look at links between types of thinking in general and context-dependent flexibility in types of thinking. There was a significant relationship between efficiency and modality of thought.
To follow up these analyses, we extracted parameter estimates from the model to understand the direction of these results. There was a positive relationship between mean Modality and IES in the 1-back (B=.043) that was also positive but weaker in the 0-back (B=.016). To understand if this effect was driven by thinking in images vs. words in each task specifically, we performed bivariate correlations. The relationship was significant for modality during the 1-back and IES in the 1-back (r(197)=.233, p=.001) but not IES during the 0-back task (r(197)=.102, p=.153). There was no relationship between Modality in the 0-back and IES in either task (0-back: r(197)=.048, p=.504; 1-back: r(197)=.127, p=.073). Together these results suggest that thinking more in words during the 1-back task was generally associated with more efficient task performance in this paradigm. In contrast, we found that off-task thought during the 1-back specifically was detrimental to performance as measured by IES in the 1-back (r(197)=.148, p=.037) but not the 0-back task (r(197)=.045, p=.526), while off-task thought in the 0-back was not associated with task performance in either task (0-back: r(197)=-.059, p=.408; 1-back: r(197)=.037, p=.599).
Together these analyses show that during the 1-back task participants tended to describe their thoughts as having greater detail, more related to the task, more in the form of words, and more positive in emotional tone. Moreover, greater on-task thought and the use of words were related to better performance during the 1-back task specifically.
3.1.3 Relationship with autistic traits in neurotypical individuals
Our next analysis examined whether the experience individuals reported during the task was associated with the variance in autistic traits across the sample (Figure 3, bottom). We performed a repeated measures ANOVA in which the mean levels of thought, as well as the difference between the tasks, were included as explanatory variables (a total of 8 scores) and the five subscales of the AQ were included as dependent variables. The within-subject effects can be seen in Table 5 and the between subject effects can be seen in Table 6. 
	Within-subject effects
	Type III Sum of Squares
	df
	Mean Square
	F
	Sig.

	AQ subscale
	811.531
	4
	202.883
	68.525
	.000

	AQ subscale * mean detail
	6.927
	4
	1.732
	.585
	.674

	AQ subscale * mean off-task
	5.695
	4
	1.424
	.481
	.750

	AQ subscale * mean modality
	6.936
	4
	1.734
	.586
	.673

	AQ subscale * mean emotion
	7.781
	4
	1.945
	.657
	.622

	AQ subscale * detail difference
	6.761
	4
	1.690
	.571
	.684

	AQ subscale * off-task difference
	8.994
	4
	2.249
	.759
	.552

	AQ subscale * modality difference
	3.499
	4
	.875
	.295
	.881

	AQ subscale * emotion difference
	6.190
	4
	1.547
	.523
	.719

	Error(AQ subscale)
	2036.970
	688
	2.961
	
	


Table 5. Within-subject effects for a repeated measures ANOVA looking at the relationship between AQ subscale and dimensions of thought. This table represents interactions between AQ subscale and levels of thought. Mean levels of thought as well as the difference between the two tasks are included to look at links between types of thinking in general and context-dependent flexibility in types of thinking. There were no significant effects.
	Between-subjects effects
	Type III Sum of Squares
	df
	Mean Square
	F
	Sig.

	Intercept
	5554.501
	1
	5554.501
	759.141
	.000

	Mean detail
	7.959
	1
	7.959
	1.088
	.298

	Mean off-task
	6.618
	1
	6.618
	.904
	.343

	Mean modality
	49.341
	1
	49.341
	6.744
	.010

	Mean emotion
	.015
	1
	.015
	.002
	.964

	Detail difference
	.044
	1
	.044
	.006
	.938

	Off-task difference
	.647
	1
	.647
	.088
	.767

	Modality difference
	.282
	1
	.282
	.039
	.845

	Emotion difference
	4.129
	1
	4.129
	.564
	.454

	Error
	1258.494
	172
	7.317
	
	


Table 6. Between-subject effects for a repeated measures ANOVA looking at the relationship between AQ subscale and dimensions of thought. This table represents overall effects between AQ mean (or total) and levels of thought. Mean levels of thought as well as the difference between the two tasks are included to look at links between types of thinking in general and context-dependent flexibility in types of thinking. Mean modality was significantly related to total AQ score. 
The results of this analysis revealed a significant between-subjects effect of mean levels of Modality (F(1,170)=6.744, p=.010), indicating a significant relationship with overall autistic traits (see Table 6). There were no significant between-subject effects of the mean levels of the other components (Detail: (F(1,170)=1.088, p=.298; Off-task: (F(1,170)=0.904, p=.434; Emotion: (F(1,170)=0.002, p=.964). There were also no significant between-subjects effects of the difference between levels of thought in the two tasks on autistic traits (Detail: (F(1,170)=0.006, p=.938; Off-task: (F(1,170)=0.088, p=.767; Modality: F(1,170)=0.039, p=.845; Emotion: (F(1,170)=0.564, p=.454). There were no significant within-subjects effects related to the thoughts (no interactions between the thoughts and the specific AQ subscales, see Table 5).
To further understand the meaning of the relationship between Modality and total autistic traits, we performed post-hoc bivariate correlations between mean Modality and total AQ score, as well as the Modality scores separately in each task. These results are summarised in Figure 3 (bottom). These correlations showed a negative relationship between total AQ score and Modality (r(179)=-.198), and this was significant in both tasks (0-back (r(179)=-.206, p=.005),1-back (r(179)=-.175, p=.019)). This indicates that higher levels of autistic traits were linked to thinking more in words in both task conditions.
Finally, since thinking in words was associated with both better performance, and higher autistic traits, we conducted a further exploratory analysis to determine whether autistic traits were related to better performance. We calculated the correlations between AQ total score and task performance, and found no relationship in either task (0-back: r(179)=-.066, p=.381; 1-back: r(179)=-.046, p=.541). This suggests that, while overall autistic traits and task performance are both related to thinking in words, there is no reliable direct relationship between autistic traits and task performance in this neurotypial sample. 
[image: ]
Figure 3. Descriptions of thoughts in the form of words is related to task performance and autistic traits. Modality of thought during 1-back performance, but not 0-back performance, is significantly related to inverse efficiency in both the 0 and 1-back tasks. Mean modality of thought is also related to the total score on the AQ, with thinking in words significantly related to more autistic traits. This relationship holds across both tasks. The question loadings that make up “Modality” are represented by the wordcloud, showing that this component is made up of a large positive loading on thinking in images and a large negative loading on thinking in words.
3.2 Neural analysis
3.2.1 Cortical thickness
Our first exploratory neural analysis examined whether there was an overall relationship between autistic traits and whole-brain cortical thickness in a neurotypical sample. To do so we performed two GLM analyses (both including age and gender as covariates of no interest), one to detect overall relationships to the total AQ score, and another to detect specific relationships to each of the specific subscales. There were no significant effects of AQ total score on cortical thickness that passed whole brain correction (FWE cluster correction at p<.05 and voxelwise p<.001). In our second model there was a significant effect of AQ social skills, which revealed a cluster in the left lingual gyrus (LG) in which mean cortical thickness increased with the social skill component of the AQ (left side of Figure 4: increased score is related to greater difficulties in social skill/motivation). Notably, cortical thickness within the LG has been linked to autism in prior studies using clinically defined samples[89]. The specific location and size of this result is summarised in Supplementary Table 1.
3.2.2 Functional connectivity
Having determined a region linked to variation in social deficits associated with autism, we next explored its functional connectivity and whether it varied with population variation in autistic traits. First, we performed a resting state connectivity analysis with motion as a covariate, and used the unthresholded result to perform a meta-analytic decoding using Neurosynth[124]. As well as expected terms such as “Visual”, this region also appeared to relate to motor performance, as well as speech production (captured by “Speech” as well as “Vocal”).
Next, we examined whether this region’s functional behaviour was linked to autistic traits in two exploratory models. These models were set up in a similar way as for cortical thickness: one with total AQ score and one with all five subscales. For the analysis of overall levels of autism this model identified two clusters in motor cortex with stronger functional coupling for individuals who were higher on overall scores on the AQ (see Figure 4). Performing a meta-analytic decoding of these regions using Neurosynth, identified similar terms including “speech” as well as action related words such as “execution”, “coordination”, as well as “motor imagery”. Our second analysis identified that stronger functional connectivity between the LG and two clusters in ventral medial prefrontal cortex (vMPFC) and medial superior parietal lobule (mSPL) was related to problems in the imagination subscale of the AQ (see Figure 5). Neurosynth decoding of these results highlighted terms linked to social processing (“theory of mind”, “mentalizing” and “action observation”)[124]. These results are summarised in Supplementary Table 2. 
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Figure 4. Cortical thickness in lingual gyrus (LG) and functional connectivity between this region and motor cortex are related to autistic traits. A cortical thickness analysis identified a region of left LG that was positively related to autistic social traits as measured by the AQ (left panel). Using the peak of this region as a seed, a functional connectivity analysis found that the strength of correlations between this seed and two clusters in bilateral regions of motor cortex is linked to general levels of autistic traits (right). A meta-analytic decoding of the relationship between AQ total score and functional connectivity from this seed identified sensorimotor terms that are represented in the wordcloud (bottom middle). The intrinsic functional connectivity of the left LG showed that it was related to sensorimotor networks (middle top). The results were corrected with a FWE cluster correction at p<.05 and a voxelwise threshold of p<.001.
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Figure 5. Functional connectivity between lingual gyrus (LG) and medial frontal and parietal regions are related to levels of deficit in imagination. Using the peak of the LG (left panel) as a seed, a functional connectivity analysis found that stronger correlation with clusters in ventromedial prefontal cortex and medial superior parietal lobule are linked to deficits in imagination linked to autism (right). A meta-analytic decoding of the relationship between AQ imagination score and functional connectivity from this seed identified terms related to social processing and action observation that are represented in the wordcloud (bottom middle). The intrinsic functional connectivity of the left LG showed that it was related to sensorimotor networks (middle top). The results were corrected with a FWE cluster correction at p<.05 and a voxelwise threshold of p<.001.

3.2.3 Relationship between neural and experiential correlates of autism
So far our analysis has identified correlates of autistic traits in neurotypical individuals in two domains: experiential (greater tendency to think in words) and neural (increased cortical thickness in the LG and greater connectivity between this region and motor cortex, as well as vMPFC/mSPL). Our final analysis explored whether these patterns of association captured common variance in autistic traits. Prior to these analyses, one participant’s connectivity score to left motor cortex was determined an outlier and replaced with the median. We first performed simple bivariate correlations between all the variables of interest (see Supplementary Table 3). These revealed a significant negative relationship between mean Modality and FC between the left LG and left motor cortex (r(163)=-.212, p=.006) as well as a correlation between left LG FC to right motor cortex with the task difference in off-task thought (r(163)=.198, p=.011). Additionally, a weak relationship was identified between cortical thickness in the left LG and the difference in modality between the 0-back and 1-back (r(163)=-.155, p=.046), indicating that greater cortical thickness was more strongly related to thinking more in words during the 0-back (where on average this type of thinking is less common).
The association with the modality of thought indicates that overall levels of autistic traits within our sample were linked to higher connectivity between the left LG and left motor cortex, and to thinking in words. To formally understand this relationship we conducted a univariate ANOVA in which total AQ score was the dependent variable and mean FC (left LG to left motor cortex), overall Modality of thought, and their interaction were predictors. In this model, Modality no longer significantly predicted AQ total score (F(1,161)=3.718, p=.056), but both FC (F(1,161)=9.456, p=.002) and the interaction between FC and Modality were significant (F(1,159)=8.486, p=.004). To visualise this effect we separately plotted the correlation between AQ and the modality component for individuals above and below the median FC score (see Figure 6). Bivariate correlations between the AQ total score and Modality were significant for the high FC group (r(81)=-.285, p=.009), but not for the low FC group (r(80)=-.058, p=.603, see Figure 6). This suggests that a significant part of the association between modality and autistic traits could be explained by the functional connectivity between the LG and the functional connectivity with motor cortex.  
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Figure 6. Functional connectivity between left LG and left motor cortex moderates the relationship between thinking in words and autistic traits. Autistic traits were found to be related to functional connectivity between the left LG and left motor cortex (top left) as well as thinking in words (top right). Additionally, the same functional connectivity was related to thinking in words (top middle). The relationship between thinking in words and autistic traits was explained by the functional connectivity between LG (bottom left). A median split based on functional connectivity (bottom right) shows that the relationship between thinking in words and autistic traits was only present for individuals with high functional connectivity between the left LG and left motor cortex. 
4. Discussion
In this exploratory study, we found that autistic traits in a neurotypical population measured by the AQ were related to thinking more in words during the performance of a simple laboratory task. This effect was present in both easier and more difficult conditions, suggesting this pattern is not dependent on task context. In addition, we found that in general people thought more in words during the 1-back task, and this type of thought was found to be a beneficial strategy in the harder 1-back task when information has to be maintained in working memory. We also found that social deficits linked to autism were associated with greater cortical thickness in the LG and that the functional connectivity between this region and motor cortex was higher for individuals who were high on autistic traits generally. Importantly, the relationship between autistic traits and thinking in words was moderated by connectivity between a region of left LG and the left motor cortex: a link between autism and thinking in words was only observed for individuals with high connectivity between these two regions. Additionally, it was found that connectivity from the same region of left LG was related to ASD-associated imagination difficulties, so that higher connectivity was linked to a greater difficulty in imagining as measured by the AQ.
Our study suggests that autistic traits in neurotypical individuals are associated with thinking more in words in a manner that is unaffected by task context. This pattern is not consistent with views of autism as linked to the excessive use of imagery or “thinking in pictures”[57], however, it is consistent with finding that individuals with ASD use verbal strategies to mediate verbal short-term memory[68]. It is important to keep in mind that our paradigm uses shapes and asks for a location decision, so it has important visual requirements. Two studies have used a similar n-back design in individuals with autism to understand verbal vs. visual processing, one using visually presented letters[125] and one using faces[126]. While these studies present evidence for increased use of image-based processing, they found no behavioural differences. The interpretation of increased visual processing was made purely through reverse inference of differences in the networks recruited in fMRI data, which should be interpreted with caution[127]. Our result of increased thinking in words adds to the complex literature on this topic[57, 68, 128, 129], and further suggests that caution should be applied to interpreting “superficially similar behaviour” as indicating the underlying strategies[57], when these processes can be relatively directly characterised using techniques such as MDES. Despite these points, it is still surprising that the relationship we identified was in the direction of increased thinking in words. While studies have challenged the idea that verbal strategies are deficient in autism[57, 68], there is little evidence to suggest that there is enhanced use of verbal processing associated with autistic traits. This result could also relate to the use of a neurotypical sample with low levels of autistic traits in the present study, however, the fact that several studies show enhanced visuospatial processing in relation to the AQ still makes it surprising in this sample[62, 63]. It may be that this result is specific to the use of simple verbal strategies to perform working memory tasks and does not generalise to overall experience in autistic individuals. Studies using experience sampling in different contexts, such as daily life, would help to answer these questions, and it will be important to replicate these results in individuals with ASD diagnoses before any strong conclusions are drawn. 
[bookmark: _GoBack][image: ]Beyond modality of thought, our results are also consistent with evidence that  autistic traits may be associated with inflexibility in patterns of cognition. Our study shows that while modality of thought normally varies with task conditions in our paradigm, this flexible change was not reflected in the links to autistic traits observed in both conditions of our study. Increased word use in individuals with higher self-rated autistic traits independently of task condition suggests a pattern that is broadly consistent with the association between cognitive inflexibility and autism, compromising effective selection and deployment of appropriate cognitive strategy[130]. Figure 7. The region of left lingual gyrus (LG) linked to autistic social traits shows consistently different activation in clinical autistic populations. The cluster identified by our cortical thickness analysis (purple) is close to a region of left LG consistently found to show different activation in autistic individuals during visual processing tasks (yellow)[63].

At the neurobiological level, we extended prior observations of increased cortical thickness in the left LG in autistic individuals to found in meta-analyses of the literature[89, 90] to autistic traits in a neurotypical population. While this was found specifically related to social deficits, functional connectivity of this region to the motor cortex was related to autistic traits in general. Since the LG is consistently found as both structurally and functionally different in ASD[89, 90], this highlights an important overlap between our neurotypical sample and prior studies with a more clinical focus. Notably, the location of the region of left LG that shows consistent deactivation to visual processing tasks in ASD[90] is very close in location to the region identified as related to social difficulties in our analysis (see Figure 7). Importantly, our analysis found that LG to motor cortex connectivity explained the links between autism and thinking in words. In our neurotypical sample, only those in the high connectivity group showed the association between autistic traits and thinking in words. This pattern of results suggests that the emphasis on the verbal modality in participants with higher autistic traits may be partly related to their underlying functional and structural neural architecture.
More generally, one important theme from our study is that the neural regions linked to autistic traits in neurotypical individuals tended to fall either within regions related to primary sensory processing (left LG and motor cortex) or regions related to higher order processing (vMPFC and mSPL). This is in broad agreement with evidence of aberrant brain processing in autism which often identifies changes in both unimodal[73-81] and transmodal cortex[82-88]. It is possible that these types of deficit are related: a recent study highlighted differences in autism at both ends of a unimodal-transmodal continuum, and suggested that the normal segregation between these systems can breakdown in this condition[131]. From our study, the increased connectivity within the sensorimotor system and the ventral medial pre-frontal cortex may reflect this absence of segregation. Problems segregating aspects of cortex important for higher order thought from those involved in acting and doing, may explain some of the features of autism since it could promote sensory processing[132], while impeding the decoupling of attention from external information that is thought to be important in processes such as theory-of-mind[27, 96, 133, 134]. This could explain, for example, why autistic individuals struggle to imagine characters in books since this requires attention to go beyond the concrete visual information that makes up the words on the page, and why autistic individuals have difficulties imagining the intentions of people during social interaction, since this often depends on motives that extend beyond the moment.
While we have identified a relationship to task context that can be understood within models of autism as characterised by an inability to use context to flexibly adjust behaviour and thinking in line with the demands of the external environment[54], it is important to note that we found no relationship to off-task thought itself. Participants seem to regulate levels of all four dimensions of thought across the two task conditions, suggesting a relationship to the task for all four thought patterns. However, while we found some evidence of context-related inflexibility associated with modality, it is surprising that the dimension most clearly related to the task in both its loadings and size of modulation showed no such effect. This may simply be due to the fact that this neurotypical sample has a relatively low level of autistic traits, and these difficulties in cognitive flexibility are more apparent in autistic individuals. It is important to extend this type of experience sampling technique into clinical samples to allow us to understand the mappings between these data and more severe aspects of autistic symptomology. Alternatively, recent evidence has cast doubt on the idea that autism is characterised by cognitive inflexibility as measured experimentally[135]. Interpreting our results with both this evidence and theories of contextual blindness in mind, it may be that the off-task component is more related to attention, a process that appears unchanged in autism[136], than contextual dependent flexibility per se. Utilising contextual clues to adapt a beneficial task strategy, the process we believe may underlie the modality result, may require a more abstract contextual cueing that could be negatively related to autistic traits. Further research will be needed to fully unpack these clearly overlapping processes that are difficult to disentangle using the current approach. 
4.1 Limitations
Although our study provides insights into the nature of the pattern of thoughts that are linked to autistic traits in a healthy population, it leaves many important questions unanswered. First, the use of a non-clinical sample of undergraduates, with a small age range and a large number of females makes comparison between these results and those in the wider autism literature difficult. There are some studies that suggest overlapping trends in neural circuitry in healthy individuals with higher levels of autistic traits as those in individuals diagnosed with ASD[14-16, 137], but this literature is relatively limited. Second, it is important to note that, while the AQ is a widely used measure of autistic symptoms that correlates with other published screening measures of ASD[98, 99], it does not have the sensitivity of gold-standard clinical assessments such as the ADOS-G or ADI-R[100]. Additionally, the levels of autistic traits are low in our sample, meaning that several effects we find could be specific to this population. Extending this research into clinical populations is essential before any conclusions can be drawn about these processes in autism. 
Fourth, we used a cross-sectional approach in which we related intrinsic brain organisation to traits measured outside the scanner. This approach has identified links between brain connectivity and both autistic traits[14-16] and spontaneous thought[26, 28, 29, 31, 32, 94, 138-141]. However, it is important to note that studies like the current one describe traits, rather than momentary states that often occupy our minds in daily life. Accordingly, it will be important in the future to examine associations between patterns of neural activity and momentary measures of experience in individuals with and without a formal diagnosis of ASD.
Fifth, we also found a pattern of increased connectivity to both the vMPFC and mSPL as associated with specific problems in imaginative deficits associated with autism. A cognitive decoding of this relationship suggests that the relationship between connectivity and imagination is driven by hyperconnectivity of the left LG to regions involved in social processing such as “action observation” and “theory of mind”. There was no relationship between this pattern of connectivity and thinking during task performance, suggesting that this is not related to the changes in the modality of thought we found that was linked to autistic traits. It the future it will be important to understand whether these patterns of functional connectivity are related to specific behavioural or cognitive outcomes in autism.
Finally, our study is exploratory in nature, and several of the follow-up analyses are performed on the basis of the results of our initial findings. We have attempted to mitigate the negative consequences of this by performing models that include the same predictors across behavioural and neuroimaging modalities. However, this exploratory process is one that increases the likelihood of our findings being specific to this specific. While we believe the exploratory nature of this study was appropriate given the lack of studies using experience sampling and fMRI in relation to autistic symptomology, it will be particularly important to replicate these findings using pre-specified, falsifiable research questions based on the results of the current study. 
5. Conclusion
In conclusion, our analysis of a group of neurotypical undergraduates found that autistic traits were related to thinking in words during an alternating 0-back, 1-back task. Thinking in words was shown to be a successful strategy for task performance in the harder 1-back task, but analysis suggests this was driven by different variance to that linking this pattern of thoughts to autistic traits. Structural and functional correlates of autistic traits were identified in both sensorimotor regions (e.g. LG), and in transmodal regions (e.g. ventral mPFC). Importantly, connectivity between the left LG and left motor cortex was found to moderate the relationship between autistic traits and the modality of experience, suggesting a plausible biological basis for the tendency for neurotypical individuals with higher levels of autistic traits to think in words rather images.
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