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Abstract

Collection and analysis of self-reported information on an or-
dered Likert scale is ubiquitous across the social sciences.
Inference from such analyses is valid where the response scale
employed means the same thing to all individuals. That is, if there
is no differential item functioning (DIF) present in the data. A
priori this is unlikely to hold across all individuals and cohorts
in any sample of data. For this reason, anchoring vignettes have
been proposed as a way to correct for DIF when individuals self-
assess their health (or well-being, or satisfaction levels, or disabil-
ity levels, etc.) on an ordered categorical scale. Using an example
of self-assessed pain, we illustrate the use of vignettes to adjust
for DIF using the compound hierarchical ordered probit model
(CHOPIT). The validity of this approach relies on the two un-
derlying assumptions of response consistency (RC) and vignette
equivalence (VE). Using a minor amendment to the specification
of the standard CHOPIT model, we develop easy-to-implement
score tests of the null hypothesis of RC and VE both separately
and jointly. Monte Carlo simulations show that the tests have
good size and power properties in finite samples. We illustrate
the use of the tests by applying them to our empirical example.
The tests should aid more robust analyses of self-reported survey

outcomes collected alongside anchoring vignettes.
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1 | INTRODUCTION

It is common in social surveys to use subjective categorical scales to elicit information in the form
of self-reports; for example, levels of health, work disability or subjective well-being. Responses to
such questions are often used to study differences across countries or social or demographic groups. A
problem with relying on subjective responses is that individuals are likely to place different interpre-
tations on the response scale. Information on health status might, for example, be obtained using the
question: Overall, how would you rate your health? Respondents are asked to tick one of (typically)
five boxes ranging from very bad through to good to excellent. Variation in responses will be due, in
part, to genuine health differences, but may also be due to respondents applying different meanings to
the available response categories. This type of reporting behaviour is commonly referred to as differ-
ential item functioning, or DIF (Holland & Weiner, 1993; Murray et al., 2002).

Figure 1 illustrates DIF using an example of a self-reported question about pain. Assume we have
two respondents who are asked the question ‘Overall in the last 30 days, how much of bodily aches or
pains did you have?’ and are instructed to respond by selecting one of the following: ‘None’, ‘Mild’,
‘Moderate’, ‘Severe’ or ‘Extreme’. In the diagram, the vertical line represents the underlying latent
scale for pain. DIF is depicted by the different locations of the individual-specific boundary parame-
ters along the latent scale, p to ;. Although respondents have identical levels of latent pain (indicated
by the bold arrows), respondent B reports mild pain, while respondent A reports no pain. Without
knowing the locations of the boundary parameters, researchers would typically conclude that B has
worse pain than A.

A number of approaches have been proposed to test for DIF. In the educational literature, where
DIF is used to refer to test questions (items) in which individuals with the same underlying ability
have differing probabilities of answering a question correctly; popular approaches include the Mantel—
Haenszel procedure, item response theory and logistic regression-based methods (Holland & Thayer,
1988; Shepard er al., 1981; Swaminathan & Rogers, 1990). The basic idea is to compare the proba-
bility of answering a question correctly across different groups of individuals, while conditioning on
underlying ability. A well-known issue is the difficulty in measuring the underlying ability of interest.
For example, ability is commonly measured in terms of other test items (e.g. overall test scores) which
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FIGURE 1 Example of DIF in self-assessed pain
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themselves may be subject to DIF. Moreover, the item in question may depend on other forms of abil-
ity which are unobserved to the researcher (Clauser & Mazor, 1998).

Other methods include anchoring-based approaches, where common anchors are used to fix the
responses of different individuals to the same response scale (Aldrich & McKelvey, 1977; Groseclose
et al., 1999; Tay et al., 2013). The main challenge here is in selecting appropriate anchors that are
completely free of DIF. The anchoring vignette method (King et al., 2004) addresses this issue by
exploiting DIF in the responses to the vignette questions to adjust for DIF in the response of interest.

Anchoring vignettes have received wide attention in the applied literature—for example, in self-re-
ported data on health status (Bago d’Uva er al., 2008; Grol-Prokopczyk et al., 2011; Peracchi &
Rossetti, 2012; Soloman et al., 2004; Vonkova & Hullegie, 2011); healthy behaviours (Van Soest
et al., 2011); satisfaction with health system performance (Rice et al., 2012; Sirven et al., 2012); work
disability (Angelini et al., 2011; Kapteyn et al., 2007, 2011; Paccagnella, 2011); political efficacy
(King et al., 2004); job satisfaction (Kristensen & Johansson, 2008); life satisfaction (Angelini et al.,
2014); satisfaction with income (Kapteyn ez al., 2013) and consumer satisfaction with products and
services (Rossi ef al., 2001). Together with their own situation, respondents are asked to evaluate one
or more vignettes describing situations of hypothetical individuals with a given level of the domain of
interest (e.g. pain). Responses to the vignettes are then used to anchor, or adjust for bias introduced by
DIF, such that interpersonal comparisons of the self-reported outcome can be appropriately examined.
This is often achieved using the compound hierarchical ordered probit model (CHOPIT: see Section
4.2).

Adjusting for DIF using the vignettes approach is valid under the two identifying assumptions
of response consistency (RC) and vignette equivalence (VE). RC assumes that individuals use the
same mapping from the underlying latent scale to the available response categories when assessing
the self-assessment as they use when assessing the corresponding vignettes. This assumption allows
the relationship between reporting behaviour and the characteristics of respondents identified via the
vignettes to anchor responses to self-reports. VE assumes that ‘the level of the variable represented
by any one vignette is perceived by all respondents in the same way and on the same unidimensional
scale’ (King et al., 2004, p. 194). This implies that respondents agree on the underlying latent level of
the concept under scrutiny—depicted by the hypothetical situation described by the vignette—except
for random error.

We contribute to the literature by suggesting an amended specification to the usual vignette-based
approach, which lends itself to score-based tests of the assumptions of RC and VE. The proposed score
tests are informative in guiding model specification when modelling self-assessed ordered categorical
outcomes using the CHOPIT approach. For example, if joint failure of both RC and VE is due to a fail-
ure of VE rather than RC, then this suggests that the use of alternative, or different subsets of vignettes,
might be appropriate. It may also suggest that the vignette questions require refinement to better aid
survey respondents’ interpretation. Failure of RC, in contrast, potentially suggests a re-specification
of the thresholds in the CHOPIT model. As is typical with specification tests, the score test relies on
standard parametric assumptions underlying the CHOPIT model: that the model is correctly specified,
with no omitted variables, endogeneity bias and so on.

The empirical literature that relies on vignettes to adjust for DIF in self-reported outcomes rarely
conducts comprehensive validity checks of the approach. This is likely to be due to a previous lack
of readily implementable statistical tests of RC and VE. We examine, via Monte Carlo experiments,
the finite sample properties of our proposed test(s), and find that they are correctly sized and have
appropriate power properties as one moves further from the relevant null hypothesis. We illustrate the
use of the tests in an application to SHARE data. In addition, we compare our score test to a minimum
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distance estimator developed by Peracchi and Rossetti (2013) and show that the score test appears to
have greater power in detecting departures from the null of RC and VE.

The paper is organised as follows. Section 2 introduces the SHARE data, the self-reported health
variable and corresponding vignettes, and illustrates the presence of DIF. Section 3 sets out the mod-
elling approaches for ordered categorical outcomes in the absence of DIF and Section 4 in the pres-
ence of DIF. The latter relies on information contained within the responses to the vignettes. Our
contributions are developed in Section 5, where we propose an amendment to the usual statistical
approach to account for DIF which lends itself to simple score tests of both VE and RC individually
and jointly. The tests are also derived in this Section. We apply the amended specification to SHARE
data in Section 6 and implement the score test. Section 7 sets out the finite sample properties of the
amended specification and test procedures. Section 8 provides concluding remarks.

2 | AN EMPIRICAL APPLICATION TO SELF-REPORTED
PAIN FROM SHARE

This section introduces SHARE data including the categorical health outcomes to measure pain. Using
the set of corresponding vignettes for pain, we show prima facie evidence of DIF in these data.
SHARE is a multidisciplinary and cross-national panel dataset of individuals aged 50 or above and
over time has expanded to covering 28 countries. The survey collects information on health, socio-
economic status, and social and family networks. A particular virtue of SHARE is that information on
self-reported health together with vignettes are included within the survey.

In the context of a diverse continent like Europe, differences in language and cultural and social
norms are likely to lead to differences in the way individuals respond to survey instruments. The ap-
plication of anchoring vignettes is, therefore, important for enhancing cross-country comparability.
Together with self-assessments, vignettes on health were collected on subsamples of respondents
in the first two waves of SHARE. The first wave contained three vignette questions for each domain
of health and the second wave contained a single vignette only. Due to the increased number of vi-
gnettes available, which is helpful to illustrate how the score test might be applied in practical appli-
cations, we use data only from the first wave. Data from Belgium, France, Germany, Greece, Italy, the
Netherlands, Spain and Sweden were included in the subsample responding to the self-assessed health
questions and associated vignettes. SHARE data has been popular for studies investigating differences
in reporting behaviour and more generally the method of anchoring vignettes (e.g. see Bago d’Uva
et al. (2008), Angelini et al. (2012), Paccagnella (2013), Peracchi and Rossetti (2013), an Van Soest
and Vonkova (2014), Jones et al. (2018)).

We consider data for the health domain representing pain and restrict our analysis to respondents
aged 50-80 years. In addition to a self-assessment component, respondents were also asked to rate
three vignettes for pain, representing different levels of severity, using the same response categories
(‘None’, ‘Mild’, ‘Moderate’, ‘Severe’ and ‘Extreme’). Appendix A contains the self-assessment ques-
tion together with the vignettes, and Table 1 reports the frequencies for the responses observed in the
data. The level of pain described in each vignette is increasing from vignette 1 (least pain) to vignette 3
(most pain). Due to the low prevalence of responses in the ‘Extreme’ category for the self-assessment
and the first vignette, the responses for ‘Severe’ and ‘Extreme’ have been collapsed.

For modelling the self-assessed pain outcome, we employ the set of covariates presented in Table
2. These represent plausible determinants and indicators of pain and also feature in Peracchi and
Rossetti (2013) who also used the SHARE data to illustrate their minimum distance estimator of the
underlying assumptions of the CHOPIT model. As we use the data as an illustration of modelling
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TABLE 1 SHARE: Self-assessed pain and corresponding vignettes

SAH Vignette 1 Vignette 2 Vignette 3
(m1) (m2) (m3)
None 33.64 1591 2.26 1.13
Mild 35.95 56.60 17.96 4.60
Moderate 22.30 21.99 50.08 25.67
Severe/extreme 8.10 5.50 29.69 68.60

TABLE 2 SHARE: Descriptive statistics®

Mean Std Dev Min Max
Pain 1.049 0.939 0 3
Male 0.468 0.499 0 1
AnyCond 0.712 0.453 0 1
Grip35 0.531 0.499 0 1
EducPS 0.209 0.407 0 1
Age 50-65 0.643 0.479 0 1
Age 66-75 0.279 0.448 0 1
Age > 75 0.078 0.268 0 1

*Sample size, N = 3802.

self-reported outcomes in the presence of DIF, and the proposed score test for RC and VE in the
CHOPIT model, rather than the substantive focus of the paper, we choose to keep the model parsimo-
nious. The CHOPIT approach (see Sections 3 and 4 for more details), requires two sets of covariates;
those which affect the underlying latent scale of the construct of interest, x, and those which shift the
inherent boundary parameters of the model, z. In the absence of persuasive information on appropri-
ate exclusion restrictions, we set x = z (this is commonplace in the literature). Thus, the specification
includes binary variables for males (Male: 47% of our sample); respondents aged 6675 years (Age
66—75: 28%) and aged 76 and over (Age > 75: 8%); post-school education (EducPS: 21%); and the
presence of health conditions (AnyCond: 71%). An indicator variable representing below average hand
grip strength is also included (Grip35: 53%), which is based on up to four measurements conducted by
a trained interviewer. Our working sample is 3802 individuals.

As the responses to the survey self-reports of pain are ordinal, they can be modelled as a function
of covariates using a ordered probit (OP) model, as set out in Section 3. This approach assumes that
individuals are using a given fixed reporting scale that does not differ across respondents, that is, that
DIF does not exist in the data. We can illustrate the likely extent of DIF in the self-reports by sim-
ply considering responses to the set of vignettes. Since the vignettes describe fixed levels of a given
domain that are provided to all respondents, variation in reporting on the vignettes by characteristics
of individuals is indicative of systematic reporting behaviour. Table 3 shows reporting differences by
covariates for each of the three vignettes. For each characteristic, the table reports the proportion of
respondents classifying the vignette as either no or mild difficulties. For gender, Pearson chi-squared
statistics and associated p-values are provided, while the corresponding chi-squared statistic from
Kendall’s 7 and associated p-values are provided for the remaining characteristics.

The results in Table 3 indicate the likely presence of DIF in the levels of all covariates considered
in response to at least one of the three vignettes. For example, women are more likely to rate vignette 2
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TABLE 3 Vignette classification by respondent characteristics
Vignette 1 Vignette 2 Vignette 3
(m1) (m2) (m3)

Male 0.73 0.18 0.052
Female 0.72 0.22 0.064

22 (p-value) 1.24 (0.265) 5.27 (0.022) 2.39 (0.122)
AnyCond =0 0.75 0.22 0.072
AnyCond = 1 0.71 0.19 0.051

22 (p-value) 5.62 (0.018) 1.72 (0.190) 6.60 (0.010)
Grip35=0 0.74 0.19 0.058

Grip35 =1 0.71 0.21 0.057

22 (p-value) 4.82 (0.028) 0.73 (0.393) 0.013 (0.910)
EducPS =0 0.72 0.22 0.063
EducPS =1 0.74 0.15 0.038

23 (p-value) 0.62 (0.431) 20.08 (0.000007) 7.66 (0.006)
Age 50-65 0.74 0.19 0.056

Age 66-75 0.71 0.22 0.062

Age 75+ 0.70 0.24 0.054

22 (p-value) 3.72 (0.054) 5.69 (0.017) 0.267 (0.605)

as no or mild pain compared to men; individuals reporting no health conditions are more likely to rate
vignette 1 (least severe vignette) as no or mild pain than counterparts with health conditions; the more
educated are less likely than the less educated to rate vignette 3 (most severe vignette) as no or mild
pain. Younger respondents are more likely than older respondents to report vignette 1 as no or mild
pain and less likely to rate vignette 2 as no or mild pain. These results provide prima facie evidence of
the use of different reporting scales, or DIF, in respondents assessments which is likely to also exist
in the self-assessments of the same health construct.

3 | MODELLING ORDERED OUTCOMES IN THE ABSENCE
OF DIF

Our measures of pain are responses on a categorical (Likert) scale which can be estimated using or-
dered (probit or logit) response models (Greene & Hensher 2010). Underlying the OP model (indeed,
both) is a latent variable, y*, which is a linear (in unknown parameters, B) function of observed charac-
teristics ¥ with no constant term (throughout we denote a no-constant subvector/matrix by use of ‘~’,
and denote a subvector matrix containing a constant by the absence of ‘~’). The term ¢, represents a

standard normal disturbance term, such that
Y =¥p+e,, (1)
where y* is mapped into observed j = 0, ..., J—1 outcomes via the usual mapping

y=jif p;_y <y*<u; forj=0,...,J-1, 2)
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where p_; = —ooand p;_; = + oo, and where to ensure well-defined probabilities; y;_; < p;, Vj. The ex-
pressions for the resulting probabilities and likelihood functions are well-known (e.g. see Greene and Hensher
(2010)). Applying the OP model to the self-reported outcomes for pain yields the set of estimates presented
in column (1) of Table 4. In general, levels of pain are lower for males compared to females, and for respon-
dents who have a post-school qualification. Respondents reporting the presence of health conditions experience
greater levels of pain, as do those with below average grip strength. Pain also increases with age (test of joint
significance: ;(% = 6.74; p = 0.034). However, for the OP coefficients to be unbiased, we need to assume that
all respondents use the same reporting scales such that the boundary parameters, 4, are common to all respon-
dents. This implies an absence of DIF. As we have seen in Table 3, this is unlikely to be the case.

4 | MODELLING ORDERED OUTCOMES IN THE
PRESENCE OF DIF

We now consider extensions to the OP model in the presence of DIF. We first describe an approach
that does not rely on the use of vignettes, but which imposes strong assumptions. We then consider an
approach that incorporates information from vignette responses to identify the model. We conclude
the Section with a discussion of approaches used in the literature to investigate the identifying as-
sumptions of the vignette approach.

4.1 | Hierarchical ordered probit model (HOPIT)

Differences in reporting scales across individuals can be accommodated by specifying individual-
specific boundary parameters, y;; (see, e.g. Terza (1985), Pudney and Shields (2000), Boes and
Winkelmann (2006), Greene and Hensher (2010), Greene et al. (2014)). This can be achieved by
allowing the boundaries to depend on a set of observed characteristics z; such that y;; = zly;. Note,
however, to secure identification the approach imposes the restriction that z; & x;.

TABLE 4 Ordered response models of pain

Ordered probit CHOPIT

@) 2
N = 3802 Coef SE Coef SE
Male —0.164 0.049 —0.244 0.061
AnyCond 0.627 0.042 0.588 0.051
Grip35 0.236 0.050 0.173 0.062
EducPS —0.129 0.045 —0.168 0.055
Age 66-75 0.064 0.041 0.077 0.051
Age > 75 0.162 0.068 0.149 0.084
Boundaries
i 0.057 0.057
Uy 1.060 0.058
Uz 2.006 0.064

Log-likelihood —4624.80 —8824.15
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To ensure coherent probabilities most authors (see, e.g. Greene and Hensher (2010)) adopt the
Hierarchical Ordered Probit (HOPIT) approach by specifying the boundaries as

!
Hio =%;Y0-

1 (3)
Hij = Hij +expEy).j=1,....J=2.

This model can be estimated by maximum likelihood techniques, where the y; in Equation (2) are simply
replaced by those of Equation (3).

4.2 | The compound hierarchical ordered probit model

Empirically, it is often difficult to justify exclusion restrictions between x and z. This can be seen in
the above example, where from Table 3 we infer that, for example experiencing health conditions
is associated with DIF, but also from Table 4 that health conditions are a significant predictor of
pain. However, for any variable that appears in both x and z, since the first threshold in Equation
(3) is specified linearly, the corresponding elements of y, and P are not separately identified in the
absence of further information. Identification can be resolved by the availability of (anchoring)
vignettes, which are used in conjunction with the main self-report of interest. The following is an
example of a vignette for pain taken from the SHARE (vignette m1 in Appendix A.1):

“Karen has a headache once a month that is relieved after taking a pill. During the head-
ache she can carry on with her day-to-day affairs. Overall in the last 30 days, how much
of bodily aches or pains did Karen have?”

The categories (and scale) available to respondents are the same as those used to self-assess levels of
pain, namely, in our example, None, Mild, Moderate, Severe and Extreme.

Assume that for a randomly chosen individual, the response to the self report on the latent scale, y*
, is given as model (1) and the corresponding response to the k™ vignette, v}, as

vi=at+g, k=1,...K, 4)

where g, ~ N(0, o-i). Note that the number of vignettes available (K) will vary across surveys used, but in

general is likely to be small (typically < 3). When more than one are available (K > 1), there is a trade-off
between improved model identification due to using more vignettes, and potentially increased bias due to
the heightened probability that one may violate the requisite assumptions (described below). Indeed, the
testing procedures developed in this paper would appear to be fundamental in the choice of vignettes used,
and hence K, where there are multiple available in a given dataset.

The observed response to the self-report, y, and to each vignette, v,, is determined as in
Equation (2) before, by considering their relationship with the boundary equations. Heterogeneity
across these response scales is once more accommodated by specifying the boundaries as a func-
tion of variables, z (see Equation (3)). In this set-up, we do not need to impose exclusion restric-
tions between x and z and it is common to assume x = z. However, to aid exposition, we retain
the labelling x and z throughout.

We refer to the HOPIT model with vignettes as the CHOPIT model (see, e.g. Vonkova and Hullegie
(2011), Paccagnella (2013), Van Soest and Vonkova (2014)). Identification of the model follows from
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the assumptions of RC and VE (King et al., 2004). In practice, RC implies that the boundary param-
eters are the same across the self-report of interest and all K vignettes. Formally, RC imposes the
following restriction

Yik=Yo0s j=0,..,J-2; k=1,..,K, 5)
where k = 0 indexes boundary equations for the self-report of interest (¢, ..., #;p0)andk=1,..., K,
the corresponding boundary equations for the vignettes, (tg, ..., #;_p ;). Note that this equivalence of

boundary parameters across the self-report of interest and vignette equations necessitates that all are mea-
sured on the same scale (they all have the same set of possible responses and use the same response
categories).

VE, in contrast, implies that the underlying level of the construct of interest described by a vignette
is perceived by all respondents in the same way and on the same unidimensional scale, except for
random error (Equation (4)). The alternative is to consider the more general specification where the
latent response is a function of respondent characteristics, such that

*

szak+.i‘/dk+€k, k=1,...,K. (6)

VE therefore imposes the linear restriction(s) that &, = 0, Vk. In practice therefore, the usual
CHOPIT approach simply omits the term ¥ &, in estimation.

With all these elements in place, the log-likelihood function for the CHOPIT model consists of two
distinct parts: one relating to the self-report of interest (InLy,p;r) and the other to the vignette com-
ponent of the model (InLy,). When there are several vignettes, InLy, is the sum over the K of these. The
first term, InLyqpy7, is a function of f and p; (¥ 4=0), and the second term(s), InLy, is a function of a;,
,oand p;,(y;,), where k> 0. These two components of the likelihood are then linked by the common

boundary parameters. The log-likelihood therefore can be written

N N
InL=" InL; ;jopr+ Y InL; .

i=1 i=1

Column (2) of Table 4 presents CHOPIT estimates using the vignette, m1, for pain described
above. Assuming RC and VE hold, the use of vignette responses should adjust for DIF to produce
unbiased estimates of the parameters in the outcome equation. The scaling of the primary equation
of the CHOPIT model is the same as the OP (o-i = 1) and hence the parameter estimates are di-
rectly comparable. While the broad effect of covariates on outcomes remains the same across the
two models—for example, levels of pain are generally lower for males compared to females, and
for respondents who have a post-school qualification, the coefficients are notably changed. The
coefficient on male is —0.163 in the OP results and —0.244 for the CHOPIT results. In absolute
terms, this represents an increase of approximately 1.6 standard errors on the OP estimate. The
estimated effect of any condition and grip strength on pain reduce by approximately 1 and 1.3
standard errors, respectively. Clearly, controlling for DIF appears to be important in these data.
Note that the set of covariates used in the boundary equations of the CHOPIT model, z, is the same
as the set of covariates in the mean function, x. The sets of boundary coefficients are presented in
Appendix C. As noted above, the validity of the CHOPIT approach, however, rests on the assump-
tion of RC and VE.
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4.3 | Investigating the identifying assumptions of RC and VE

The empirical literature has attempted to investigate the assumptions of RC and VE in applications of
the CHOPIT model. However, much of this literature is based on exploratory tests of the assumptions
rather than a direct parametric test. For example, tests for VE have largely relied on indirect methods
based on the relative rankings of vignettes by respondents to inform whether they are perceived in
a consistent way across all survey participants. Results have tended to be ambiguous, for example,
while Murray et al. (2003), King ef al. (2004), Kristensen and Johansson (2008), Rice et al. (2011)
and Hudson (2011) provide evidence in support of the assumption of VE, Datta Gupta et al. (2010),
Peracchi and Rossetti (2012) and Bago d’Uva et al. (2011) find evidence against it.

Empirical tests for RC have tended to rely on the availability of objective measures of the concept
of interest to which vignette-adjusted responses can be compared (e.g. objective measures of health).
However, in practice, where objective measures exist these would offer a more plausible outcome to
undertake comparison. When considering RC, Kapteyn et al. (2011) and Van Soest et al. (2011) pro-
vide supporting evidence, whereas Bago d’Uva et al. (2011) and Peracchi and Rossetti (2012) reject
the null hypothesis. Van Soest and Vonkova (2014) illustrate how RC and VE be tested in the absence
of objective measures. Using data from SHARE, they consider the ranking of a respondent’s self-eval-
uation among the respondent’s evaluations of vignettes and how these vary across socio-economic
groups. These are then compared to the rankings obtained following an application of the CHOPIT
approach. This leads to a test of the parametric assumptions inherent in the CHOPIT model when
compared to a non-parametric alternative.

Of particular relevance to the current paper, Peracchi and Rossetti (2013) provide a direct test of
the assumptions of RC and VE by exploiting the fact that under the two assumptions, the CHOPIT
model is over-identified. The test, applied to health domains in the SHARE, rejects the joint assump-
tions of RC and VE. They show that in the absence of the restrictions implied by the joint test for VE
and RC only reduced form parameters can be estimated. These are obtained from a set of hierarchical
ordered response models estimated in the spirit of Pudney and Shields (2000); see Section 4.1.

Applying the restrictions imposed by RC and VE together with the reduced form estimates, a min-
imum distance estimator is used to recover the underlying parameters. For example, for a model with
a dependent variable containing J ordered outcomes, [ regressors and K vignettes, imposing the as-
sumption of RC and VE together with the usual required location and scale normalisation restrictions
imposed in OP models, leads to s = {J(I + 1) + 1}(K + 1) parameters to be estimated. Note that we
adopt a different notation to Peracchi and Rossetti (2013) to be consistent with the exposition set out
in Section 3 (Peracchi and Rossetti (2013), assume R + 1 ordered outcomes (J/ = R + 1 in the above),
J vignettes (K = J in the above) and k regressors (I = k in the above)). Fitting K + 1 (K vignettes plus
the self-assessment) generalised ordered probit models leads to g = (J — 1)(I + 1)(K + 1) reduced form
parameters. These are composite parameters, since the coefficients in the thresholds and the mean
function are not separately identifiable (Peracchi and Rossetti (2013) assume linear specifications
of the boundary equations). Assuming RC and VE imposes {(J/ — 1)(/ + 1) + [} K + 2 restrictions,
implying there are p = + (J — 1)(I + 1) + 2K free parameters that can be recovered through a mini-
mum distance approach. With one or more vignettes, the CHOPIT model is over-identified such that
under the null hypothesis that RC and VE hold; nQ, ()= )(f]_p, as n — 0. Q,({) is the minimum
distance criterion evaluated at the solution @, with g—p the number of over-identifying restrictions;
see Peracchi and Rossetti (2013) for further details.

The mixed findings in support, or otherwise, for RC and VE clearly indicate that whether these two
assumptions hold or not, will vary across surveys, the subgroups under comparison, the instruments
of interest and the particular vignettes (wording and meaning) used. We set out below an simple to
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implement test statistic of the assumptions of the CHOPIT model that can be readily used in applica-
tions of the approach.

5 | A SCORE TEST OF THE SPECIFICATION OF THE
CHOPIT MODEL

This section develops score tests of the assumptions of RC and VC, both jointly and independently.
The score test is appealing since only the model under the null requires estimation (i.e. the CHOPIT
model). For such an approach to be valid though, the model under the alternative must be theoretically
identified, which is not the case for the standard CHOPIT model. However, we can achieve identifica-
tion with two amendments to the model. First, we restrict the variances o-i in Equation (4) to be unity,
and second, we re-specify the first boundary equation (see Equation (3)) to be an exponential function
of the boundary covariates. The approach of re-parameterising a model to facilitate a score test has
precedents in the literature. For example, see Greene and McKenzie (2015) with regard to testing for
a zero variance in nonlinear panel data models. The amendments, why they are required and their
implications, are described in more detail below.

51 | A modified CHOPIT model
5.1.1 | Restriction on the variance of the vignette equations

It is common in the literature to allow o-i to be unrestricted or to be equivalent across all K vignettes;
for example, see King et al. (2004). We adopt the normalisation; ai = 1, Vk. The variance parameters
are generally not identified in ordered choice models (Greene (2018), pp. 730-731). Indeed, these
parameters are numerically unidentified under the alternative hypothesis (i.e. failure of RC and VE) in
the CHOPIT model. A scale parameter in each vignette of Equation (4) becomes identified under the
null hypothesis through information about the cell probabilities and the externally imposed thresholds
Hojj in equation (3); see Kapteyn et al. (2011), footnote 7 for discussion on this point.

The suggested score test (to be described in detail below), will essentially consist of an alternative
‘model’ comprising a series of independent HOPIT models for all of the k = 0, ..., K constructs of
interest: that is, the self-assessment under scrutiny (k = 0) as well as the available vignette outcomes
(k> 0). As noted the scale of these models, in a case-by-case scenario, cannot be separately identified
from the structural parameters of the model (without the use of extraneous information, as afforded
by the vignettes in the usual CHOPIT set-up). As the score test requires the alternative model to be
numerically identified, this requires that the variances in the separate vignettes equation(s) are all
restricted to unity.

There are two points of note here. First, in Section 7.2, we consider relaxing this restriction in a
Monte Carlo experiment to assess the size of the score test; and the results suggest that the test(s)
perform well regardless of whether this restriction is imposed or not. Second, testing the assumption
of RC requires that the boundary parameters are equivalent across the self-assessment and vignettes.
Taking the first boundary equation and a single vignette as an example, then from Equations (4) and
(5) imposing RC (due to the different treatment of the scale effects in both constructs) would require
that

Yoo/(co=D=yy,/0;. @)
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There are two obvious implications of Equation (7): the asymmetric treatment of the scale variables across
constructs appears somewhat arbitrary; and what we actually estimate in practice is ¥/ and one sim-
ply, again arbitrarily, sets 6, = 1. Thus for these reasons, and also to facilitate explicit testing of the RC
assumption, we simply set all scale variables throughout equal to unity (although notwithstanding the
identification issues raised above, this is likely to be inconsequential, and implicitly any scale effects where
o is not directly estimated, will be absorbed into the estimation of the relevant boundary parameters).

5.1.2 | Specification of the first boundary equations

The exponential form for the boundaries in model (3) is useful as it ensures the necessary ordering
of the resulting boundary parameters. However, the implementation of this approach treats the first
boundary parameters (u,) asymmetrically with respect to the other boundary parameters (which
enter in a linear, and non-linear fashion, respectively). Moreover, as with the treatment of the scale
effects of the vignettes as described above, our alternative/generalised model (required for the score
test, see below) requires that all separate HOPIT models for all constructs, be numerically identified.
Clearly with x = z and the first boundary equation specified as y;, = z;yo, this will not be the case.

To yield a model numerically identified under the alternative (where RC and/or VE do not hold),
we suggest the following modification to the specification of the first boundary parameter

Hoxk=7Yox +exp(Z’ Yor)» k=0,1,... K, (®)
where, again, k = 0 indexes boundary equations for the self-report of interest (pg, ..., Hj_n0) and
k=1, ..., K, the corresponding boundary equations for the vignettes (¢, ..., # 1_27,().

Due to the presence of the leading term, y, 4, is free to lie anywhere on the real number line
(that is, there is no restriction that yg; > 0). The remaining (/—2) boundaries follow an analogous
specification to that set out in Equation (3).

The simple non-linear transformation of the first boundary equation (along with the scale re-
strictions described above) therefore numerically identifies a HOPIT model of the form described in
Section 4.1 without the need for exclusion restrictions for all of the models/constructs in the system
(that is, the self-report of interest as well as all vignettes).

Note that we parameterise the model such that the linear constant term, Yo,0- ENtETS in the main ef-
fects equation for y*, and not in this first boundary equation. This follows from location normalisations
in OP-type models which typically restrict the constant in the main equation to zero. Alternatively,
one does not constrain this parameter in the main equation, but instead restrict the constant in the first
boundary equation to zero. These approaches are numerically identical (Greene & Hensher, 2010).

5.1.3 | A generalised alternative model and score test

While leaving the underlying model essentially unchanged, the amended specification described
above both improves model identification (by removing the linearity in the first boundary equation
and restricting scale effects) while lending itself to a score test of the explicit assumptions of RC and
VE in the usual CHOPIT set-up. That is, they allow for a generalised model to be considered (being
numerically identified), consisting of a system of independent HOPIT models for all constructs, that
collapse to the usual CHOPIT model under the set of parameter restrictions implied by both RC and
VE.
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More formally, following the amended specification we have the usual underlying index function
for the self-report of interest, of the form

y'=x'B+e,  £,~NQO,1), )

together with the generalised form for the vignette equation(s) given by Equation (6). Under VE, that is,
a, =0, Vk, this form collapses to Equation (4) with the exception that now g, ~N(0, 1), as described
above.

To allow us to test for RC in this modified set-up, we have for all of the k = 0,1, ..., K constructs,
boundary equations of the form

Hox =exp(%2 %Y o)

. (10)
Hix = yj_]‘k+exp(z’yl~’k),J= 1,....J—1.

Note that in Equation (10) the treatment of u ;. differs from that in Equation (8) in that the constant term
has (equivalently) been moved into the mean Equation (9). Finally, as noted above, RC implies equiva-
lence of parameters y, and y; across all boundary equations for k = 0,1, ..., K. This then provides us
with a simple parameter restriction test of RC. So here, under RC, Equation (10) collapses to simply

Ho =exp(%z %),

. (11
1 :/4]._1+exp(z’yj),]= 1,....,J—1.

This amended specification of the standard CHOPIT model identifies separate HOPIT models for
all of the k = 0,1, ..., K constructs, defined by Equations (6), (9) and (10). Under the null of RC and
VE, the set of generalised HOPIT models collapse to the (boundary-amended) CHOPIT model. As
all of these restrictions have been shown to be simple linear ones, they can be tested both individually
and jointly by using standard score tests based on the likelihoods of the respective unrestricted model
evaluated at parameter values under the null; that the restricted CHOPIT model is correctly specified
(Greene, 2018). Not only does the score test lends itself to separate and joint tests for the assumptions
of RC and VE, it does not require estimation of the more complex alternative models. Full analytical
derivatives of the appropriate score vector(s), the formal null and alternative hypotheses and the corre-
sponding form of the score test, are all presented in Appendix B (although one could also use numer-
ical derivatives). Gauss code to undertake the tests are available at http://github.com/aptech/chopitlib.

6 | THE AMENDED CHOPIT MODEL AND SCORE TEST
APPLIED TO SELF-REPORTS OF PAIN

In this section, we consider the practical implications of the suggested amendments to the boundary
equation(s) by comparing to commonly used specifications. We then apply our suggested score tests
to our empirical example of modelling pain in the SHARE data.

6.1 | Amended specification

Before applying our score test to the modelling of self-reported pain, we investigate the implications
of our suggested amendments to model estimates. Table 5 reports the results of applying the amended
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TABLE 5 Comparison of CHOPIT estimated parameters with different boundary specifications

Boundary equations

@ (2 3
Amended exponentials Standard exponentials Linear
N = 3802 Coef SE Coef SE Coef SE

Structural parameters @)

Male -0.272 0.070 -0.271 0.070 -0.274 0.070
AnyCond 0.658 0.059 0.657 0.058 0.656 0.058
Grip35 0.185 0.072 0.189 0.071 0.188 0.071
EducPS —0.194 0.063 —-0.193 0.063 —-0.193 0.063
Age 6675 0.090 0.058 0.085 0.058 0.085 0.058
Age > 75 0.169 0.097 0.164 0.097 0.164 0.097
Log-likelihood —8939.60 —8939.63 —8940.31

CHOPIT model to the self-reported data on pain from SHARE (column 1). The Table also compares
these results to those obtained by the standard CHOPIT model (column 2) and a model where the
boundary equations are all specified as linear functions of the covariates (column 3). While a linear
specification fails to ensure the correct ordering of the boundaries, y; o j=0,1, ..., J—2,ithas often
been applied in empirical applications (see, for example, Bago d’Uva et al., 2008). We include this
specification for completeness.

The results illustrate the difference in model estimates from changing the specification of the
boundaries. To ensure that the estimated coefficients are comparable, all models restrict the variance
of the error term in the vignette equation ai to unity as per the amended CHOPIT model. Accordingly,
the scale of the estimates differ from the standard CHOPIT model (for which 0]% is freely estimated)
and hence are not directly comparable to the estimates provided in Table 4. However, a comparison of
the relative effects of coefficients (to remove the scaling of parameter estimates) reveals very similar
results. For example, the estimated coefficient for male relative to any conditions (AnyCond) in the
CHOPIT model is ‘0051‘;4 = —0.41 (Table 4). For the amended specification in Table 5, the correspond-
ing relativity is % = —0.41. Similar relative estimates are apparent for the other covariates. While re-
stricting the vignette variance to unity changes the scaling of the estimates, their relative interpretation
remains the same as in the standard CHOPIT model. Accordingly, marginal effects will be unaffected
by the scaling. Note that full results for the three specifications, including the boundary equations, are
reported in Appendix C, Table C.

To further investigate the model implications of the amended specification, Table C3 of the
Appendix presents averaged estimated boundaries for the three approaches. The standard exponential
and linear specifications provide similar estimates of y, y, and y,. Those of the amended exponential
approach are substantially larger, but by a constant amount relative to those of the standard (0.999)
and linear (approximately 1.008) approaches. The following two panels of the table consider the lo-
cation of the boundaries with respect to the estimated linear index, x’ ﬁ, and separately the estimated
vignette constant term (@, in Equation (4)). As with standard OP-type models, it is not just the value
of the index function defining y* that is of relevance, but the position of this index in relation to the
boundaries that are essential for generating predictions from the model. Across the three specifica-
tions, we see that these quantities are essentially identical indicating (at least approximately) equiva-
lence of the three approaches.
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Further evidence of these findings are reported in Tables C4—C6. Table C4 contains the sample
correlations of estimated boundary values and y* values. These are clearly all very highly correlated,
and in all cases close to one. Table C5 considers estimated probabilities. The averages of these are
identical across specifications, and the correlation across the individual estimates are 1, or very close
to 1, in all cases. Finally, Table C6 contains the implied partial effects for each specification. Again
these are essentially equivalent across model specifications.

In summary, while individual parameter estimates may vary across the different boundary speci-
fications, for each essentially the same model results. Importantly, the amended specification of the
boundaries does not unduly enforce any implicit/explicit restriction(s) on the model that might ad-
versely affect results and tests statistics.

6.2 | Tests of RC and VE for self-reports of pain

An application of the score tests to SHARE data is presented in Table 6. The data and specification
follow that used in column (1) of Table 5. However, we make use of all possible permutations of the
three available vignettes. The joint test of the null of both RC and VE is rejected at conventional levels
for all vignettes used singularly or in combination. The test for VE alone (assuming RC holds) fails to
reject the null when vignettes V1 or V3 are used singularly and when vignettes V2 and V3 are used in
combination. However, VE is rejected in all other combinations. When we consider only RC (assum-
ing VE holds) the score test rejects the null for all vignettes and their combinations, as does the joint
test. The results emphasise the importance of testing for the identifying assumptions of RC and VE in
applications of the CHOPIT model when attempting to correct for DIF.

7 | MONTE CARLO EVIDENCE

To fully explore both the general implications of the proposed change in boundary specification and
the score tests, we consider a series of Monte Carlo experiments. Throughout we simulate data by
drawing from SHARE data the set of covariates used in the empirical example described in Section
6.1.

The Monte Carlo experiment simulates data as follows: (i) use all N = 3802 observations and their
corresponding covariates x; from the SHARE data, (ii) construct the latent outcome y* = ¥/ B + £
using the parameter estimates from the empirical example presented in Section 6.2 as column (2)

TABLE 6 Score tests for combinations of vignettes (/ = 4)

SCOTej, scoreyy scoreg
Vignette (V) x2df) p—val x> dp p—val x2(dp p—val
Vi 310.3 (26) 0.000 8.843 (6) 0.183 297.8 (20) 0.000
V2 195.6 (26) 0.000 14.26 (6) 0.027 190.1 (20) 0.000
V3 88.64 (26) 0.000 10.48 (6) 0.106 76.92 (20) 0.000
V1 & V2 501.9 (52) 0.000 91.07 (12) 0.000 488.5 (40) 0.000
V1 & V3 426.8 (52) 0.000 45.36 (12) 0.000 411.5 (40) 0.000
V2 & V3 328.7 (52) 0.000 15.54 (12) 0.213 311.2 (40) 0.000

V1, V2 & V3 571.5 (78) 0.000 97.42 (18) 0.000 553.2 (60) 0.000
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of Table 5 together with a randomly generated standard normal error, N(0,1), (iii) the latent vignette
outcome, vzl, is constructed by random normal draws from the distribution N(a,1), with a set to the
value obtained by estimation of the model in column (2) of Table 5 (full model estimates including
boundary parameters are provided in Table C), (iv) the corresponding observed outcomes, y;, v; ;,
then constructed from their latent counterparts together with knowledge of the boundary parameters
(¥i0> ---» ¥;2) estimated from the model reported in column (2), Table 5. CHOPIT estimation of the
simulated y; and v; | on the set of covariates x; is then undertaken. This is repeated for M = 2000
simulations (as are all other Monte Carlo subsequent experiments) and results for models for which
convergence was achieved (S) summarised in Table C8 (convergence was deemed to have failed after
500 maximum likelihood iterations).

are

7.1 | Boundary specification

We first illustrate the difference that the amended specification has on the estimated vector of coef-
ficients, B, when compared to standard exponential or linear specifications. Typically, these are the
parameters of most interest in empirical applications. Table C8 presents the results. Data are generated
assuming standard exponential specification of the boundaries and estimated separately assuming
amended exponential, standard exponential and linear specifications.

Monte Carlo coefficients are close to their ‘true’ values across the different specifications of the bound-
aries. This can be seen by the small values reported for mean bias. The 5% coverage rate is also within
expected range across all parameter estimates. However, while the standard exponential and amended ex-
ponential specifications display high convergence rates with S/M = 0.998 for both, the convergence rate for
the linear specification of the boundaries is low (S/M = 0.289) illustrating the fragility of that specification.
This reflects the lack of identification through not imposing non-linearity in the boundaries.

7.2 | Finite sample performance of the score tests

We evaluate the performance of the score tests by generating data under the null in a similar way to
that described above again based on the estimated coefficients from the empirical models presented
in Table 5. We consider three sets of test size experiments, where we generate under the null hypoth-
esis with linear boundaries (column (3), Table 5); with standard exponential boundary thresholds (2);
and amended exponential boundaries (1). We then conduct the tests as if the boundaries were of the
amended exponential form.

When the data generating process (DGP) is as the test assumes, (amended exponential boundar-
ies), the tests are correctly sized for the score;,;, and scoreg variants (Table 7). The scorey variant
appears to be marginally undersized (at 4.10% for a nominal 5%). When the true DGPconsists of linear
thresholds or standard exponentials, the score;,,;,, and scoreg tests appear to be marginally oversized,
however, overall the tests remain within an acceptable range. Note that relaxing the assumption of
o-i =1, Vk does not materially affect size results, as evidenced in Appendix C Table C7.

We next consider power experiments using a similar Monte Carlo experimental set-up as above,
but where the assumptions of RC and VE are violated. In the experiments for departures from RC,
we perturb the parameter vector corresponding to the boundary equations for the vignettes (i.e. v
in Equation (5)), perturbing at increasing values away from zero. These are undertaken for a model
generated assuming amended exponential boundaries. This is achieved by first generating a vector
of standard normal random variates of the same dimension as z(= x). These draws are held fixed.
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We then move away from the null of RC by perturbing y;; in the vignette equation only, by adding
successively larger quantities to the value under the null. These quantities are dictated by the set of
(fixed) random normal variates with increases achieved by multiplying by a scalar, s,. in the range
0.0<s,.<0.20. This ensures greater departures from the null for increasing values of s,,. For viola-
tions of VE, a vector of random variates of dimension x is first drawn. We then perturb the corre-
sponding implicit vector of zero coefficients, & (under the null), on the covariates x (Equation (6)) by
multiplying the random draws by a scalar, s,,, and substituting these as parameters for @&. This process
is repeated for successively larger values of s,, such that 0.0 <s,, <0.50. For the joint experiments, we
simultaneously employ both approaches.

The results are then summarised as power curves, plotting rejection probabilities against the size of
the perturbation from the null of zero. Three curves are shown: a joint test for RC and VE; and separate
ones for RC and VE.

The left-hand side of Figure 2 displays the power curves for all three tests when we violate RC only.
The curves are well behaved. Departures from RC results in S-shaped power curves for the test of RC
alone and for the joint test (RC and VE). As expected, the test for RC uniformly dominates that for the
joint test. This is due to the test maximising power in the single direction while the joint test is also
testing for VE. In comparison, the test for VE remains fairly flat over the range of values for which RC
is violated. This is encouraging as clearly VE is exhibiting some power as a general specification test,
when VE is not failing but RC is. The right-hand side of Figure 2 presents the power curves when we
violate VE alone. While the power curve for the test of VE adopts an approximate S-shape, it appears
relatively sensitive (that is powerful) to small departures from VE and increases fairly rapidly across
relatively small increments. Moreover, departures from VE are also reflected in the test for RC. The
joint test also adopts the S-shaped curve, but rejects less than the test for VE alone, again due to the
latter only testing for departures from the null in that particular direction.

A priori one would not expect increasing departures from the null with respect to VE (RC) to
affect the power properties when testing for RC (VE). However, it has been well-known that it is pos-
sible to reject a false model against an alternative model, even if that alternative model is not correct
(Davidson & MacKinnon 1987). In this sense, such tests that tend to reject a false model in favour of
a similarly false alternative model, are often referred to as general specification tests. In this sense,
the test for RC can be considered a useful general specification test, as it tends to similarly pick-up
departures in the direction of VE. However, the same cannot be said of the test for VE, and power only
marginally increases with departures from the null with respect to RC. It is unclear what the specific
reasons for these results are, and also whether the results will hold more generally.

A probable reason for the strong performance of the RC test in identifying departures from the null of
VE, is that in misspecifying the assumed outcome function in the vignette equation(s), may result in the
boundary parameters having to adjust to ensure their relationship with this outcome function. In as such,
by imposing non-VE, this may also manifest itself as a form of RC violation. In contrast, there appears to
be a less persuasive argument for the reverse situation. By moving the boundary parameters further away
from the null, the outcome function in the vignettes equation has much more limited ability to move itself
to maintain the assumed relationship with the boundary parameters as implied by the null model. Prior

TABLE 7 Size results, at 5% nominal size; M = 2000

Boundary equations SCOTe;,;,,s scoreyy scoreg
Linear 0.0585 0.0555 0.0580
Standard exponential 0.0560 0.0485 0.0560

Amended exponential 0.0495 0.0410 0.0495
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FIGURE 2 Power curves for rejection probabilities for departures from RC and VE

to undertaking individual tests, it would appear appropriate to undertake a joint test of both RC and VE;
if this fails, then the individual tests for RC and VE may be informative of the reason for model failure.

Three-dimensional planes of rejection rates against simultaneous departures from both RC and VE
are shown in Figure 3. The joint test and the test for RC perform in a similar fashion, and reflective of
the results of the power curves, the joint test appears to be dominated by the test for RC. While the test
for VE appears to respond to departures from the null of response consistency (&, # 0), the test remains
fairly flat over the range of values for which RC is violated.

In summary, the experiments show: (i) the individual tests have greatest power in their particular
direction, (ii) both individual tests have increasing power in distance from the null with respect to the
alternative violation, (iii) power increases with distance away from the null in all cases; and (iv) the
joint test has increasing power in all directions, and is maximised with simultaneous deviations from
the null in both directions. Note that allowing G]% to be unrestricted does not impact the power of the
test substantially, as shown in Appendix C, Figures C1 and C2.

7.3 | Comparison of the proposed Score test with the minimum distance
estimator approach of Peracchi and Rossetti (2013)

Section 3 of Peracchi and Rossetti (2013) investigates the finite sample performance of their minimum
distance estimator using a Monte Carlo experiment. We undertake the same Monte Carlo exercise to
compare their results to our score tests (full details of the Monte Carlo experiment can be found on
p712, Peracchi and Rossetti (2013)). Table 8 presents the results for the situation where there are J =2
threshold boundaries, k = 1,2 vignettes and a single covariate: x = z (note that Peracchi and Rossetti
(2013) use a different notation by indexing boundaries as r = 1, ..., R, vignettes as j = 1, ..., J and
exogenous regressors k = 1, ..., K). The sample size for the draws is N = 250, and each Monte Carlo
exercise consists of M = 1,000 runs (as per Peracchi and Rossetti (2013)).

The first column of results presents rejections rates at a nominal 5% level for the minimum distance
estimator. These are followed by the joint score test and the separate score tests for VE and RC. The
row labelled H|, reports observed size of the various tests at the 5% level. All rejection frequencies are
close to nominal level under the null. The panel H, shows results for departures from VE, but where
RC holds; H, for departures from RC (where VE holds) and the final panel, H;, departures from both
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FIGURE 3 Power planes for rejection probabilities for departures from RC (lhs top), VE (rhs top) and a joint test
(bottom)

VE and RC simultaneously. Rejection rates are reported for increasing departures from the null. The
score joint test displays greater power than the test of Peracchi and Rossetti. This is the case for de-
partures from the null for VE and RC separately and for joint departures. While the test of Peracchi
and Rossetti lacks power when only a single vignette is used (but not with multiple vignettes), this is
not the case for the score test which generally increases in power with increasing departure from the
null even with a single vignette. The power of the test, however, also generally increases with when
including a second vignette. When comparing the rejection rates across the three score tests for the
different departures from the null, results closely reflect those of the Monte Carlo exercise reported
and summarised in Section 7.2 above. Again, the tests have greatest power in their particular direction;
power generally increases with increasing departure from the null and the score test for VE has the
lowest power amongst the three tests when considering violations in their own respective direction.

8 | CONCLUSIONS

Inter-individual comparison of phenomena such as health status or life satisfaction that are typically
self-reported on an ordered categorical scale are often subject to differential item functioning due to
survey respondents’ adopting different response scales. Vignettes are increasingly being collected
alongside self-reports to anchor such scales and provide greater comparability across individuals. This
is particularly relevant when undertaking cross-country comparisons where differences in cultural
norms may lead to the use of very different response scales.
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TABLE 8 Monte Carlo experiment and comparison with Peracchi and Rossetti (2013) — p-values of the score
test

Results for J =2, K=1and N = 250 Results for J =2, K =2 and n = 250
Score test Score test
P&R Joint VE RC P&R Joint VE RC

H, 0.057 0.055 0.063 0.056 0.056 0.055 0.055 0.052
H,: Failure of VE

B =01 0.062 0.066 0.065 0.068 0.056 0.059 0.051 0.057
B, =02 0.070 0.060 0.055 0.067 0.055 0.065 0.050 0.060
B, =04 0.057 0.075 0.072 0.063 0.080 0.068 0.068 0.053
B, =0.6 0.067 0.081 0.109 0.060 0.107 0.094 0.118 0.064
B =08 0.055 0.147 0.120 0.084 0.172 0.119 0.180 0.067
B =10 0.068 0.203 0.327 0.093 0.254 0.265 0.419 0.083
H,: Failure of RC

aj —ag =0.1 0.055 0.060 0.059 0.069 0.052 0.082 0.051 0.066
ay —ay =02 0.059 0.108 0.070 0.111 0.047 0.100 0.057 0.102
ay —ay =04 0.059 0.246 0.064 0.261 0.061 0.245 0.072 0.264
ay —ay = 0.6 0.074 0.472 0.071 0.506 0.103 0.482 0.082 0.522
ay —ay =08 0.059 0.725 0.081 0.753 0.104 0.708 0.094 0.746
ay —ay = 1.0 0.056 0.895 0.089 0.916 0.151 0.890 0.098 0.916
Hy: Failure of VE & RC

B =a;,—ay =01 0.065 0.080 0.072 0.070 0.049 0.079 0.060 0.071
Br=a,—ay, =02 0.074 0.095 0.062 0.098 0.059 0.110 0.074 0.112
B =a; —ay =04 0.068 0.245 0.080 0.249 0.095 0.266 0.081 0.285
B =a;—ay =06 0.081 0.512 0.104 0.506 0.149 0.548 0.161 0.577
By =a;,—ay =08 0.063 0.741 0.128 0.732 0.243 0.843 0.319 0.842
By =a;—ay =10 0.057 0918 0.167 0.881 0.312 0.976 0.530 0.971

We illustrate the effects of correcting for DIF using information on vignettes in an example on
self-assessments of levels of pain. We stress that the legitimate use of the vignette approach relies on
the two assumptions of RC and VE. In light of this, the paper then develops single and joint tests of
these assumptions based on a score approach.

Implementation of the test is within the parametric CHOPIT model that imposes a hierarchical
structure on the boundary equations to preserve coherency of the model's probabilities. The score
approach requires the model to be identified under the alternative hypothesis; the null being that RC
and VE hold. This is achieved by augmenting the specification of the boundary equations by including
an exponential function in the first boundary equation, together with restricting the variance of the
vignette equations to unity. Such changes are innocuous in terms of parameter estimates (and marginal
effects) of the coefficients in the mean function, which are typically the focus of empirical work.

An advantage of the test is its ease of implementation, requiring estimation of the restricted model
under the null only. This is undertaken using the CHOPIT model. The test may be seen as a com-
plement, or alternative, to Peracchi and Rossetti (2013) who also develop a joint test of RC and VE.
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However, an advantage of the current approach is that separate tests of both RC and VE are available,
and also that there was evidence of the current test(s) being more powerful.

We find that for the empirical example of self-assessed pain the joint null of RC and VE is rejected,
such that the adjustments using vignettes may be unreliable. Monte Carlo simulations drawn from these
data show that the tests have good size and power properties in finite samples, particularly for the joint
test and the individual test for RC. Our results suggest that the assumption of VE may be more prob-
lematic in empirical applications than RC. This finding mirrors that of Peracchi and Rossetti (2013). In
particular, failure of VE may also be picked up through rejection of RC. This is an area where the design
of vignette questions to aid respondents’ common understanding of the descriptions of the hypothetical
individuals may best improve vignette equivalence. The majority of applications of the vignette ap-
proach rely on cross-sectional data. Future research might consider extensions to panel data to control
more fully for individual unobserved heterogeneity in reporting behaviour. For example, extensions of
such an approach to the modelling of ordered self-assessed health outcomes is provided by Bartolucci
and Bacci (2014). In the context of applications to the vignette approach, where feasible, a flexible treat-
ment of reporting heterogeneity may make reliance on the assumptions of RC and VE more plausible.
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APPENDIX A

VIGNETTES AND THE CHOPIT MODEL

A.1. Vignette descriptions
The three vignettes available for pain within SHARE are:

Vignette (m1): “Karen has a headache once a month that is relieved after taking a pill.
During the headache she can carry on with her day-to-day affairs. Overall in the last 30
days, how much of bodily aches or pains did Karen have?”

Vignette (m2): “Maria has pain that radiates down her right arm and wrist during her day
at work. This is slightly relieved in the evenings when she is no longer working on her
computer. Overall in the last 30 days, how much of bodily aches or pains did Maria have?”

Vignette (m3): “Alice has pain in her knees, elbows, wrists and fingers, and the pain is
present almost all the time. Although medication helps, she feels uncomfortable when
moving around, holding and lifting things. Overall in the last 30 days, how much of
bodily aches or pains did Alice have?”

A.2. CHOPIT model probabilities

Expressions for the probabilities derived for the self-report from the CHOPIT model.

Pyo = P@lexp(Z' 7o) —x'Bl,
Py = ®lexp(Z' %7y)+exp@'y,)—x'B]— Plexp'7,) —x'Bl,
Py, = ®@lexp(Z'¥,)+exp'y,)+exp'y,) —x'B]

— ®[exp(Z' %¥o) +expE'y ) —x'Bl,

J=2

P o=@ |X'p—exp@' 7o) — Z exp(z’yj) .
j=1

Corresponding probabilities for the vignette outcome(s), fork =1, ..., K, are



24 GREENE ET AL.

Py, = ®l(expF'¥o)—ap)/ol,

Py = ®[(expF' 7o) +expE'y ) —ap)/o]
— @[(exp(Z' 7o) — ) /0],

Py = ®(exp(Z' 7o) +expE'y)) +exp'y,) —a;)/o]
— @[(exp(Z' 7o) +exp'y) —a;) /o],

: J-2
Pyip= @ | (ap—exp(@'¥o) - Z eXP(Z’J’j))/ 0] -

j=1

APPENDIX B

SCORE VECTORS FOR THE TESTS OF RESPONSE CONSISTENCY AND VIGNETTE
EQUIVALENCE

In this Appendix, we set out formally the various score vectors required for the score tests described in
Section 5 and how these are combined for the separate tests of RC and VE, together with the joint test
of both RC and VE. Note that although analytical expressions are given, one could also use numerical
derivatives.

First we derive the score vector for the restricted CHOPIT model (Equations (4) and (11)), and
show how particular elements can be adapted to derive the proposed score statistic(s). That is, the
score is derived for the boundary-amended CHOPIT model under the assumption, or restrictions,
that both VE and RC hold. Testing for VE, on the assumption that RE holds, in this setting requires
replacing the appropriate elements of the score corresponding to the derivatives with respect to a;,
with those of the more general model—Equation (6)—which does not impose VE. As usual, the score
test evaluates the score for the more general (here the model allowing for VE), but at parameter values
under the null hypothesis (assuming VE).

Similarly, testing for RC, on the assumption that VE holds, is based on the full score of this re-
stricted boundary-amended CHOPIT model, but now replacing the appropriate elements correspond-
ing to the derivatives with respect to the boundary parameters implied by the restricted specification
of Equation (11), with those implied by the generalised version of Equation (10). Again, the test is
based on evaluating the generalised score at parameter values under the null hypothesis.

Finally, the joint test of both VE and RC involves replacing the elements of the restricted CHOPIT
score with respect to both a; and the boundary parameters, with those implied by the more general
specifications. Again, the test involves evaluating the score of the generalised model at parameter
values under the null hypothesis.

The score vector for this model consists of a series of partitions. The first corresponds to g, (Vf),
such that

olnL©O)| _ —xP(uy—x'P)
B | Py
olnL(O)|  —x[p(uy—x'B)—d(u; —x'B)]
op j=T Py ’
olnL©O)| _ x[p&'B—p; )]
p j=J—T Piip '
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where ¢(.) is the standard normal density, and In L(@) is the log-likelihood function and € contains all of

the parameters of the relevant model. The second is a partition due to ¥, from the equation for the self-re-
port (V)

oInL(0)| _ Zexp(Z'¥o)d(uy—x'B)
0%¥ 0,0 j=; Pyy ’
dInL(9) | _ Zexp(Z'¥o)[p(u; —x'B) — p(uy—x'P)]
0%¥ 0,0 jzj Py ’
olnL(O)| _ ZexpE'F)p@'B—p; ;)
0%7¥ 0,0 jZJ_T Pyip '

Similarly from the vignette equation(s) (V¥ ),

olnL®)| _ [ZexpE'7)/clpl(uy—a) /o]
0%¥ o j=0; Po ’
olnL©®)| _ [ZexpE'7o) /o N Pl(u) =) /01— Pl(ug— ) /o)
0% o4 j=1; Py ’
olnL©O)|  [Zexp(E'¥o)/cll(ay—u;_5) /0]
0% o.x j=J_1; Pk '

Collecting the above terms together gives V¥, = V§q, + Zf V¥ The score with respect to y, again
consists of a quantity from the y* equation (Vy ()

olnL©O)| _ zexp@'y)d(u;o—x'B)
Y19 j; Py ’
olnL(0)|  zexp@'y )P(uy —x'B)— P, —x'B)]
910 j=_ Py ’
olnL®)| _ zexp@'y )P B —p;,)
9710 jzj_T Prio '

Similarly from the corresponding vignette components (Vy ,),

olnL(O)| _ [zexp'y,)/cldl(u; —a)/0]
oY 14 j=1; Py ’
olnL®)| _ lzexp@'y /ol l(uy —a)/o] = Pl — @)/ 01}
Y1 x j=2; P ,
olnL©O)|  [zexpE'y)/cldl(a;—p,5)/0]
Y14 j=,_1; Pr_ix '
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Repeating for y, we have (Vy,, and Vy, ;). The score with respect to y, again consists of a quantity from
the y* equation (Vy, )

oInL(O) | _ zexp(E'ys)d(u, —x'p)
20 | Py ’
InL(®)| _ z2expE'y2)Ip(us —x'B) — P(uy —x' )]
20 | Pso ’
onL©®)| _ zexpE'y)PE B— )
9720 =1 Pr 1o ’
and Vy,,
oInL(®)| _ [zexpE'y))/01pl(ky —a)/o]
oY 14 =2,k Py ’
oInL©)| _ [zexp@'yy)/oHPl(ky —ar)/o1 = dl(u, —ap)/o1)
ik sz Py ’
dInL(0) _ [zexp(z'y,)/cldl(ay— 1) /0]
ik |jmra Py ik '

The progression continues for j, j > 2 to j = J—1. Under parameter equivalence implied by RC, the ele-
ments of the score would be the sum of the respective gradients such that

Vy,= Vyj,0+k~2v;zj,k.

Derivatives with respect to a;, are given by (Va,,)

onL®)| _ —pl(uy—ay)/clo™
0y ik Poy ,
AnL®)| _ —{Pl(u; —a)/o1=Pl(g—a)/c1}o”!
oa, j=1; Py ’
dnL©®)| _ Pllay—p,_)/olo™!
0ak j=1_1,z PJ—l,k '

Finally, Vo is given by

AnL®)| _ Pllo—ap)/ol(@ = Ho)o™
06 |j=ox Py ,
InL©O)| _ —{pl(; —a)/o]=Pl(uo = @) /01} () = Ho)o ™
0o |izix P ’
InL@)|  _ —Plla—pyn)/oN @ = Hy)o ™
00 j=roix Pk .
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B.1. Score test for vignette equivalence (VE)

Imposing VE is equivalent to assuming that the effect of any covariates, &, entered into the model for
the vignettes (see specification (6)) are zero. Accordingly, the null hypothesis of VE can be tested by

HO: ak = 0,
H,: at least one element is non-zero.

The use of the score test here is appealing as it does not require estimation of the more complex model
under H . Here, the appropriate partition of the score vector under the null replaces (Ve ) (defined above),
with the generalised version (Vay ) such that

oInL©®)|  —xPl(uy—x'a;)/clo™!
oo j=0; Py ’
oInL©®)|  —xpl(u; —x'a) /0] =pl(uy—x'a)/c1o™"
oay ,,‘=1; Py '
0InL(6) _ —xpl g —pyo) /olo!
oay j=J—1; Pk ’

The above expressions are evaluated under the CHOPIT null: that is, at a; estimated in the CHOPIT
model, and setting &, = 0 (where x'a;, = a; + ¥ &). The quadratic form of the score test is

Sye=(VB. Vy,Vayg,, VO’)[I(@VE)]_I(V[}, VY, Vaye;, Vo) .
2
Under Hy Syg~ Xy where

qyp=dim(V, Vyj, Vayg,, Vo)—dim(VB, Vyj, Va,, Vo)=dim(¥)K.

We use the outer product of gradients to estimate the variance of the score vector—see, for example
Greene (2018), p. 558). Thus all other elements of the components of the score vector remain unchanged,
and the score of this generalised version allowing for a relaxation of VE, is evaluated under the null. That
is, evaluation takes place at parameter values estimated under the null: here we simply set o, = (ay, 0)
where a; is the scalar estimated from the CHOPIT model, and the dimensions of the null vector in é&; will
be determined by the number of variables in x. Note that in deriving the score test for VE we assume the
assumption of RC holds.

B.2. Score test for response consistency (RC)

The identifying assumption of RC is equivalent to saying that the effect of any covariates in the bound-
ary parameters—Equation (10)—for the self-report (k = 0) and vignettes equations, (k= 1, ..., K) are
identical. Accordingly, the null of RC (assuming here that VE holds) can be tested as

HO: 70’0: 70,k;yj,0:yj,k’ Vj: 1, ...,J_ 1; k: 1, eey K,
H,: at least one element differs.
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Here we replace the Vyj elements of the restricted CHOPIT score, with those from the generalised ver-

sion, Vy; gc. For example, the generalised partition of the score vector due to 7, from the vignette equa-
tions (V) is

olnL©O)|  [Zexp(Z'Fo0)/0)bl(uos— @)/ 0]
0%¥ o 4 j=0; Py '
dlnL(0)| [Zexp(Z' Vo) /o H Pl (uy —ap) /o] = l(po— )/ 01}
0%¥ o j=1; Py ’
dlnL(0) _ [Zexp(Z' )70’,()/6](1)[(0:,( - /4]_2,1()/0']
0%¥ o 4 j:J_L; Py ik '

Similarly, generalising other elements of Vy, the score test is given by
Spe=(VB. V¥, res Var, VO @re) ™ (VB, V¥, s Yoy Vo .
Under Hy Sgc~ x, . where
qre=dim(V B, VYj,RO Va,, Vo)—dim(Vg, Vyj, Va,, Vo).
B.3. A joint score test for vignette equivalence and response consistency

As noted, the above test for RC is performed under the assumption that VE holds, and vice versa. A
Jjoint score test of both assumptions simultaneously holding, is defined by simply combining the above
two approaches such that

Sjoim =(VB, VYj,RC’ vavg,k, VU)[I(a)]_I(Vﬁ, VJ’j,Rcs VaVE,k, Vo).

Under H, where S,

2
ioint ™~ X g where

g=dim(Vg, VYj,RC’ Vayg, Vo) —dim(V§, Vyj, Va, Vo).
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APPENDIX C

SUPPORTING TABLES

Table C1 CHOPIT estimates including boundary equations

N = 3802 Mean function 1st boundary 2nd boundary 3rd boundary
Coef SE Coef SE Coef SE Coef SE

Constant —-0.076 0.061 0.295 0.046 —-0.178 0.082
Male —0.244 0.061 0.041 0.043 —0.181 0.039 —0.148 0.063
AnyCond 0.588 0.051 —-0.011 0.035 —0.080 0.031 —0.034 0.058
Grip35 0.173 0.062 0.015 0.044 —0.164 0.039 —0.031 0.066
EducPS —0.168 0.055 —-0.074 0.039 0.074 0.034 —0.043 0.060
Age 66-75 0.073 0.051 —0.005 0.036 —0.010 0.033 0.117 0.051
Age > 175 0.149 0.084 —0.027 0.061 —0.001 0.056 0.061 0.079
Parameters of the vignette equation
Vig 1 constant 0.616 0.070

(o)
Sigma vig 0.712 0.016
Log-likelihood —8824.15

Table C2 Comparison of CHOPIT estimated parameters with different boundary specifications

Boundary equations

Amended exponentials

N = 3,802 Coef

Structural parameters @

Constant 1.177
Male -0.272
AnyCond 0.658
Grip35 0.185
EducPS —0.194
Age 66-75 0.090
Age > 75 0.169
Ist boundary (u,)

Male 0.044
AnyCond 0.008
Grip35 0.015
EducPS —0.092
Age 66-75 0.004

SE

0.062
0.070
0.059
0.072
0.063
0.058
0.097

0.054
0.047
0.057
0.056
0.046

Standard exponentials Linear

Coef SE Coef SE
0.177 0.062 0.172 0.062
-0.271 0.070 -0.274 0.070
0.657 0.058 0.656 0.058
0.189 0.071 0.188 0.071
—0.193 0.063 —0.193 0.063
0.085 0.058 0.085 0.058
0.164 0.097 0.164 0.097
0.047 0.057 0.039 0.057
0.008 0.047 0.004 0.047
0.021 0.058 0.017 0.058
—0.090 0.052 —0.092 0.052
-0.024 0.048 —0.002 0.048

(Continues)
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Table C2 (Continued)

Boundary equations

Amended exponentials Standard exponentials Linear
N = 3,802 Coef SE Coef SE Coef SE
Age > 75 —-0.030 0.079 —0.036 0.080 —0.036 0.080
2nd boundary (y,)
Constant 0.492 0.044 0.493 0.043 1.592 0.058
Male —0.185 0.039 —0.185 0.039 —0.188 0.054
AnyCond —-0.099 0.032 —0.098 0.031 —-0.121 0.045
Grip35 —0.166 0.040 —0.168 0.039 —0.196 0.055
Educ PS 0.073 0.034 0.072 0.034 0.009 0.049
Age 66-75 —-0.014 0.033 —0.012 0.033 —0.018 0.045
Age > 75 0.001 0.056 0.003 0.056 —0.033 0.075
3rd boundary (u,)
Constant 0.051 0.081 0.051 0.081 2.632 0.090
Male —-0.120 0.063 —0.120 0.063 -0.298 0.071
AnyCond —0.037 0.058 —0.037 0.058 —0.155 0.064
Grip35 —0.045 0.066 —0.046 0.066 -0.229 0.074
EducPS —-0.032 0.060 —0.033 0.060 -0.028 0.066
Age 6675 0.101 0.050 0.101 0.050 0.081 0.060
Age > 175 0.056 0.078 0.057 0.078 0.021 0.095
Parameters of the vignette equation
Vig 1 constant (a;) 1.829 0.065 0.830 0.065 0.821 0.064
Log-likelihood —8939.60 —8939.63 —8940.31

Table C3 SHARE: Averaged estimated boundaries and first probability index

Boundaries Amended exponential Standard exponential Linear
Ho 1.015 0.016 0.007
o 2.316 1.317 1.307
A 3.289 2.289 2.279
Ho—x'B —0.600 —0.600 —0.600
71, with (fiy—x'B) 0.701 0.701 0.701
7, with (i, —x'B) 1.674 1.674 1.672
Ho—a, —-0.814 -0.814 —-0.814
7, with (i, —a,) 0.487 0.487 0.487
f, with (A, —@a,) 1.459 1.459 1.458

iNote, @, is the estimated constant term for the vignette (a, in Equation (4)). x’ ﬁ is the estimated linear index including the constant.
Boundary equations are estimated hierarchically such that p; = p;_; + exp(x’ 3). Accordingly, subtracting the lirlear index, x’ ,B, from
the first boundary, u,, affects all subsequent boundaries. This is denoted above for u, and y, as ‘%, with (4, —x’B) and ‘fi, with
(Ho—x' B)’, respectively. Similarly for subtracting the vignette constant, @, from each boundary.
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Table C4 Correlations across estimated latent health and boundaries
Amended exponential Standard exponential Linear
Latent index, 3"
Amended exponential 1.000 1.000 1.000
Standard exponential 1.000 1.000 1.000
Linear 1.000 1.000 1.000
1st boundary, 7,
Amended exponential 1.000 0.996 0.992
Standard exponential 0.996 1.000 0.996
Linear 0.992 0.996 1.000
2nd boundary, %,
Amended exponential 1.000 1.000 0.994
Standard exponential 1.000 1.000 0.995
Linear 0.994 0.995 1.000
3rd boundary, 7,
Amended exponential 1.000 1.000 0.996
Standard exponential 1.000 1.000 0.997
Linear 0.996 0.997 1.000
Table C5 SHARE: Average predicted probabilities, and correlations across predicted probabilities
Amended exponential Standard exponential Linear
Average probabilities
j=0 0.288 0.288 0.288
j=1 0.447 0.447 0.447
= 0.202 0.302 0.202
Jj= 0.063 0.063 0.063
Correlations across individual P(y = 0)
Amended exponential 1.0000 1.0000 1.0000
Standard exponential 1.0000 1.0000 1.0000
Linear 1.0000 1.0000 1.0000
Correlations across individual P(y = 1)
Amended exponential 1.0000 0.9977 0.9976
Standard exponential 0.9977 1.0000 0.9999
Linear 0.9976 0.9999 1.0000
Correlations across individual P(y = 2)
Amended exponential 1.0000 0.9998 0.9997
Standard exponential 0.9998 1.0000 1.0000
Linear 0.9997 1.0000 1.0000

Correlations across individual P(y = 3)
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Table C5 (Continued)
Amended exponential Standard exponential Linear
Amended exponential 1.0000 0.9998 0.9997
Standard exponential 0.9998 1.0000 1.0000
Linear 0.9997 1.0000 1.0000
Table C6 SHARE: Partial effects (evaluated at sample means) and standard errors (in parentheses)
Observed categorical outcomes
j=0 Jj=1 J=2 Jj=3
Amended exponential
Male 0.105 (0.019) —0.081 (0.016) —0.028  (0.015)  0.004 (0.007)
AnyCond -0.216  (0.015) -0.027  (0.014) 0.162 (0.013) 0.081 (0.007)
Grip35 —0.057  (0.019) -0.064  (0.017)  0.078 0.015)  0.043 (0.008)
EducPS 0.034 (0.017) 0.028 (0.014) -0.045  (0.013) 0.016 (0.007)
Age 6675 —0.028  (0.016) —0.004  (0.014) 0.032 0.012)  0.0006  (0.006)
Age > 75 -0.066  (0.027)  0.004 0.024)  0.048 0.0200  0.014 (0.009)
Standard exponential
Male 0.106 (0.019) —-0.082  (0.016) -0.028  (0.015)  0.004 (0.007)
AnyCond —0.217  (0.015) —-0.027  (0.014) 0.162 (0.013) 0.081 (0.007)
Grip35 —-0.056  (0.019) -0.065  (0.017)  0.078 0.015)  0.043 (0.008)
EducPS 0.034 (0.017) 0.027 (0.014) —0.045  (0.014) 0.016 (0.007)
Age 6675 -0.029  (0.016) -0.003  (0.014) 0.032 0.012)  0.0004  (0.006)
Age > 75 -0.067 (0.027)  0.005 (0.024)  0.048 0.0200  0.014 (0.009)
Linear
Male 0.104 (0.019) -0.077  (0.016) -0.029  (0.015)  0.002 (0.007)
AnyCond -0.217  (0.015) -0.025  (0.014) 0.162 (0.013) 0.080 (0.007)
Grip35 —0.057  (0.019) -0.063  (0.016)  0.079 0.015)  0.041 (0.007)
EducPS 0.034 (0.017) 0.029 (0.015)  —-0.047  (0.014) 0.016 (0.007)
Age 66-75 —-0.029  (0.016) —-0.003  (0.013) 0.032 0.012)  0.0003  (0.006)
Age > 75 —-0.067  (0.027)  0.005 (0.023)  0.047 0.0200 0.014 (0.009)
Table C7 Size results, at 0.05 nominal size; unrestricted aia
Boundary equations SCOT€;; scoreyy scoreg
Linear 0.0560 0.0550 0.0535
Standard exponential 0.0575 0.0535 0.0565
Amended exponential 0.0470 0.0525 0.0565

“Based on M = 2000 repetitions.
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Table C8 Specification of boundary equations®

True value Boundary equations: amended exponential

M =2000; S = 1995

SE SE

Coef Coef (Coef) MB (MB) Cov
Male -0.271 -0.270 0.072 0.0007 0.072 0943
AnyCond 0.657 0.659 0.059 0.002 0.059 0946
Grip35 0.189 0.190 0.071 0.001 0.071 0947
EducPS —0.193 —0.194 0.065 —0.001 0.065 0938
Age 66-75  0.085 0.084 0.057 —0.0005 0.057 0952
Age > 75 0.164 0.165 0.097 0.001 0.097 0955

True value Boundary equations: standard exponential

M =2000; S = 1996

Male —-0.271 —-0.270 0.021 0.0009 0.072 0944
AnyCond 0.657 0.659 0.059 0.002 0.059  0.949
Grip35 0.189 0.190 0.071 0.001 0.071  0.948
EducPS —0.193 —0.194 0.065 —0.001 0.065 0.936
Age 66-75  0.085 0.084 0.057 —0.0006  0.057  0.953
Age > 75 0.164 0.165 0.097 0.001 0.097 0.954

True value Boundary equations: linear

M =2000; S =578

Male —-0.271 -0.277 0.067 —0.006 0.067 0958
AnyCond 0.657 0.658 0.059 0.0009 0.059 0945
Grip35 0.189 0.187 0.071 —-0.002 0.071 0.952
EducPS —0.193 —0.194 0.061 —0.0005  0.061 0.955
Age 66-75  0.085 0.088 0.055 0.003 0.055  0.960
Age > 75 0.164 0.165 0.095 0.001 0.095 0955

“Based on M = 2000 Monte Carlo repetitions from SHARE data (N = 3802). Simulations are generated assuming set of covariates
X and parameters from column 2 of Table (C) that is assuming standard exponential boundaries. Models are estimated assuming (i)
amended exponential boundaries, (ii) standard exponential boundaries, and (iii) linear boundaries. S represents the number of model
repetitions that converged. MB is mean bias; Cov is the 5% coverage rate.



