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Abstract: Agricultural terraced landscapes, which are important historical heritage sites
(e.g., UNESCO or Globally Important Agricultural Heritage Systems (GIAHS) sites) are under
threat from increased soil degradation due to climate change and land abandonment. Remote sensing
can assist in the assessment and monitoring of such cultural ecosystem services. However, due to the
limitations imposed by rugged topography and the occurrence of vegetation, the application of a
single high-resolution topography (HRT) technique is challenging in these particular agricultural
environments. Therefore, data fusion of HRT techniques (terrestrial laser scanning (TLS) and
aerial/terrestrial structure from motion (SfM)) was tested for the first time in this context (terraces),
to the best of our knowledge, to overcome specific detection problems such as the complex topographic
and landcover conditions of the terrace systems. SfM–TLS data fusion methodology was trialed
in order to produce very high-resolution digital terrain models (DTMs) of two agricultural terrace
areas, both characterized by the presence of vegetation that covers parts of the subvertical surfaces,
complex morphology, and inaccessible areas. In the unreachable areas, it was necessary to find
effective solutions to carry out HRT surveys; therefore, we tested the direct georeferencing (DG)
method, exploiting onboard multifrequency GNSS receivers for unmanned aerial vehicles (UAVs) and
postprocessing kinematic (PPK) data. The results showed that the fusion of data based on different
methods and acquisition platforms is required to obtain accurate DTMs that reflect the real surface
roughness of terrace systems without gaps in data. Moreover, in inaccessible or hazardous terrains,
a combination of direct and indirect georeferencing was a useful solution to reduce the substantial
inconvenience and cost of ground control point (GCP) placement. We show that in order to obtain
a precise data fusion in these complex conditions, it is essential to utilize a complete and specific
workflow. This workflow must incorporate all data merging issues and landcover condition problems,
encompassing the survey planning step, the coregistration process, and the error analysis of the
outputs. The high-resolution DTMs realized can provide a starting point for land degradation process
assessment of these agriculture environments and supplies useful information to stakeholders for
better management and protection of such important heritage landscapes.

Keywords: data fusion; coregistration; TLS; SfM; terrace; direct georeferencing

Remote Sens. 2020, 12, 1946; doi:10.3390/rs12121946 www.mdpi.com/journal/remotesensing



Remote Sens. 2020, 12, 1946 2 of 29

1. Introduction

Over the last two decades, our ability to monitor and characterize landscapes [1,2] through
submetric digital terrain models (DTMs) has greatly improved due to important developments in
high-resolution topography (HRT) techniques, methods, sensors, and platforms [3,4]. The explosion
in the availability of HRT data is revolutionizing the way in which we can analyze features in the
landscape and quantify many processes at the fine spatial resolutions at which they occur [5].

The choice of the most appropriate platform for HRT surveys must first consider the features
present in the analyzed area, the required resolution, the cost and flexibility of the available and
required technologies, and the spatial extent of the study area [6]. Each monitoring platform has
advantages and disadvantages. They must be assessed during the survey planning phase, considering
the aims of the study and the characteristics of the system under investigation. Among the most widely
used technologies, airborne laser scanning (ALS) is the most suitable system for the acquisition of HRT
data over remote and vegetated areas over short time periods across large areas [7–11]. However, this
approach is costly for small area surveys. Instead, ground-based approaches might be more suitable
on some sites with steep slopes and near-vertical surfaces, such as agricultural terraces, river banks,
and landslides [12]. For example, ground-based platforms such as terrestrial laser scanning (TLS)
are used when a higher resolution and more flexibility in the scanning angle is needed [13]. Other
traditional techniques such as Global Navigation Satellite System (GNSS) and total station survey
are not ideal for large areas and can thus prove costly [14]. Instead, recent developments in digital
photogrammetry (e.g., structure from motion (SfM)) paired with multiview stereo (MVS) algorithms
(hereafter together referred to as SfM) have increased the possibility of low-cost and high-resolution
surveys, both ground- and aerial-based [15,16], opening new opportunities for landscape investigation
and management [17].

The sole use of any of the above techniques can be a significant problem in rugged topography, steep
slopes, inaccessible areas, zones with high altitude differences, and in vegetated environments, because
each HRT method is constrained by several factors. Therefore, data fusion from different acquisition
platforms is necessary for the creation of detailed DTMs in complex situations. The integration of
different types of data (in terms of source, resolution, accuracy) acquired by different techniques allows
the capture of more detailed information and valuable feature representation relating to the surveyed
areas [18,19]. Among all the morphologically complex environments, in which data fusion could be an
effective method, it is possible to identify those where the anthropic component has modified the natural
landscape by introducing very different features compared to the surrounding context. An excellent
example of such heterogenic systems is agricultural areas, where significant natural landscape changes
have taken place, especially where there are steep slopes. Indeed, hilly and mountainous areas have
been widely transformed for cultivation, either through the maintenance of natural slopes or the
construction of terraces (using dry-stone walls or earth banks to reduce slope gradient, mitigate
soil erosion, collect rainwater run-off, and support agriculture [20]). In this particular environment,
some factors that constrain HRT surveys must be considered: (i) the existence of subvertical surfaces
(i.e., terrace risers or walls) that are not easy to survey with all HRT techniques; (ii) the presence
of vegetation (common in agricultural areas or in ancient, often abandoned, terraces) that covers
surfaces and occludes the instrument’s point of view; (iii) the presence of steep and rugged slopes
that, while not being more suitable for ground-based approaches, also restrict accessibility (e.g., for
large instruments); (iv) the presence of anthropic infrastructures close to, or inside, the area of interest
that impede the execution of a survey (e.g., no-fly zones, inaccessible areas, critical zones or parts
with specific restrictions by flight authorities [21]); (v) the existence of cultivated areas which require
surveys at a landscape scale, such as high change in elevation. The monitoring and characterization of
these environments is important both in order to learn from the past and to study future landscape
evolution. Agricultural terraced landscapes worldwide can be considered as part of our historical
heritage (e.g., UNESCO or Globally Important Agricultural Heritage Systems (GIAHS) sites) and thus
provide cultural ecosystem services, in addition to providing food security and income with significant
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benefits to the economy (e.g., terraced cultivation of wine grapes, fruits, and olives). Nowadays, with
climate change leading to enhanced precipitation intensity [22,23], combined with land abandonment,
lack of maintenance, and in some cases, unsuitable agronomic practices, such areas are under threat.
Thus, terrace systems becoming one of the most erosion-prone agricultural landscapes [24,25]. Indeed,
an increasing occurrence of slope failure (e.g., landslide, debris flow, and dry-stone wall collapse)
has been documented, with direct consequences for people when these processes are triggered in
densely populated areas [26]. Observing the evolution of agricultural landscapes cultivated in hilly
and mountainous areas, often with terracing practiced, through HRT gives us important information
on how to protect these sensitive environments [25,27,28]. HRT can provide suitable information
through the extraction of 3D models, profiles, sections, scaled plans, and orthomosaics, simplifying
and speeding-up the field geomorphological analysis [29].

The objective of this work is to test data fusion of HRT techniques (TLS and aerial/terrestrial SfM)
in a particular agricultural context where, to the best of our knowledge, it has never been applied.
The aim is to assess whether the exploitation of the SfM–TLS data fusion methodology applied in these
anthropogenic landscapes can overcome specific detection problems such as complex topographic
and landcover conditions. The terrace environments represent a new challenge for the data fusion
methodology, which could be a key solution for a detailed reconstruction of terraced systems even
when covered by vegetation. Such in-depth knowledge will provide a solid basis for land degradation
process assessment and allow for a better management of relevant heritage terraced landscapes.
In order to apply this methodology, the design of an appropriate data-fusion workflow was developed
to plan surveys in difficult conditions (i.e., presence of vegetation, rugged topography, inaccessible
areas, and the requirement to adequately locate topographic SfM and TLS targets) and to carry out an
accurate merge of data in two agricultural terrace systems with diverse survey issues.

2. SfM–TLS Data Fusion

The data fusion concept identifies a set of methods and tools for using data derived from various
sources with different characteristics [18]. In HRT, this is the process of merging data derived from
different sensors but representing the same real-world object in order to produce a consistent, accurate,
and useful representation and thereby overcome the limitations of single data sources [19,30]. There are
different levels of data integration: low, intermediate, or high. These levels are dependent on the
processing stage at which fusion takes place [18,31]. In this paper we used the low level of data fusion
(i.e., the combination of several sources of raw data to produce new raw information that is more
representative than the original raw inputs). We integrated raw point clouds of TLS and unmanned
aerial vehicle (UAV)/terrestrial SfM to exploit the intrinsic advantages and overcome the weaknesses
of each dataset. A data fusion approach, namely SfM–TLS merge, has been applied in cultural heritage
environment and archaeological research [19,32–36] and in environmental monitoring [14,30,37–39].
This suggests that SfM–TLS fusion achieves better performance in various applications compared
to the use of a single data type [40]. In previous research, data fusion was applied in specific
complex landscapes comprising built and natural heritage within demanding areas [32,34]. In terrace
systems, the complex topography and vegetation cover certainly makes it more difficult to apply
the usual data fusion. For this reason, steep agricultural terrace systems (Figure 1) are a challenging
environment for the testing of the data fusion approach, which to the best of our knowledge has yet to
be applied in this particular context (single-mode HRT has been applied thus far to survey terrace
environments [20,27,41–43]). The SfM–TLS merge is typically done to overcome weak points of each
technique, e.g., lack of texture, gaps due to occlusions, and noncollaborative material/surfaces [19],
derived from the intrinsic nature of the HRT survey method. Therefore, it was important to identify
these particular aspects within the survey project.



Remote Sens. 2020, 12, 1946 4 of 29

 

Figure 1. Example of 3D viewing geometry, data acquisition principles of the considered platforms/sensors,
and data coverage terrestrial laser scanning (TLS) and structure from motion (SfM) (UAV and ground-based
images) from single positions in an agricultural vegetated terrace system.

TLS produces surveys that can reach millimeter accuracy and is considered to more reliably filter
vegetation spots [44], which may be problematic in SfM data due to difficulties encountered from
image matching over plant cover [37]. Indeed, TLS produces more reliable information on intercanopy
surfaces and the ground as it exploits different points of view at close range to the studied object,
where vegetation density is low. TLS can use the ability to provide additional information such
as the intensity classifications of the surveyed surfaces (ground or canopy [45]). However, TLS is
expensive and requires many hours of fieldwork (e.g., scanning time, or TLS target and tripod moving
for multiple scans [46]). A TLS survey usually needs multiple scans to avoid occlusions due to the
areas obscured in the sensor’s field of view [39,46,47]. Therefore, the collected point cloud can often
be incomplete without accurate survey planning [48]. TLS surveys typically capture information on
vertical surfaces (e.g., terrace walls, steep slopes, landslides, building facades) but with sampling limits
across the upper zones within the field of view (e.g., top of vegetation canopy, building roofs [32]).
Aerial SfM can overcome these data gaps through UAV systems, which have evolved significantly in
the last decade. UAVs have revolutionized large-scale low-altitude imaging and geospatial information
gathering [49]. The impact of UAVs has been noticeable in remote sensing [50,51], supported by the
increasing use of SfM and linked to the development of user-friendly SfM software [52]. This low-cost
technique with nadir UAV images minimizes the shadows of the TLS ground-based view [53] and
allows the surveying of large areas which are not, or are less, accessible with the scanner in a short
time. Vertical surfaces pose a problem for the UAV’s nadir viewpoint, but SfM allows the choice of a
wide range of other acquisition platforms [54], including ground-based photos. They can also capture
the fine-grained and otherwise hidden details of a vertical surface. Terrestrial SfM can also be a good
solution when flight permissions are not granted by local legislation at certain sites or when weather
conditions may not be suitable for drone flights (e.g., high wind speeds [12]). However, the ground
elevation under vegetation is usually not represented in SfM, limiting the quality of the resulting
point cloud [55]. Another constraint for SfM surveys, both in terms of time and cost [56], especially
in steep-slope and rugged environments, is the ground control point (GCP) requirement. This is of
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fundamental importance for indirect georeferencing or indirect sensor orientation (InSO) [57] and
the coregistration process [58]. If the surveyed zone is inaccessible, densely vegetated, hazardous,
or subject to restrictions, locating and measuring GCPs with GNSS becomes a problem [59,60]. Today,
this problem can be solved through the direct georeferencing (DG) method [61]. In DG or direct
sensor orientation (DSO) [57], the photogrammetric solution is determined with precise and accurate
knowledge of the camera positions/orientation at the time of image acquisition [62]. The exterior
orientation parameters of aerial images, at the exposure time, are computed by processing the onboard
GNSS and high-quality inertial measurement unit (IMU) data [21]. Nowadays, onboard multifrequency
GNSS offers a real-time kinematic (RTK) option that allows a high level of image geotagging with
on-site data quality checks. However, recording raw GNSS data is also desirable, as a backup in the case
of radio link (i.e., between a master station and the UAV GNSS) problems, in order to refine the camera
station positions (i.e., precise ephemeris data of GNSS satellites are available during postprocessing),
and to consider the UAV trajectory and atmospheric error sources. Consequently, postprocessing
kinematic (PPK) solution can often provide a more accurate solution than RTK [57,63–65].

Therefore, the SfM and TLS techniques have been chosen for their intrinsic characteristics and their
ability to complement each other in terms of overcoming problems (Figure 1) [66]. In addition, research
has shown how TLS and SfM surveys can lead to comparable results in terms of accuracy [46,67–70].
For this reason, SfM–TLS data fusion is a logical option in challenging contexts (e.g., rugged vegetated
terrace complexes) in order to increase the reliability of the information and generate an accurate and
complete 3D model of the entire landscape.

In the data fusion process, one fundamental step is coregistration. Even if several studies highlight
how coregistration was essential in order to merge HRT data correctly, it is often not addressed in
postprocessing workflows [71]. In addition, in topographically complex environments such as terraced
areas, coregistration requires specific measures to overcome misalignments due to the presence of
vegetation. The SfM–TLS data fusion needs the coregistration of TLS multiple scans (a common task in
TLS surveys [72]) because the overlapping point clouds have to be located in the same reference system,
computing a transformation (composed of rotation, translation, and possibly scale) that defines the
optimal alignment among all of them. Furthermore, the alignment of partially overlapping TLS and
SfM point clouds is also necessary; these must be coregistered by computing a similarity transformation
that minimizes the distance between corresponding points.

3. Data and Methods

An integrated approach employing ground-based and UAV SfM with TLS data permitted an
accurate survey of the highly vegetated terrace systems in order to produce detailed DTMs. Effective
data fusion has to consider several aspects, starting from a careful survey planning, where the
distribution of the SfM and TLS targets is crucial for coregistering data in the final merge. For this
reason, it is important to develop a precise workflow (Figure 2). The workflow must address all the
possible issues, such as the coregistration problems and the errors, that the proposed methods could
generate in terms of DTM accuracy. In the following sections, we give full details on HRT surveys
(i. and ii. in Figure 2), data processing (iii. to v. in Figure 2), data coregistration (vi. in Figure 2), data
fusion (vii. in Figure 2), DTM generation (viii. in Figure 2), and error analysis (ix. in Figure 2).
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Figure 2. General workflow of the analysis developed in this study (see the text for more details).

3.1. Study Areas

We tested this approach on two agricultural terrace sites (Figure 3a): Soave traditional vineyards
(a Globally Important Agricultural Heritage Systems (GIAHS) site) in the Veneto region of northeastern
Italy and Martelberg in the Saint-Martens-Voeren area of eastern Belgium. These are case study
sites for the TerrACE geoarchaeological research project (ERC-2017-ADG: 787790, 2019–2023; https:
//www.terrace.no/) that aims to create a methodological step-change in the understanding of agricultural
terraces. This research project is applying a new scientific integrated methodology to agricultural
terraces across Europe, bringing together landscape archaeology, geomorphology, and paleoecology.
We also chose these sites because they both present complex topography and landcover, including
the presence of vegetation that covers parts of the subvertical surfaces (e.g., vertical walls of terraces),
slopes, and large survey areas.
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Figure 3. The two cases of study: (a) location in Europe; (b) the vegetated braided lynchets of
Martelberg in Saint-Martens-Voeren, with detail of the trees and shrubs that cover the terrace risers;
(c) the dry-stone contour terraces in Soave, characterized by some collapses and shrubby vegetation.

3.1.1. Belgian Study Area

The Belgian site (18 ha, elevation range between 148 and 183 m a.s.l., and average slope of 20%;
see Figure 3b) is located in a hilly agropastoral area close to the border with the Netherlands. The site is
characterized by six braided lynchets (terraces without stone walls) covered with trees and shrubs with
dense canopy, interconnected by sloping pastures that are periodically plowed. The study area spans
on two different hills divided by a small road which crosses them in the lower part, forming a small
valley. The studied terrace complex is located on the west side of the valley. The case presented here is
particularly interesting from a geoarchaeological point of view. Indeed, geomorphological researchers
had applied a tillage-erosion model to the site, which had yielded an estimate of its age—but this had
not been tested [73]. It also represents and a challenging survey in terms of HRT data fusion.

3.1.2. Italian Study Area

The Italian site (3.5 ha, elevation range between 33 and 70 m a.s.l., and average slope of 35%; see
Figure 3c) is located in a hilly zone which is famous for the production of excellent wines. The presence
of steep slopes led local people to invest time and effort in the construction of contour terraces—a
system that is required for the creation and maintenance of vineyards. The survey comprises several
abandoned dry-stone terraces in the lower part. Some of these terraces have collapsed, and shrubby
vegetation has invaded the flat terrace areas (Figure 3c). This obscures the view of the terraces, thus
complicating the HRT survey. In the higher part of the study area, where the slope is less steep,
vineyards are still under cultivation.

3.2. Data Acquisition

3.2.1. SfM Surveys

An integrated approach employing terrestrial and UAV SfM was carried out on both sites.
Ground-based photography was used to survey particular elements, as the vertical parts of the terrace
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risers were obscured or collapsed. Meanwhile, UAV images captured flat terrace zones at a large
spatial scale (Figure 1). Since the study areas were large and included considerable variation in
slope morphology, they were divided into homogeneous elevation zones that were surveyed through
planned and manual UAV flights. Before image acquisition, GCPs employed in SfM were distributed
throughout the study areas (Figure 4a,b; Section i. in Figure 2) in flat zones but also on vertical surfaces
so that GCPs were visible from different points of view (i.e., nadir and oblique images) and easily
distinguishable from TLS positions. These were employed as corresponding points in the SfM–TLS
point cloud coregistration. In the survey planning, the number, location, and distribution of GCPs
are crucial [56,58,74] because a reliable SfM adjustment during 3D reconstruction demands a robust
GCP network [75]. The GCP network was based on the features and spatial scale of the studied area
and the desired resolution for the survey. The SfM targets comprised square orange cloth with a
black rhombus in the middle, an old compact disk placed in the center (i.e., CD-ROMs; see Figure 4e).
SfM arrangements are summarized in Table 1.

Table 1. Main characteristics of SfM acquisitions (ground-based and UAV).

Study Area
Area Covered

(ha)
Number of

Images
Flight Height

(m)
GSD
(m)

Number of
GCPs (CPs) 1

GNSS Positional
Accuracy

(X, Y—Z) (m)

Belgium 18 1219 20–45 0.005–0.015 40 (13) <0.05
Italy 3.5 632 25–35 0.006–0.008 56 (18) 0.03–0.04

1 Following [76], we applied a bootstrapping resampling technique to randomly select one-third of the GCPs and
use them as control points (CPs) (see Section 3.6) to assess the uncertainty of each point.

Belgian site: In October 2019, a custom-built Quadcopter equipped with a DJI A3 flight controller
and a Sony ILCE-6000 camera (24 Mpixels, focal length 16 mm, sensor size APS-C 23.5 mm × 15.6 mm)
was used for aerial SfM survey (Figure 4c; Section ii. in Figure 2). The UAV was fitted with a
compact multi-GNSS RTK receiver (Emlid Reach M+, Emlid Ltd., Hong Kong; Tallysman TW2708
antenna model) with RTK–PPK capability to log the raw data as UBX format using global positioning
system (GPS) and GLONASS satellites. The offset shift between the antenna phase center (placed on
an aluminum plate, 22.5 cm right above the camera lens center) and camera projection center was
considered during the postprocessing, assuming a constant vertical offset (more details can be found
in [65], where the same system was used). Moreover, an electronic system was used to integrate
and synchronize the GNSS with the action camera for image geotagging. The images contained only
positioning information without attitude parameters because a link between the UAV-IMU and camera
was not available. During the UAV flights, a Reach RS (Emlid Ltd.) base station was mounted on a
tripod located in the middle of the survey area (the maximal distance between the UAV and the base
station was 400 m) to provide positioning correction input. The receiver of the base was configured
to log the raw data in a RINEX file at 5 Hz. Flight missions (i.e., three flights, namely the west slope,
east slope, and central part; see Figure 4a) were planned using the Autopilot app (Hangar Technology,
2018) that defined the frontal (90%) and side overlap (80%) based on the speed of the UAV and the
camera trigger interval, which was set at 3 s. For the ground-based survey, the same camera with
the same focal length as the UAV survey was used to minimize the integration problems of aerial
and terrestrial images in the SfM models [77]. GCPs were distributed only along the western side
of the study area because the eastern side was inaccessible (Figure 4a). For this reason, the direct
georeferencing technique was used to reconstruct the morphology of this specific part of the study
area. The GCPs were surveyed using a Reach RS (Emlid Ltd.; RTK solution) with the EUREF-IP
network in NRTK (network of permanent GNSS stations) mode. The point coordinates were tied to the
WGS84/UTM zone 31N (EPSG: 32631) reference system.
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‒Figure 4. SfM–TLS surveys in the two cases of study. TLS positions and the target (TLS and SfM)
network in Belgian (a) and Italian (b) study areas. (c) Custom-built quadcopter and a Sony ILCE-6000
camera used in Belgian SfM survey. (d) The Leica P50 used for TLS surveys, during a scan of the Belgian
vegetated braided lynchets. In the background, the TLS point cloud (intensity values) surveyed from
TLS point of view No. 7 in (a) is shown. (e) Example of TLS circular black/white target and SfM GCPs
(black/orange cloth) used for HRT surveys in Soave; (f) Ready-to-fly (i.e., consumer-grade) quadcopter
DJI Matrice210v2 used in Italian SfM surveys.
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Italian site: In December 2019, nadir and oblique UAV images were collected with a DJI Zenmuse
X4S camera (20Mpixels, focal length 8.8 mm, 1-inch CMOS Sensor; see Figure 4f) mounted on a
professional quadcopter (DJI Matrice210v2). The survey area was divided into two zones (i.e., the lower
part with abandoned terrace and the higher cultivated ones; see Figure 4b) of uniform elevation.
The UAV flight control unit (coupled to a GNSS) was used to plan two UAV flights, using software
that adjusts the height and speed of flight accordingly, and the image overlap (optimal overlap of
80% in flight direction and a flight strip overlap of 70%). In areas where a specific detail was needed,
the manual flight mode was used with a time-lapse function of the camera that allowed the capturing of
an image (nadir and oblique) at 3 s intervals. This was sufficient to guarantee the overlap in sequential
photographs, which is essential for the image matching algorithms used in SfM [37]. In addition,
terrestrial SfM surveys were carried out using a Sony NEX-5R camera (16 megapixels, focal length
16 mm, sensor size 23.5 × 15.6 mm). Ground-based photos were taken in front of some specific wall
collapses (i.e., hidden by vegetation), using an adequate average depth distance from the studied
objects. A mean baseline of 0.30 m was used between adjacent camera positions to avoid large jumps
in scale. A GeoMax Zenith 40 GNSS allowed us to survey all target types in NRTK mode. All the
points coordinates were referenced to the RDN2008/UTM zone 32N (EPSG: 7791) reference system.

3.2.2. TLS Surveys

In order to enhance the speed and efficiency of data collection, the scanner positions were chosen so
as to minimize their number. These choices considered the areas not reached by SfM (Figure 1). The data
acquisition started with the planning of target and TLS positions. We used four tripod-mounted Leica
targets (i.e., planar HDS 4.5-inch circular black/white targets; see Figure 4e) distributed within the
survey area (Figure 4a,b) in order to make these targets visible at a certain distance from all points of
view of the TLS positions (Section i. in Figure 2). For each scan, four targets were positioned, three
of which remained in the same position for the subsequent scan, while one was moved from time
to time in order to detect the adjacent area. This was important to maintain an overlap among the
scans and an adequate number of targets for multiscan coregistration. An overlap of 30–50% between
adjacent scans ensured the generation of a very accurate 3D laser model [78]. The riser surfaces of the
terraces were surveyed with a Leica P50 TLS (Figure 4d). This scanning system allows a larger field of
view (360◦H × 279◦V), high measurement accuracy (e.g., 1.6 mm @ 10 m at >1 km maximum range
mode), a range of up to 1 km, and a scan rate of up to 1,000,000 points/s. Furthermore, besides intensity
(e.g., in Figure 4d) of the reflected beam, the Leica P50 acquired a panoramic photo of the surveyed
objects through an integrated camera (4 megapixels) after each scan and made a higher density specific
scan of the targets, manually identified and labeled by the user on the P50 screen preview. The position
of the targets was surveyed using the same GNSS of SfM surveys for the two study areas (Section ii. in
Figure 2). Table 2 synthesizes the characteristics of TLS surveys.

Table 2. Main characteristics of TLS acquisitions. The chosen parameters were an acceptable compromise
between the level of detail of the final 3D model and computing resources needed for data processing.

Study
Area

Number
of Scans

Mean Distance
between Scans

(m)

Accuracy
(m)

Maximum
Range Mode

(m)

Scan Rate
(Points/s)

Image
Resolution
(Mpixels)

Number
of Targets

Belgium 7 70 1.6 mm@10 120 1,000,000 4 20
Italy 6 65 1.6 mm@10 270–570 1 250,000–500,000 1 4 16

1 Different parameter for the two different lines of TLS scans (Figure 4b).

Belgian site: In order to survey the vertical vegetated risers of the terrace, several scans were
required. This varied depending on the complexity and the length of the topographic surface: three
different scan positions were used for the upper terrace (TLS 1, 2, 3 in Figure 4a), and two scan positions
each were used for the middle (TLS 4, 5 in Figure 4a) and lower (TLS 6, 7 in Figure 4a) terraces.
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The scanner was located in front of the braided lynchets and moved along the terrace line, keeping
approximately the same elevation.

Italian site: The terrace walls covered by shrubby vegetation were surveyed through six TLS scans
located at two different lines of distance: three at a distance of 150 m (TLS 1, 2, 3 in Figure 4b) and
three at a distance of 35 m (TLS 4, 5, 6 in Figure 4a) from the terrace system.

3.3. Data Processing

3.3.1. SfM Processing

For the Belgian site, raw GNSS data from the UAV-mounted cameras and the base station
were extracted and corrected by postprocessing using RTKLib, an open-source software package for
differential positioning computing. Then, the camera position estimates were extracted through PPK
GNSS solutions and were available to test direct georeferencing in the SfM workflow.

The image datasets were processed with a 2× Intel Xeon Bronze 3106 CPU @ 1.70 Ghz with 256 GB
RAM and 2× NVIDIA GeForce RTX 2080 Ti, through Agisoft Photoscan Pro v 1.4.5. The computer
vision routines of SfM and MVS algorithms require powerful processers to extract the 3D point clouds
from the images, and, additionally, orthomosaics. The first step in SfM processing workflow was
masking unwanted objects (e.g., vegetation and clouds in ground-based images) in the photos uploaded
in the software. This was followed by a camera precalibration using Agisoft Lens, an automatic
lens calibration routine which uses an LCD screen as a calibration target (i.e., checker-board pattern).
This tool estimated camera model parameters and lens distortion coefficients, ready to import into
Photoscan (Section iii. in Figure 2). This precalibration step was a starting point for the parameter
refinement in the next process i.e., the SfM step (Section iv. in Figure 2), where ground-based and UAV
(nadir and oblique) photos were processed together in Photoscan to avoid subsequent data fusion
problems at the point-cloud level [77]. During the SfM step, common features in the set of images were
identified and matched, the internal camera parameters and relative orientation of the camera were
estimated, and construction of the image network took place [16,79] to realize the sparse point cloud.
Several papers have highlighted how a robust self-calibration procedure during the alignment stage is
useful, due to the inherent instability of consumer cameras used in UAVs, and leads to better results
with the inclusion of oblique imaging [21,57,80]. This first alignment allowed the removal of unwanted
or outlying data (i.e., points that are clearly located off the surface or have anomalously large image
residuals) and the deletion of the photos that the software did not align for different reasons. In the
next step, georeferencing of the 3D sparse point cloud was carried out, testing three different solutions
for the Belgian site:

A. GCP solution: The traditional solution of the GCP coordinates (evaluating the level of GCP
uncertainty before including these data to avoid adversely affecting data accuracy [58]) was
employed to scale and georeference the SfM-derived point cloud. This result was obtained by
using a seven-parameter linear similarity transformation, through locating and manually marking
GCPs on at least two photographs. In this case, some of the GCPs (one-third) were used as control
points (CPs) to provide an independent measure of accuracy.

B. PPK solution: The camera positions from PPK data encoded in the images were used. Here, no
information on GCPs was exploited.

C. PPK + 1GCP solution: Besides the camera positions, as in PPK, the coordinates of one GCP were
also used. This last configuration has been tested in several projects [57,65].

For the Italian study, instead, only the GCP solution was adopted to georeference the SfM
point cloud, because the UAV used in this study could not exploit the other solutions. In light
of this georeferencing data, the SfM step was improved [16,54] through a bundle adjustment step:
a fundamental phase that refined the camera and tie-point locations (homologous points that link
different images) and the camera calibration parameters of each image, through the bundle adjustment
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algorithm (least-squares network optimization [81]). This improved the values during the camera
alignment step by incorporating georeferencing data and removing obvious outliers and incorrect
matches from the sparse point cloud. Moreover, the optimization process was done through appropriate
weighting of tie and control point image observations in the bundle adjustment to enhance a real error
characterization [58]. This was followed by processing of high-density point clouds and orthomosaics,
which involved the use of an MVS image-matching algorithm that increased the point density by
several orders of magnitude [82]. This operates at the individual pixel scale to build dense clouds [83]
and orthomosaics in agreement with the resolution of the photos.

The georeferenced SfM point clouds were imported in the CloudCompare software (Omnia Version
2.10.2; http://www.danielgm.net) to be filtered through different steps: manual filtering, a “distance
filter procedure”, the cloth simulation filter (CSF) [84], and the “SOR filter tool” (Section v. in Figure 2).
The SOR filter was used to remove outliers through the computation of the average distance of each
point to its neighbors (it rejects the points that are farther than the average distance plus a defined
number of times the standard deviation). The manual filter was used to delete unwanted objects in the
point cloud (e.g., trees and shrubs on the lynchet risers and treads/flat part of terrace) in both SfM point
clouds. The removal of vegetation in the SfM point cloud led to a gap of data at ground level (Figure 5a)
that the TLS cloud filled. The CSF filter extracted the ground points only in vegetated lynchets of the
Belgian site because this tool gives the best results on slopes that are not overly steep [85], such as the
Belgian braided lynchets. For the rugged slope of the Italian terraces, a “distance filter procedure” was
used instead to remove shrubs on the flat terrace areas (Figure 5b). This method consists of generating
a mesh of the surface using the minimum elevation points within a defined value of a grid cell (the size
is established by the user based on the point cloud density and the needed resolution) through the
CloudCompare Rasterize tool. The mesh of the minimum elevations (considered the ground elevation)
was used to calculate the cloud to mesh distance (C2M) [86] for the data points in the original point
cloud. Then the C2M values (i.e., a scalar field in CloudCompare) were used to select points in the
original cloud that were at a specific threshold distance from the ground (e.g., points recognized
as vegetation). Therefore, the selected points were deleted, filtering/differentiating the terrace from
the vegetation.

3.3.2. TLS Processing

Leica Cyclone 9.4 software was used to postprocess the TLS data. At first, each scan was manually
filtered in order to remove unwanted objects, such as unnecessary elements of the landscape (Section iii.
in Figure 2). The coregistration of TLS multiple scans was performed according to the following steps:
(i) The software was automatically able to recognize the center of the black/white TLS targets (identified
and labeled in the field) and paired to equivalent tie-points or overlapping features in multiple scans,
thereby generating groups of prealigned scans (e.g., one group of scans for each of the three terraces
surveyed in Belgian site). (ii) The prealignment was further refined with the built-in Cyclone variant of
the well-known iterative closest point (ICP) [87,88] automatic algorithm. With this approach, the targets
enabled us to add further constraints into the registration step and thus strengthen the alignment
among the scans [89]. iii) The ICP optimization, implemented in Leica Cyclone, was then reapplied to
merge all the grouped scans in a global georeferenced point cloud at the landscape scale. In order to
georeference the TLS point cloud, the central points of the targets placed within the scanned scenes
were assigned with the coordinates measured by GNSS in the field through a registration procedure
based on automatic target recognition (Section iv. in Figure 2). The entire georeferenced TLS point
clouds were processed employing the CloudCompare software through the same tools used to filter
the point clouds for SfM (Figure 5d,e; Section v. in Figure 2).
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Figure 5. Data processing. (a) Difference in terms of SfM and TLS point clouds in the Belgian braided
lynchets. In the upper part of the figure, the SfM survey shows a lack of data (red rectangle) above the
vegetation. This data gap is filled by TLS survey, as the lower part of the figure shows. (b) Cleaned
Soave SfM point cloud through “distance filter procedure”. The lack of data (red circles) in the point
cloud was caused by the presence of shrubs in front of the terrace walls. (c) View of the data merge in
the Belgian study area, where the lynchet riser morphologies were extracted from TLS point cloud,
while the landscape surface on a large scale was obtained by SfM survey. (d) View of the TLS point
cloud of the Soave terrace where the vegetation (green in the point cloud) in the flat zones was cleaned,
as shown in (e) through the filter tools in CloudCompare software.

3.4. Coregistration and Data Fusion

The filtered TLS and SfM point clouds must be coregistered to minimize residual inaccuracies
of the georeferencing process. Among the different methods proposed to perform the coregistration
task [90], we chose the ICP algorithm, which is the most common fine registration method for the
alignment of point clouds published thus far [91–93]. This is implemented in several software packages,
including CloudCompare. The ICP procedure permits the more uniform distribution of the residual
registration error across the scans with respect to a simple pairwise approach [89], which can only be
useful in particular cases. Before applying the ICP tool, it was important to check if the georeferencing
process on the individual SfM and TLS datasets was effective and placed the different point clouds
quite close together, in order to improve the efficiency of fine registration. If the georeferencing process
is not optimal, it is preferable to implement a manual pairwise alignment through the identification of a
set of corresponding points, mainly recognizable on overlapping areas. This coarse registration, based
on at least four manually identified points, can also be performed in CloudCompare (with “Point Pair
Picking” tool) to provide initial values for the following fine registration [39]. Then, the automatic ICP
algorithm was applied and iteratively estimated pair points, computing a rigid body or a similarity
transformation at each step (Section vi. in Figure 2). The SfM point cloud was used as the “reference” for
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the alignment process, while the TLS point clouds were chosen as “data to align”. This choice was made
considering the georeferencing errors of each cloud and the surface covered by each technique. Initially,
the ICP was executed using only subsets of overlapping point clouds (i.e., areas easily recognizable
and objects detected by both techniques, e.g., natural and/or anthropogenic features). TLS and SfM
targets were also used as homologous surfaces that were identifiable in the different point clouds by
means of the associated RGB information. Finally, the estimated transformations were applied to the
entirety of the original point clouds using the parameters derived by the ICP tool [71].

The coregistered TLS and SfM point clouds were used to extract the useful parts from each survey.
Only terrace walls and lynchet risers were extracted from the TLS point clouds from the Italian and
Belgian surveys, respectively, while only flat terrace zones and the wider landscape were derived
from the SfM survey. The suitable HRT data from each survey were finally merged in CloudCompare
(Figure 5c; Section vii. in Figure 2) generating data fusion point clouds: three for the Martelberg site
(we tested three different SfM solutions in the georeferencing process, see Section 3.3.2) and one for the
Soave study area.

3.5. DTM Generation

The data fusion point clouds were decimated in order to reduce processing constraints and
extremely high data density. For this, we used the geostatistical Topography Point Cloud Analysis
Toolkit (ToPCAT) [94], which has successfully been used to decimate point clouds in several studies
(e.g., [92,95,96]). This tool allows intelligent decimation by decomposing the point cloud into a set
of non-overlapping grid-cells and calculates statistics for the observations in each grid. Following
the work by [97], the minimum elevation within each grid cell was taken to be the ground elevation,
and a grid cell of 0.10 m was selected to regularize the data set. The point clouds obtained by ToPCAT
were used to calculate a Triangular Irregular Network (TIN) that was then converted to raster through
natural neighbors interpolator, obtaining four DTMs (Section viii. in Figure 2).

3.6. Data Analysis

In order to identify bias and estimate accuracy and precision of the obtained point clouds and DTMs,
different analyses were carried out at different steps (Section ix. in Figure 2). Firstly, following [76],
a bootstrapping resampling technique was implemented within Photoscan. This produced an estimation
of the quality of the point cloud, considering the three different solutions used to produce the SfM
models (see Section 3.3.2). In the case of the GCP solution, the bootstrapping resampling technique
randomly selected one-third of the GCPs and used them as CPs (see Table 1) to provide an independent
measure of uncertainty of each point (i.e., the residuals, or the difference between the real coordinates of
this point and the modeled values). For the PPK + 1GCP solution, all GCPs minus one were randomly
selected as CPs; in the case of the PPK solution, all the GCPs were used as CPs. This random selection
was run iteratively 1000 times. Then, after all of the iterations, during which the bundle adjustment
step was reset, the accuracy and precision were obtained for each point when used as GCP or CP.
The mean of the residuals provides an indication of the accuracy of the registration process and the
point cloud when the GCP and CP residuals are used, respectively. The standard deviation of the
residuals yields an indication of the precision. This exercise provided an opportunity to check for
potentially biased points.

To assess the effectiveness of the SfM–TLS coregistration process, the Multiscale Model to Model
Cloud Comparison tool (M3C2) of CloudCompare [86] was used to calculate the cloud-to-cloud
distance between the SfM and TLS point clouds located in overlapping areas, before and after the
coregistration process [71]. The standard deviation of the distance between point clouds was used as
an indicator of the measurement precision, while the mean absolute distance was considered as the
accuracy of the point clouds [77].

Finally, the transformation of the point cloud into a continuous elevation surface (i.e., data
interpolation), and the subsequent gridding, introduced several uncertainties or artifacts. They could
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influence the accuracy/quality of the surface produced, especially in complex scenes with vertical
features, steep slopes, and rough surfaces [98,99]. The accuracy and precision evaluation of the
geospatial products can be done by using independent checkpoints, reference surfaces, or length
measurements [17]. Therefore, these errors, in particular in the vertical component, were evaluated
through a statistical comparison between the Z values of CPs and the equivalent Z measures of DTMs.
For the GCP solution, CPs were located in the most stable areas, following a homogeneous distribution.
Instead, for the PPK+ 1GCP solution, a single GCP was excluded, placed approximately in the middle
of the area. For the PPK solution, all the CPs were considered. A number of CPs were selected for
each DTM to calculate errors usually caused by filtering (for classifying into ground and off-terrain
points) and interpolation (i.e., for filling gaps). Some studies [51,100,101] have highlighted that DTMs
derived by laser scanning or digital photogrammetry seldom show a normal distribution of errors.
Therefore, the metrics employed, such as the root-mean-square error (RMSE), standard deviation (SDE),
and mean error (ME) had to assume that outliers existed and errors were not normally distributed.
For this reason, following the approach of [100], the outliers were removed by applying a threshold
selected from an initial calculation of the error measures. In this case, the threshold for removing
outliers was selected as 2 times the RMSE. This means that an error was classified as an outlier if the
absolute elevation difference between the CP and the corresponding point in the DTM was higher than
2 × RMSE. The value of 2 × RMSE was chosen considering the distribution of errors in the different
surveys, keeping an approach that is as precautionary as possible. Moreover, to also test a robust
accuracy assessment metric, preferably not influenced by outliers, we calculated the median (a robust
estimator for a systematic shift of the DTM, less sensitive to outliers) and the normalized median
absolute deviation (NMAD) [100,101]. They can be considered as estimates for the SDE that are more
resilient to outliers in the dataset.

4. Results and Discussion

4.1. SfM Outputs

The assessment of errors in the SfM surveys is an important aspect of the workflow and was
estimated through the point quality assessment of the GCPs and CPs in terms of precision, accuracy,
and registration error. Table 3 summarizes all these error aspects for each of the SfM process carried out.

The bootstrap resampling technique allowed a more detailed assessment of errors based on the
different SfM solutions in terms of the georeferencing process (see Section 3.3.2). The errors of the
GCPs, CPs, and camera position (e.g., the distance between the input and estimated positions of the
camera in Photoscan), which determine overall SfM survey accuracy, were all in the order of magnitude
of centimeters, adequate for investigating topographic features of the terrace complex. As for the test
of the different solutions for georeferencing the SfM point cloud in the Belgian site, Table 3 shows that
the best results were those of the GCP solution. However, the values for GCP solution were very
close to the estimated errors of the PPK solution, both in terms of accuracy, precision, and RMSE3D.
These results highlighted that direct georeferencing, with very accurate positioning, was able to match
the conventional GCP method. This was not possible in the past, when the direct georeferencing method
could achieve only decimeter to meter accuracies, as indicated in many studies [103–106]. This was
caused by the low accuracy of the navigation-grade onboard GPS units used for most current consumer
UAVs [49,56,103]. Recently the DG methods have gradually improved and can deliver centimeter-level
accuracy [51,107], exploiting multifrequency GNSS receivers (with devices light enough to be carried
in <25 kg UAV platforms) and kinematic data postprocessing [64,108,109]. Our empirical result
agrees with the simulations of [110], where georeferencing with GCPs or DG was found to yield
comparable ground point vertical precisions. In addition, [60,63,64] provided high-quality camera
position measurements and enabled direct georeferencing to centimeter-level accuracy through the
PPK solution. Moreover, using the PPK + 1GCP solution, the performance was slightly enhanced
in terms of accuracy (in particular for the Z component) and RMSE3D (Table 3). These results were
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in line with previous studies [21,106,111,112] which highlighted that direct georeferencing allowed
the acquisition of robust centimetric HRT data, similar to the GCP solution [57,107,113]. This is the
case if biases in the elevation component are controlled using at least one GCP to strengthen the
self-calibration. Indeed, Reference [65] showed that the application of PPK in direct georeferencing
could provide the same centimeter-level accuracy and precision as the GCP traditional approach.
Nevertheless, some UAV surveys were characterized by a vertical shift that could be mitigated using a
single GCP. Using a single GCP provided a robust way to detect perturbations of the GNSS signal,
given that it was difficult to assess the quality of the PPK solution without independent observation.
The addition of at least one GCP to the camera stations, as specified by [59], successfully removes
most of the bias (especially in elevations); though less precise than GCPs, GNSS observations of the
camera stations spread the control over the block fairly homogeneously. The addition of limited but
high-accuracy GCPs has had a dominant effect on the georeferencing quality and a sparse network
of GCPs could be supported by a dense network of camera positions in a DG workflow, as stated
by [56]. The location of the additional point might be worth investigating, since it is well known
that UAV-SfM accuracy depends on the location and number of GCPs introduced in the optimization
step [74]. However, the used bootstrapping technique allowed the assessment of the different possible
localizations of the added GCP, among those available, choosing a different GCP at each interaction.
This allows us to verify the effectiveness of adding a GCP, regardless of its location within the study
area, in a more thorough and accurate way. Additionally, the bootstrapping technique also permits
us to quickly check the additional benefit of using more (e.g., three or one-third of the total GCPs)
well-distributed points, when the conditions on site allowed for it. These tests showed that with the
addition of three or one-third of the GCPs to the PPK solution, there was no improvement in results,
and the accuracy and precision values remained stationary and very similar to the PPK + 1GCP

solution. This result was confirmed by [106], where the use of many more GCPs compared to just one
indicated no further improvement of the final 3D model. From the above remarks, it is clear that few
GCPs are still necessary even in direct georeferencing, but a clearer future picture of this technique
is emerging; the PPK + 1GCP solution can certainly help to survey inaccessible areas (e.g., western
side of the Belgian site; see Figure 4a), where GCP placement is impossible. Indeed, GCP location is a
time-consuming process involving a considerable manual effort in field positioning, especially when
the survey area includes inaccessible or hazardous terrains [64]. Therefore, one of the best solutions,
as in the Belgian site, is a combination of direct and indirect georeferencing, i.e., a technique called
integrated sensor orientation (ISO) or a special case of ISO without IMU data—GNSS-assisted aerial
triangulation (GNSS-AT) [57,59,109]. These techniques are very useful in cases of very steep vegetated
areas, motion blur and image noise, or anywhere the SfM-based approaches may not succeed. Indeed,
a previous study on GNSS-AT by [113] underlined how this approach allowed a reduction in the
minimum the number of GCPs required, decreasing the substantial inconvenience and cost of GCP
establishment, especially in areas with difficult access.

Another aspect to be considered in order to improve the results in slope UAV surveying is the use of
a tilted camera. UAV oblique images increased the robustness of the geometrical model, also providing
a possible strategy for reducing the total number of GCPs adopted over a given area [50]. This helped
to enhance the elevation accuracy in the Belgian UAV survey, especially in the inaccessible areas.
Moreover, the accuracy of the obtained SfM results highlighted that the acquisition of images from two
different observation directions (i.e., oblique and nadir) and platforms (i.e., UAV and ground-based) led
to denser point clouds, an optimal camera network geometry (i.e., great image overlap and high angle
of convergence), and fewer deformation errors or large-area distortions. Several pieces of research
confirmed that the addition of oblique photographs in a UAV survey considerably strengthens the
network geometry [37,58,68,114,115]. This also reduced error in estimated camera parameters and the
likelihood of detectable systematic DTM error, such as the “doming effect”. Moreover, the direct fusion
of ground-based and UAV photos (rarely processed together) in the SfM process in Photoscan avoided
subsequent merging problems at point clouds level [77]. Many authors [17,54,116] recently highlighted
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how the development of a framework or workflow that allows data to be correctly processed and
analyzed in accordance with the objective of the work is a critical part of SfM. Moreover, moving
beyond such a ‘black-box’ SfM approach, in this work, an understanding of the SfM sources of error
allowed us to identify the best strategy to operate in a topographically complex environment, such as
vegetated terraces.

Table 3. Registration errors, precision, and accuracy of all point clouds on ground control point (GCP)
and CP residuals. The registration errors evaluated the GCPs and camera residuals after the point
cloud georeferencing. The SDE and the mean absolute error (MAE) of the CP errors assessed the
precision and accuracy of the point clouds, respectively. These errors are provided by the bootstrapping
technique applied in Photoscan Pro software v 1.4.5 (see Section 3.6).

Solution
Type

Accuracy Precision Registration

MAE
(m)

RMSE3D
1

(m)

SDE
(m)

RMSE3D
1

(m) Cameras 2

(m)
X Y Z CPs X Y Z GCPs

Italy

GCP 0.013 0.014 0.019 0.034 0.010 0.011 0.014 0.031 -

Belgium

GCP 0.014 0.015 0.052 0.070 0.013 0.011 0.025 0.068 -
PPK 0.016 0.017 0.060 0.072 0.012 0.012 0.026 - 0.088

PPK + 1GCP 0.016 0.016 0.058 0.071 0.012 0.012 0.025 0.072 0.088
1 RMSE3D (3D root-mean-square error) of GCPs and CPs computed along the x, y, and z directions, following [102].
2 Measures provided by Photoscan software.

4.2. Coregistration Process

The first alignment process was applied to coregister the multistation TLS data in Cyclone software
(see Section 3.3.2). The limited number of TLS targets over the study area caused a minor tilting of
the point clouds. Therefore, the ICP algorithm implemented in Cyclone was applied to enhance the
registration of the point clouds, as in [117]. The Cyclone output errors for the final georeferencing
process were RMS values of 0.053 and 0.079 m for Italian and Belgian sites, respectively. This result,
together with those shown in Table 3, demonstrate how the georeferencing process was accurate
enough to place the TLS and SfM point clouds close together and to apply the ICP algorithm without a
prealignment step (see Section 3.4) using coarse registration. The ICP output errors in CloudCompare
for the SfM–TLS coregistration process were RMS values of 0.045 and 0.068 m for Italian and Belgian
sites, respectively. In other case studies where the point clouds were not already close enough,
the coarse registration was used only as a first prealignment step to place the TLS and SfM closer
together, improving the quality of the following ICP registration [39]. This procedure was also applied
in [32], which highlighted how the result of coarse registration was generally poor but necessary for a
successful ICP if the point clouds extracted from the SfM and TLS presented differences in terms of
sensing resolution, coverage, and accuracy.

To carry out the TLS and SfM alignment process, it was necessary to identify overlapping
natural and/or anthropogenic surfaces easily recognizable in both corresponding point clouds.
The identification of the corresponding surface in the alignment process may be prone to errors [118],
especially in rugged and vegetated environments [71], due to (i) the difficulty for the operator to select
the same areas in clouds generated from different methods (e.g., different point density and detected
objects); (ii) the uneven point distribution on different data sets, which often do not perfectly cover the
same areas [93]; and (iii) the roughness of surfaces, which reduces the accuracy of cloud matching
techniques (e.g., [86]). Therefore, the use of common targets and the effective distribution of targets
within the study area, so that they were visible from both the TLS and SfM surveys, helped to identify
homologous surfaces for the alignment. This was also underlined in [19], which confirmed how a set
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of common references clearly identified in each dataset was indispensable for fusing different data, due
to the facts that every data source has its own characteristics and the identification of common natural
references is sometimes a hard task. Therefore, the survey planning was an essential step in which the
positioning of targets had to be carefully considered so that they could be easily recognized in each
dataset to enable the merging of the data. The choice to start the ICP process from the overlapping
stable areas and then extend the coregistration process to the whole area certainly improved the quality
of the alignment, as demonstrated in several studies [71,91]. Other previous studies [35–37,39,90] in
which the ICP method was used to coregister TLS and SfM data showed good results.

The effectiveness of the coregistration method was numerically confirmed by the results provided
by the cloud-to-cloud M3C2 distance tool applied in overlapping stable areas. As shown in Table 4,
the accuracy and precision of the alignment in overlapping stable areas considerably increased after
the coregistration in terms of MAE, ME, and SDE for each survey and SfM solution type. The SfM
survey that shows the best results in terms of M3C2 distance from TLS point cloud were obtained for
the GCP solution used at the Belgian site. However, the M3C2 values for the PPK + 1GCP solution

were very close to GCP solution also in this context, further highlighting the similarity between these
two solutions.

Table 4. M3C2 cloud-to-cloud distance values in the overlapping stable zones, obtained using the
coregistration method explained in Section 3.4.

M3C2 Distance Non-Coregistered Point Clouds Coregistered Point Clouds

Accuracy Precision Accuracy Precision

Solution Type
MAE
(m)

ME
(m)

SDE
(m)

MAE
(m)

ME
(m)

SDE
(m)

Italy

GCP 0.169 0.169 0.006 0.048 −0.027 0.069

Belgium

GCP 0.209 0.218 0.120 0.080 0.018 0.102
PPK 0.246 −0.246 0.155 0.106 0.019 0.132

PPK + 1GCP 0.219 −0.208 0.177 0.069 0.004 0.089

4.3. Data Fusion

Data processing was carried out for four SfM–TLS point clouds, one for Soave site (104,614,919 points,
with a density of 2990 points/m2) and three for the Belgian study area (mean of 298,739,953 points, with a
mean density of 1660 points/m2). The obtained data fusion clouds (Figure 6a,b) show that an integrated
approach of SfM images and TLS acquisition was needed to survey the complex topography of these
terraces. Indeed, TLS data provided a more accurate representation of subvertical surfaces covered by
vegetation (e.g., the vertical walls or risers of terrace) where the SfM surveys were limited. Figure 5b
shows a clear example of the lack of data in the Soave SfM point cloud due to the presence of shrubs in
front of the terrace walls that, hidden by vegetation, cannot be detected by the SfM technique. The removal
of vegetation also led to a lack of data at ground level (Figure 5a). This data gap was filled by TLS surveys
that allowed us to obtain more topographic information relating to the terrace surface (e.g., wall and
risers). Indeed, the upper part of Figure 6a highlights how, using only SfM data, the terrace risers were
reconstructed by interpolation, creating an unrealistic surface with no roughness. Instead, the addition of
the ground-based TLS cloud allowed a 3D model reconstruction (e.g., lower part of Figure 6a) with the real
roughness of the terrace risers covered by vegetation. This works in areas where the cultivated vegetation
does not have a dense canopy which can be penetrated by a simple TLS pulse. When the vegetation
canopy is very dense, it is necessary to place the TLS station very close to the surveying object to better
detect ground data. Otherwise, a full-waveform TLS is required. At the same time, ground-based TLS was
unreliable over large areas due to a very oblique perspective with a very low incidence angle. Therefore,
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UAV SfM data integrated the survey, covering large areas on a relatively flat zone in small amounts
of time, and allowed us to create an accurate HRT survey of the whole landscape (e.g., in Figure 6b).
Moreover, terrestrial images provided a more accurate survey of particular objects such as wall collapses
at a detailed scale, permitting the study of the ongoing processes of the terrace systems.

 

 

‒

‒ ‒

Figure 6. Meshes obtained from SfM–TLS point cloud. (a) Example of two different meshes realized
for the Martelberg site. In the upper part of the figure, the mesh was obtained only from the SfM point
cloud; in the lower one, the mesh was obtained from the SfM–TLS data fusion. (b) View of the SfM–TLS
mesh of the Soave terrace complex.

The different perspectives and resolutions greatly increased the point cloud density, the individual
point precision, the robustness of topographic mapping, and the high-resolution detail. The union
of ground-based (i.e., TLS data and terrestrial images) and aerial data allowed us to overcome many
of the disadvantages of a single method, such as the line-of-sight obscuration that occurred due to
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vegetation and other complex objects. The effectiveness of similar data fusion methods in a complex
topographic context has been demonstrated in several pieces of research [19,33] but not in agricultural
terraces, which have particular geometrical properties.

In regions of complex topography with multiple local horizons, restricted lines of sight significantly
hinder the use of tripod-based instruments by requiring multiple setups and taking more time to
achieve full coverage of the area. Therefore, a further step forward in data fusion could be to test the use
of the hand-held mobile laser scanning (MLS) technique. This offers particular promise for topographic
surveys of complex environments, combining the reliability of laser techniques with the flexibility of
on-foot surveying and delivering a data density typical of scanning systems [119]. This technology
has emerged and considerably improved over the years [120]; it can certainly be exploited more in
combination with the SfM technique for environmental monitoring. Another possible improvement in
terrace system surveys could be the use of small and fully integrated laser scanning sensors for UAVs.
This solution would allow the use of laser technology at a larger scale and from all possible points of
view, making SfM survey no longer necessary. However, the high cost of such systems makes them
currently inaccessible for most research projects. For these reasons, the use of such technologies in
environmental monitoring is still greatly limited [121].

4.4. DTM Error Assesment

The SfM–TLS data fusion allowed the generation of four DTMs at 0.10 m (Figure 7), three (i.e.,
one for each SfM solution; see Section 3.3.2) for the whole study area in Belgium (Figure 7a) and
one for the Italian site (Figure 7b). Given that the main final survey products of the HRT surveys
were DTMs, the assessment of their error was necessary to understand the quality of the data fusion
process. This was also useful to evaluate the different accuracies of the geospatial products based on the
methods used for the SfM georeferencing. DTM error assessment was done by using independent CPs,
frequently used in the literature to assess the difference in elevation between experimental evidence
from real data and DTMs [16,68,122,123]. Table 5 summarizes all the statistics regarding the residuals
between DTMs and validation points.

The statistics reported in Table 5 show how the interpolation process slightly increased the errors
in DTM data compared to the errors at the point cloud level. It is well known that gridding processes
may induce a loss of resolution and increased errors with respect to the original data [55,98,99,124,125],
especially in complex topography [77]. However, the quality of the DTMs obtained was certainly
high (centimeter-level), considering the values in Table 5, which demonstrated how the data fusion
process proved effective in generating HRT data. The wide range of calculated metrics allowed a more
robust error estimation, especially after the outlier removal that made the statistics more reliable [100].
Moreover, the use of metrics such as median and NDAM further reinforced the data obtained from
other statistics as being very similar. Several authors have stated the importance of using robust
accuracy assessment methodology and metrics, preferably not influenced by outliers or by a skew
in the distribution of the errors [51,101,126]. As in the previous analysis for the Belgian site, more
minor errors were found for the DTM generated from the GCP solution than those generated by
the PPK and PPK + 1GCP solutions in terms of accuracy and precision, although they were very
close. The DTM produced with the PPK method presented a lower accuracy than that resulting from
the PPK + 1GCP solution, which showed values very close to the traditional procedure of the GCP

solution. Similar outcomes were obtained by [59], where eight 10-cm-resolution digital surface models
(DSMs) generated a mean RMSE in elevation very close (i.e., approximately 5.4 cm), using either GCPs
or all of the camera stations (i.e., direct georeferencing) and one GCP. This underlines once again that
the combination of direct and indirect georeferencing can lead to the generation of very accurate DTMs
with a quality similar to that of DTMs obtained with traditional methods.
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‒Figure 7. Shaded relief map of the high-resolution topography (HRT) data generated through SfM–TLS
data fusion. (a) One of the DTMs of the Belgian study area at 0.10 m resolution; (b) DTM of the terrace
complex at the Italian site at 0.10 m resolution.

The DTM validations using CPs demonstrated the high quality of the DTMs obtained from the
data fusion, and Figure 7a,b showed the very high resolution of these DTMs. The results highlighted
the effectiveness of the developed workflow, which had proven to be valid and fundamental in two
different sites with diverse survey issues. The SfM–TLS data fusion allowed us to obtain accurate
DTMs with few gaps, despite the presence of considerable vegetation, and to reconstruct the complex
morphology of these terraced areas both at the landscape scale and at a detailed scale. From these
high-resolution DTMs, it is possible to extract 3D metric information about the terrace complex
which can be very useful for geomorphological analyses. In addition, very detailed DTMs can be
used as benchmarks for numerical and physical modeling or simulations of erosion process and soil
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formation in land degradation analysis of agricultural environments. Moreover, in a multidisciplinary
context, such as that of the TerrACE project (see Section 3.1), high-resolution topographic data can
be integrated with subsurface information (e.g., chronostratigraphic models of geoarchaeological
trenches). This will allow the dating of terrace systems, the determination of their form and construction,
and the understanding of their original and later purposes and use. Therefore, we will be able to
understand how human societies have been reshaping the geomorphology of landscapes for thousands
of years [127]. Data integration from different studies can provide helpful information to find the best
ways of preserving agricultural terraces.

Table 5. Digital terrain model (DTM) error statistics: the difference between the Z values of the CPs
and the Z measures of the same points on the DTMs.

Solution
Type

MAE
(m)

ME
(m)

SDE
(m)

RMSE
(m)

Median 1

(m)
NMAD 2

(m)

Italy

GCP 0.024 −0.017 0.026 0.040 −0.022 0.035

Belgium

GCP 0.063 −0.033 0.073 0.075 −0.038 0.069
PPK 0.095 −0.095 0.035 0.101 −0.079 0.099

PPK+1GCP 0.063 −0.062 0.034 0.080 −0.054 0.078
1 50% quantile. 2 Normalized median absolute deviation: proportional to the median of the absolute differences
between errors and the median error [100].

5. Conclusions

This research has highlighted how the SfM–TLS data fusion can be used to create highly accurate
DTMs (centimeter-level) in the context of complex topography and vegetation cover, such as in the case
of agricultural terrace systems. The data fusion of these HRT techniques made it possible to overcome
the weaknesses, while still exploiting the advantages, of each surveying method. This SfM–TLS
merging method, applied for the first time in vegetated abandoned terrace systems, has proved to
be an effective solution for reconstructing these agricultural structures in a more accurate, complete,
and realistic way, even with vegetation cover. The presence of unreachable areas, where it was
impossible to place the GCPs, forced us to test alternative solutions for the SfM survey such as direct
georeferencing, exploiting the benefits of the PPK method. The results showed how the addition of at
least one GCP to the camera stations reduced direct georeferencing biases in the elevation component
and ensured the quality of GCP solution (both at the point-cloud and the DTM level). Therefore,
in inaccessible or hazardous terrains typical of rugged vegetated areas, a combination of direct and
indirect georeferencing can be a useful solution, allowing the substantial inconvenience and cost of GCP
placement to be reduced. Without the use of these combinations of methods and different acquisition
platforms, it was impossible to achieve accurate DTMs that reflected the real surface roughness without
a loss of data. To obtain an accurate data fusion, it was essential to utilize a specific workflow that
considered all data merging issues, the complex topography, and the landcover condition problems in
terrace systems. The most important phase in this workflow was the coregistration process, which
played a key role for effective data fusion of the point clouds; this process must be considered during
the planning of the survey in the field.

The high-resolution DTMs realized through SfM–TLS data fusion are the starting point for
generating valuable metric information about ancient agricultural terrace complexes. These data,
when integrated with subsurface soil information, can be extremely useful in studying agricultural
terrace environments through a multidisciplinary approach. Information merged from diverse
surveying disciplines can supply valuable and comprehensive landscape information for environmental
authorities, facilitating the improvement of guidelines for the management and preservation of
agricultural terrace heritage sites.
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for mapping inaccessible forested areas? Remote Sens. 2019, 11, 721. [CrossRef]

61. Pfeifer, N.; Glira, P.; Briese, C. Direct georeferencing with on board navigation components of light weight
uav platforms. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 487–492. [CrossRef]

62. Turner, D.; Lucieer, A.; Wallace, L.O. Direct Georeferencing of Ultrahigh-Resolution UAV Imagery. IEEE Trans.

Geosci. Remote Sens. 2014, 52, 2738–2745. [CrossRef]
63. Stöcker, C.; Nex, F.; Koeva, M.; Gerke, M. QUALITY ASSESSMENT OF COMBINED IMU/GNSS DATA FOR

DIRECT GEOREFERENCING IN THE CONTEXT OF UAV-BASED MAPPING. ISPRS Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci. 2017, 42, 355–361. [CrossRef]
64. Padró, J.-C.; Muñoz, F.-J.; Planas, J.; Pons, X. Comparison of four UAV georeferencing methods for

environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing
platforms. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 130–140. [CrossRef]

65. Zhang, H.; Aldana-Jague, E.; Clapuyt, F.; Wilken, F.; Vanacker, V.; Van Oost, K. Evaluating the Potential of
PPK Direct Georeferencing for UAV-SfM Photogrammetry and Precise Topographic Mapping. Earth Surf.

Dyn. Discuss. 2019, 1–34. [CrossRef]
66. Azmi, M.A.A.M.; Abbas, M.A.; Zainuddin, K.; Mustafar, M.A.; Zainal, M.Z.; Majid, Z.; Idris, K.M.;

Ariff, M.F.M.; Luh, L.C.; Aspuri, A. 3D Data Fusion Using Unmanned Aerial Vehicle (UAV) Photogrammetry
and Terrestrial Laser Scanner (TLS). In Proceedings of the Second International Conference on the Future of ASEAN

(ICoFA) 2017—Volume 2; Springer Science and Business Media LLC: Berlin, Germany, 2018.
67. Prosdocimi, M.; Calligaro, S.; Sofia, G.; Fontana, G.D.; Tarolli, P. Bank erosion in agricultural drainage

networks: New challenges from structure-from-motion photogrammetry for post-event analysis. Earth Surf.

Process. Landf. 2015, 40, 1891–1906. [CrossRef]
68. Smith, M.W.; Vericat, D. From experimental plots to experimental landscapes: Topography, erosion and

deposition in sub-humid badlands from Structure-from-Motion photogrammetry. Earth Surf. Process. Landf.

2015, 40, 1656–1671. [CrossRef]
69. Clapuyt, F.; Vanacker, V.; Van Oost, K. Reproducibility of UAV-based earth topography reconstructions based

on Structure-from-Motion algorithms. Geomorphology 2016, 260, 4–15. [CrossRef]
70. Glendell, M.; McShane, G.; Farrow, L.; James, M.R.; Quinton, J.N.; Anderson, K.; Evans, M.; Benaud, P.;

Rawlins, B.; Morgan, D.; et al. Testing the utility of structure-from-motion photogrammetry reconstructions
using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion.
Earth Surf. Process. Landf. 2017, 42, 1860–1871. [CrossRef]

71. Cucchiaro, S.; Maset, E.; Cavalli, M.; Crema, S.; Marchi, L.; Beinat, A.; Cazorzi, F. How does co-registration
affect geomorphic change estimates in multi-temporal surveys? GIScience Remote Sens. 2020, 45, 1–22.
[CrossRef]

72. Bornaz, L.; Lingua, A.; Rinaudo, F. Multiple scan registration in LIDAR close range applications. Int. Arch.

Photogram. Rem. Sens. Spat. Inform. Sci. 2003, 34, 72–77.
73. Nyssen, J.; Debever, M.; Jean, P.; Deckers, J. Lynchets in eastern Belgium—A geomorphic feature resulting

from non-mechanised crop farming. Catena 2014, 121, 164–175. [CrossRef]
74. Sanz-Ablanedo, E.; Chandler, J.; Rodríguez-Pérez, J.R.; Ordóñez, C. Accuracy of Unmanned Aerial Vehicle

(UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control
Points Used. Remote Sens. 2018, 10, 1606. [CrossRef]

75. Tonkin, T.; Midgley, N. Ground-Control Networks for Image Based Surface Reconstruction: An Investigation
of Optimum Survey Designs Using UAV Derived Imagery and Structure-from-Motion Photogrammetry.
Remote Sens. 2016, 8, 786. [CrossRef]

76. Marteau, B.; Vericat, D.; Gibbins, C.; Batalla, R.J.; Green, D.R. Application of Structure-from-Motion
photogrammetry to river restoration. Earth Surf. Process. Landf. 2016, 42, 503–515. [CrossRef]



Remote Sens. 2020, 12, 1946 27 of 29

77. Cucchiaro, S.; Cavalli, M.; Vericat, D.; Crema, S.; Llena, M.; Beinat, A.; Marchi, L.; Cazorzi, F.
Monitoring topographic changes through 4D-structure-from-motion photogrammetry: Application to
a debris-flow channel. Environ. Earth Sci. 2018, 77, 632. [CrossRef]

78. Guarnieri, A.; Fissore, F.; Masiero, A.; Di Donna, A.; Coppa, U.; Vettore, A. From Survey to Fem Analysis for
Documentation of Built Heritage: The Case Study of Villa Revedin-Bolasco. ISPRS Int. Arch. Photogramm.

Remote Sens. Spat. Inf. Sci. 2017, 42, 527–533. [CrossRef]
79. James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera:

Accuracy and geoscience application. J. Geophys. Res. Space Phys. 2012, 117, 1–17. [CrossRef]
80. Harwin, S.; Lucieer, A.; Osborn, J. The Impact of the Calibration Method on the Accuracy of Point Clouds

Derived Using Unmanned Aerial Vehicle Multi-View Stereopsis. Remote Sens. 2015, 7, 11933–11953.
[CrossRef]

81. Granshaw, S.I. Bundle adjustment methods in engineering photogrammetry. Photogramm. Rec. 2006, 10,
181–207. [CrossRef]

82. Woodget, A.; Carbonneau, P.E.; Visser, F.; Maddock, I. Quantifying submerged fluvial topography using
hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surf. Process. Landf.

2014, 40, 47–64. [CrossRef]
83. Piermattei, L.; Carturan, L.; Guarnieri, A. Use of terrestrial photogrammetry based on structure-from-motion

for mass balance estimation of a small glacier in the Italian alps. Earth Surf. Process. Landf. 2015, 40, 1791–1802.
[CrossRef]

84. Zhang, J.; Hu, J.; Lian, J.; Fan, Z.; Ouyang, X.; Ye, W. Seeing the forest from drones: Testing the potential of
lightweight drones as a tool for long-term forest monitoring. Boil. Conserv. 2016, 198, 60–69. [CrossRef]
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