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Abstract 18 

Contemporary accounts of ongoing thought recognise it as a heterogeneous and 19 

multidimensional construct, varying in both form and content. An emerging body of evidence 20 

demonstrates that distinct types of experience are associated with unique neurocognitive 21 

profiles, that can be described at the whole-brain level as interactions between multiple large-22 

scale networks. The current study sought to explore the possibility that whole-brain functional 23 

connectivity patterns at rest may be meaningfully related to patterns of ongoing thought that 24 

occurred over this period. Participants underwent resting-state functional magnetic resonance 25 

imaging (rs-fMRI) followed by a questionnaire retrospectively assessing the content and form 26 

of their ongoing thoughts during the scan. A non-linear dimension reduction algorithm was 27 

applied to the rs-fMRI data to identify components explaining the greatest variance in whole-28 

brain connectivity patterns, and ongoing thought patterns during the resting-state were 29 

measured retrospectively at the end of the scan. Multivariate analyses revealed that 30 

individuals for whom the connectivity of the sensorimotor system was maximally distinct from 31 

the visual system were most likely to report thoughts related to finding solutions to problems 32 

or goals and least likely to report thoughts related to the past. These results add to an 33 

emerging literature that suggests that unique patterns of experience are associated with 34 

distinct distributed neurocognitive profiles and highlight that unimodal systems may play an 35 

important role in this process. 36 

37 
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1 Introduction 40 

When unoccupied by events in the immediate environment, such as during the so-called 41 

resting-state, humans often spend substantial amounts of time focused on information that is 42 

relevant to themselves but absent from the here and now. These self-generated experiences 43 

can be a source of unhappiness and distress (Killingsworth & Gilbert, 2010; Poerio et al., 44 

2013). However, they can also allow individuals to mentally reframe their goals in a more 45 

concrete way (Medea et al., 2018), and reduce loneliness (Poerio et al., 2015), perhaps 46 

because of links between self-generated thought with creativity (Baird et al., 2012; Gable et 47 

al., 2019; Smeekens & Kane, 2016; Wang et al., 2018), social problem solving (Ruby et al., 48 

2013), or generation of information based on semantic knowledge (Wang et al., 2019). 49 

Understanding the neural basis of these different patterns of ongoing thoughts, is therefore an 50 

important goal for cognitive neuroscience because it may help describe the underlying neural 51 

architecture which supports aspects of human cognition that are both beneficial and 52 

detrimental to health and well-being. In this study we examined whether an individual’s 53 

ongoing thought patterns could predict individual variation in their functional organization at 54 

rest. 55 

56 

Contemporary views on how the structure of the cortex constrains its functions have identified 57 

the important roles that macroscale patterns of cortical organization play in determining 58 

cognition (Mesulam, 1998, Margulies et al., 2016). These patterns, or motifs, can be well 59 

captured by dimension reduction techniques that identify low-dimensional manifold spaces, 60 

often referred to as ‘cortical gradients’. This approach has been important in characterising 61 

the axis upon which cortical structure is organised (Paquola et al., 2019; Vazquez-Rodriguez 62 

et al., 2019), how the specific topological features of the cortex give rise to different functional 63 

hierarchies (Margulies et al., 2016), describing changes in brain function in developmental 64 

disorders (Hong et al., 2019) and across primate species (Xu et al., 2019) and capturing 65 

dynamic changes between states of external task focus and self-generated social episodic 66 

thought (Turnbull et al., in press). One advantage of gradient approaches to neural function is 67 

that they describe multivariate whole-brain patterns of organization (i.e. the relationship 68 

between different neural systems) and so allow the investigation of whether macroscale 69 

features of cortical organization relate to features of cognition. This approach is particularly 70 

useful for understanding features of higher-order cognition which are hypothesised to depend 71 

upon the interaction between multiple neural systems (e.g. Smallwood et al., 2011; Smallwood 72 

& Schooler, 2015; Jefferies et al., 2020). 73 

74 
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Our current study, therefore, explores the possibility that macroscale properties of the cortex 75 

captured by low-dimensional descriptors of functional organization at rest are related to 76 

individual variation in ongoing experience that emerge during this period. Resting-state fMRI 77 

was used to record patterns of intrinsic neural activity in a large cohort (N=277). We employed 78 

the BrainSpace toolbox (Vos de Wael et al., 2019) to calculate the dimensions that 79 

characterise the functional connectivity of the brain at rest. At the end of the scan, participants 80 

completed a questionnaire that retrospectively assessed their experiences during the scan. 81 

The questions were based on those used in previous studies exploring population variation in 82 

functional connectivity and aimed at capturing the heterogeneity of ongoing thought 83 

(Karapanagiotidis et al., 2017; Smallwood et al., 2016). While retrospective experience-84 

sampling sacrifices temporal specificity, it is particularly beneficial for understanding the neural 85 

basis of ongoing experience because the absence of interruptions ensures that neural 86 

dynamics unfold in a relatively natural way (Smallwood & Schooler, 2015). Using these data, 87 

we examined whether specific types of thought measured at the end of the scan were 88 

predictive of individual variation along low-dimensional gradients of macroscale functional 89 

connectivity at rest. These data have previously been examined by Karapanagiotidis et al. 90 

(2019) who applied Hidden Markov modelling to identify neural states occurring at rest. They 91 

found states linked to autobiographical planning and intrusive rumination that were related to 92 

differences in the relative dominance of frontoparietal and motor systems, and default mode 93 

and visual systems.  94 

95 

Prior studies have highlighted three cortical gradients which each relate to meaningful features 96 

of cognition. The first gradient describes the difference between regions of unimodal and 97 

transmodal cortex (Margulies et al., 2016). Studies have shown that this neural motif is 98 

observed when participants must use information from memory to guide behaviour, such as 99 

when visuospatial decisions must be made with previously encountered information rather 100 

than immediate perceptual information (Murphy et al., 2018, 2019). The second gradient is 101 

related to the dissociation between unimodal systems concerned with vision and sensorimotor 102 

systems (Margulies et al., 2016). Finally, the third gradient describes a distinction between the 103 

so-called default mode and task-positive systems. This pattern is often observed when 104 

researchers compare easy and demanding cognitive tasks (Cole et al., 2013; Duncan, 2010). 105 

Prior studies have shown that this pattern is linked to the difference between on and off task 106 

states and that this distinction also helps describe neurocognitive changes related to the 107 

passage of time (Turnbull et al., in press). Our study aimed to explore whether any of these 108 

macroscale neural motifs were related to the participants reports at the end of the experimental 109 

session.  110 
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2 Methods 111 

2.1 Participants 112 

Two hundred and seventy-seven healthy participants were recruited from the University of 113 

York. Written informed consent was obtained for all participants and the study was approved 114 

by the York Neuroimaging Centre Ethics Committee. Twenty-three participants were excluded 115 

from analyses; two due to technical issues during the neuroimaging data acquisition and 116 

twenty-one for excessive movement during the fMRI scan (mean framewise displacement 117 

(Power et al., 2014) > 0.3 mm and/or more than 15% of their data affected by motion), resulting 118 

in a final cohort of n = 254 (169 females, mean ± SD age = 20.7±2.4 years). The questionnaire 119 

and functional MRI data in this study are the same as those reported in Karapanagiotidis et 120 

al. (2019). 121 

2.2 Data and Code availability 122 

Gradient maps one to ten from the group-averaged dimension reduction analysis described in 123 

section 2.5.3 below are publicly available on NeuroVault in a collection with the title of this 124 

article (https://neurovault.org/collections/6746/). Raw fMRI and questionnaire data are 125 

restricted in accordance with ERC and EU regulations. All code used in the production of this 126 

manuscript is publicly available online in the following repository: https://github.com/Bronte-127 

Mckeown/GradientAnalysis. 128 

2.3 Retrospective experience-sampling 129 

Participants’ experience during the resting-state fMRI scan was sampled by asking them to 130 

retrospectively report their thoughts during the resting-state period at the end of the scan. 131 

Experience was measured using a 4-point Likert scale with the question order randomised (all 132 

25 questions are shown in Table 1).  133 



6 

Table 1. 25-item experience-sampling questionnaire completed at the end of the resting-state 

fMRI scan. Answers were given on a 4-point Likert scale ranging from "Not at all" to 

"Completely".  

Dimension Question (My thoughts…) 

Vivid … were vivid as if I was there 

Normal … were similar to thoughts I often have 

Future … involved future events 

Negative … were about something negative 

Detail … were detailed and specific 

Words … were in the form of words 

Evolving … tended to evolve in a series of steps 

Spontaneous … were spontaneous 

Positive … were about something positive 

Images … were in the form of images 

People … involved other people 

Past … involved past events 

Deliberate … were deliberate 

Self … involved myself 

Stop … were hard for me to stop 

Distant time … were related to a more distant time 

Abstract … were about ideas rather than events or objects 

Decoupled … dragged my attention away from the external world 

Important … were on topics that I care about 

Intrusive … were intrusive 

Problem Solving … were about solutions to problems (or goals) 

Here and Now … were related to the here and now 

Creative … gave me a new insight into something I have thought about before 

Realistic … were about an event that has happened or could take place 

Same Theme … at different points in time were all on the same theme  

134 

2.4 Procedure 135 

All participants underwent a 9-minute resting-state fMRI scan. During the scan, they were 136 

instructed to passively view a fixation cross and not to think of anything in particular. 137 
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Immediately following the scan, they completed the 25-item experience-sampling 138 

questionnaire while still in the scanner. 139 

2.5 Resting-state fMRI 140 

2.5.1 MRI data acquisition 141 

MRI data were acquired on a GE 3 Tesla Signa Excite HDxMRI scanner, equipped with an 142 

eight-channel phased array head coil at York Neuroimaging Centre, University of York. For 143 

each participant, we acquired a sagittal isotropic 3D fast spoiled gradient-recalled echo T1-144 

weighted structural scan (TR = 7.8 ms, TE = minimum full, flip angle = 20°, matrix = 256x256, 145 

voxel size = 1.13x1.13x1 mm3, FOV = 289x289 mm2). Resting-state fMRI data based on 146 

blood oxygen level-dependent contrast images with fat saturation were acquired using a 147 

gradient single-shot echo-planar imaging sequence (TE = minimum full (≈19 ms), flip angle = 148 

90°, matrix = 64x64, FOV = 192x192 mm2, voxel size = 3x3x3 mm3, TR = 3000 ms, 60 axial 149 

slices with no gap and slice thickness of 3 mm). Scan duration was 9 minutes which allowed 150 

us to collect 180 whole-brain volumes. These acquisition details are identical to the ones 151 

described in Karapanagiotidis et al. (2019).152 

2.5.2 MRI data pre-processing 153 

fMRI data pre-processing was performed using SPM12 154 

(http://www.fil.ion.ucl.ac.uk/spm) and the CONN toolbox (v.18b) 155 

(https://www.nitrc.org/projects/conn) (Whitfield-Gabrieli & Nieto-Castanon, 2012) 156 

implemented in Matlab (R2018a) (https://uk.mathworks.com/products/matlab). Pre-157 

processing steps followed CONN’s default pipeline and included motion estimation and 158 

correction by volume realignment using a six-parameter rigid body transformation, slice-time 159 

correction, and simultaneous grey matter (GM), white matter (WM) and cerebrospinal fluid 160 

(CSF) segmentation and normalisation to MNI152 stereotactic space (2 mm isotropic) of both 161 

functional and structural data. Following pre-processing, the following potential confounders 162 

were statistically controlled for: 6 motion parameters calculated at the previous step and their 163 

1st and 2nd order derivatives, volumes with excessive movement (motion greater than 0.5 164 

mm and global signal changes larger than z = 3), linear drifts, and five principal components 165 

of the signal from WM and CSF (CompCor approach) (Behzadi et al., 2007). Finally, data were 166 

band-pass filtered between 0.01 and 0.1 Hz. No global signal regression was performed. The 167 

pre-processing steps reported here are identical to the ones described in Karapanagiotidis et 168 

al. (2019). 169 
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2.5.3 Whole-brain Functional Connectivity: Dimension reduction 170 

Following pre-processing, the functional time-series from 400 ROIs based on the 400 Schaefer 171 

parcellation (Schaefer et al., 2018) were extracted for each individual. A connectivity matrix 172 

for each individual was then calculated using Pearson correlation resulting in a 400x400 173 

connectivity matrix for each participant. These individual connectivity matrices were then 174 

averaged to calculate a group-averaged connectivity matrix. The Brainspace Toolbox (Vos de 175 

Wael et al., 2019) was then used to extract ten group-level gradients from the group-averaged 176 

connectivity matrix (dimension reduction technique = diffusion embedding, kernel = 177 

normalized angle, sparsity = 0.9). Although we were only interested in the first three gradients 178 

as they all have reasonably well described functional associations, we extracted ten gradients 179 

to maximise the degree of fit between the group-averaged gradients and the individual-level 180 

gradients (see Inline Supplementary Table 1 for the average degree of fit for gradients one to 181 

three when extracting ten gradients compared to three). These group-averaged gradients act 182 

as a template to which individual gradients can be compared, to allow an investigation of 183 

individual differences along each gradient in the current sample. The variance explained by 184 

each group-averaged gradient one to ten is shown in Inline Supplementary Figure 1.  185 

186 

The group-level gradient solutions were aligned using Procrustes rotation to a subsample of 187 

the HCP dataset ([n=217, 122 women, mean + sd age = 28.5 + 3.7 y]; for full details of subject 188 

selection see Vos de Wael et al. (2018)) openly available within the Brainspace toolbox (Vos 189 

de Wael et al., 2019). This alignment step improves the stability of the group-level gradient 190 

templates by maximising the comparability of the solutions to those from the existing literature 191 

(i.e. Margulies et al., 2016). The first three group-averaged gradients, with and without 192 

alignment to the HCP data are shown in Inline Supplementary Figure 2. To demonstrate the 193 

benefits of this alignment step, we calculated the similarity using Spearman Rank correlation 194 

between the first five aligned and unaligned group-level gradients with the first five gradients 195 

reported in Margulies et al. (2016) which were calculated using 820 participants over an hour 196 

resting-state scan. Aligning our gradients with a subsample of the HCP data increased the 197 

similarity between our gradients and Margulies’ et al (2016) gradients (see Inline 198 

Supplementary Table 2).  199 

200 

Using identical parameters, individual-level gradients were then calculated for each individual 201 

using their 400x400 connectivity matrix. These individual-level gradient maps were aligned to 202 

the group-level gradient maps using Procrustes rotation to improve comparison between the 203 

group-level gradients and individual-level gradients (N iterations = 10). This analysis resulted 204 

in ten group-level gradients and ten individual-level gradients for each participant explaining 205 
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maximal whole-brain connectivity variance in descending order. All ten group-level gradients 206 

are shown in Figure 1, however, only the first three gradients were retained for further analysis. 207 

To demonstrate the variability of individual-level gradients, Inline Supplementary Figure 3 208 

shows the highest, lowest and median similarity gradient maps for gradients one to three.  209 

210 

211 

Figure 1. Group-averaged gradients one to ten (left and right lateral views) explaining maximal 212 

variance in whole-brain connectivity patterns. Regions that share similar connectivity profiles 213 

fall together along each gradient (similar colours) and regions that have more distinct 214 

connectivity profiles fall further apart (different colours). The positive and negative loading is 215 

arbitrary. Regions which fall at the extreme end of each gradient have the greatest dissimilarity 216 

in their connectivity profiles. Only gradients one to three were included in the multivariate 217 

analysis. These ten group-averaged gradient maps are publicly available on NeuroVault 218 

(https:/neurovault.org/collections/6746/). 219 

2.5.4 Individual-level Similarity Analysis: Spearman’s Rank Correlation 220 

In order to investigate individual differences for each of the three connectivity gradients, a 221 

Spearman’s rank correlation was used to calculate the extent to which each individual-level 222 
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gradient was related to each group-level gradient. In this way, the correlation coefficient 223 

calculated for each participant for gradients one to three is used as a second-order statistic 224 

indicating the similarity between the group-level and individual-level gradients. Fishers R-to-Z 225 

transformation was applied to these correlation coefficient scores. These z-transformed 226 

regression coefficients will be referred to as 'gradient similarity scores' from this point onwards. 227 

These similarity scores were then entered as dependent variables in subsequent multivariate 228 

regression analyses to investigate whether individual variation in ongoing thought patterns 229 

could predict individual variation along the first three whole-brain connectivity gradients. A 230 

schematic for the analysis pipeline is shown in Figure 2. 231 

232 

233 

Figure 2. Summary of the analysis pipeline. Numbers represent order of step. Top panel in 234 

bold describes the overarching goal of each step. Middle panel specifies the data being used. 235 

Bottom panel indicates which analysis or statistical test was used to achieve the step. 236 

3 Results 237 

3.1 Experience-sampling responses 238 

The experience-sampling data is summarised in figure 3, revealing the distribution of 239 

responses for each item as well as the covariance between each item. While some 240 

questionnaire items are significantly correlated, the variance inflation factor for each 241 

questionnaire item was <2, indicating that multicollinearity is not a concern in the multivariate 242 

regression analysis described below.  243 
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Figure 3. Summary information describing the distribution of the retrospective measures of 244 

ongoing experience recorded in our study. In the left-hand panel, the bar graph shows the 245 

average loading on each question relative to the mid-point of the scale (indicated by the 246 

dashed line). The error bars reflect 95% confidence intervals, adjusted to account for family-247 

wise error (i.e. the 25 items). The word cloud shows this information in a different form in 248 

which the size of the word describes its distance from the mid-point and its colour (cold / 249 

warm) reflects its loading. The right-hand panel illustrates the patterns of covariation 250 

between these items (Pairwise Pearson correlation).  251 

3.2 Multivariate analysis 252 

We examined whether there was any relationship between the low-dimensional 253 

representations of the macroscale organization of neural function and the experience of 254 

participants during the scanning. We used a Multivariate linear regression (SPSS; version 26) 255 

in which individual items from the experience-sampling questionnaire were included as 256 

explanatory variables and the similarity scores for gradients one to three were entered as 257 

dependent variables. Age, gender and mean movement during the scan were entered as 258 

nuisance covariates. This analysis revealed that there was a multivariate effect for the 259 

‘problem-solving’ item [Pillai’s trace = .046, F (3, 223) = 3.54, p = .015] and the ‘past’ item260 

[Pillai’s trace = .051, F (3, 223) = 3.97, p = .009]. These results establish that these two aspects 261 

of the questionnaire varied significantly with the similarity scores for the functional motifs 262 

apparent at rest. 263 

264 
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We calculated the parameter estimates for these multivariate effects linked to thoughts of the 265 

‘past’ (Gradient one (b = -0.018, 95% CI = [-0.042, 0.006], p = .137), Gradient two (b = -0.032, 266 

95% CI = [-0.056, -0.008], p = .009) and Gradient three (b = 0.006, 95% CI = [-0.011, 0.024], 267 

p = .490) and for ‘problem-solving’ (Gradient one (b = 0.020, 95% CI = [-0.005, 0.044], p = 268 

.112), Gradient two (b = 0.036, 95% CI = [0.011, 0.061], p = .004) and Gradient three (b = -269 

001, 95% CI = [-0.019, 0.018], p = .951)). In both cases, therefore, the only association in 270 

which the error bars did not overlap with zero was with Gradient two. 271 

272 

Together these analyses revealed that the multivariate effect for the ‘problem-solving’ item is 273 

most clearly positively associated with gradient two while the multivariate effect for the ‘past’ 274 

item shows the reverse pattern. To understand these associations, we visualised the average 275 

map of gradient two for individuals in the top and bottom third of similarity with the group-level 276 

description, and also calculated the difference. This data is presented in the left-hand panel of 277 

Figure 4 where it can be seen that individuals with higher similarity to group-averaged gradient 278 

two showed decreased shared connectivity between the visual and sensorimotor systems.  279 

280 

To visualise the associations between the ‘problem-solving’ and ‘past’ questionnaire items 281 

with gradient two, we calculated the unique variance associated with gradient two and both 282 

questionnaire items separately. To do this, we calculated the residual variance linked to both 283 

types of thoughts using linear regressions in which the dependent variable was gradient two 284 

similarity scores and the explanatory variables were all of the questionnaire items (as well as 285 

age, gender and mean movement) except for the relevant item (either ‘problem-solving’ or 286 

‘past’). We performed a comparable analysis to identify the residual variance in gradient two. 287 

Together this data is presented in the right-hand panel of Figure 4 where it can be seen that 288 

individuals with high similarity scores for gradient two reported more problem-solving thoughts 289 

and fewer past-related thoughts.  290 
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291 

Figure 4. Greater functional segregation between visual and sensorimotor cortices was 292 

positively associated with reports of problem-solving thoughts during rest and negatively 293 

associated with reports of thoughts about past events. Left panel: group-averaged maps for 294 

high (top) and low (middle) similarity scores for gradient two as well as the difference between 295 

these groups (bottom). The top colour bar reflects the scale of the high and low similarity 296 

group-averaged maps while the bottom colour bar reflects the scale of the difference map. 297 

Individuals with high similarity scores showed more functional segregation between visual 298 

(blue) and sensorimotor cortices (orange). The proximity of colours reflects greater similarity 299 

in connectivity patterns between regions. Right panel (upper): Scatterplot of residuals 300 

describing the positive relationship between gradient two similarity and the ‘problem-solving’ 301 

questionnaire item. Each point is a participant. Right panel (lower): Scatterplot of residuals 302 

describing the negative relationship between gradient two similarity and the ‘past’ 303 

questionnaire item. Using raw scores, a Pearson correlation confirmed this negative the 304 

positive association with problem solving thoughts (r(252) = .16, p = .013) and a negative 305 

relationship with past related thoughts (r(252) = -.13, p = .040). 306 

4 Discussion 307 

The current study employed a data-driven approach to identify whole-brain connectivity 308 

patterns associated with distinct patterns of ongoing thought at rest. Specifically, we were 309 

interested in identifying whether three reasonably well-described macroscale patterns of 310 

neural function (‘cortical gradients’) were related to the experiences an individual had at rest. 311 

Participants completed a rs-fMRI scan followed by an experience-sampling questionnaire 312 
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retrospectively assessing the content and form of their ongoing thoughts during the scan. To 313 

reduce the dimensional structure of the rs-fMRI data we used a non-linear dimension reduction 314 

algorithm to embed the functional connectivity in a low-dimensional space. We found that 315 

individuals with less similarity between the pattern of functional connectivity in visual and 316 

sensorimotor cortices were more likely to report thoughts related to finding solutions to 317 

problems or goals and less likely to report thoughts related to past events (as demonstrated 318 

in figure 4). 319 

320 

It is worth considering the relationship between the current results and previous findings 321 

reported by Karapanagiotidis et al. (2019). They used the same dataset as the current study 322 

and applied Hidden Markov modelling to identify neural states. This analysis found two states 323 

which were associated with measures of experience. One state was linked to patterns of 324 

autobiographical planning (future-oriented problem-solving) and was associated with the 325 

dominance of the motor system relative to the visual system. In contrast, a second state was 326 

linked to intrusive rumination about the past and exhibited reasonably similar levels of activity 327 

in both the visual and motor systems. There is therefore an encouraging correspondence 328 

between the results of the current analysis, which entails a decomposition of the resting-state 329 

data into low dimensional manifolds, and the prior analyses which identifies neural states 330 

which reoccur at rest. 331 

332 

Together, these results add to a growing body of evidence that suggest neural processing in 333 

either primary motor or visual cortex may play an important role in aspects of higher-order 334 

cognition, especially those that involve imagining events other than those in the immediate 335 

environment. For example, Medea and colleagues asked participants to complete two writing 336 

sessions in which they either wrote about three personal goals or three TV programmes 337 

(Medea et al., 2018). Before and after each writing session participants completed an 338 

experience-sampling session. They found that if participants reported future-directed thought 339 

between writing session one and two, the concreteness of their personal goals increased 340 

between sessions. Importantly, this pattern was most pronounced for individuals who showed 341 

stronger connectivity between the hippocampus and a region of motor cortex at rest. 342 

Consistent with the possibility that motor cortex activity can be important during periods of 343 

self-generated thought, Sormaz and colleagues used online experience-sampling and found 344 

that neural patterns in regions of motor cortex were able to differentiate between thoughts 345 

related to a working memory task and those related to personal concerns about the future 346 

(Sormaz et al., 2018). Matheson and Kenett (2020) propose that the motor system is likely to 347 

be important in creative problem solving because of the capacity for this system to model the 348 
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simulation of possible actions. Future work will be needed to understand the precise role that 349 

motor cortex activity plays in different patterns of ongoing thought.  350 

351 

There is also converging evidence from fMRI studies suggests that primary visual cortex is 352 

recruited during internal processing independent from external stimuli (Muckli, 2010). For 353 

example, activity in visual cortex has been observed during the retention period of a working 354 

memory task in which no external stimulus was presented (Harrison & Tong, 2009), while 355 

Japardi et al., (2018) found that visual system connectivity was important during periods of 356 

creativity for visual artists. Furthermore, Villena-Gonzalez et al. (2018) found that the degree 357 

of connectivity between the visual cortex and regions of posterior medial cortex were 358 

associated with a tendency to employ social information when engaged in task-based 359 

prospection. Together with these prior studies, the current work provides converging evidence 360 

linking processes in unimodal cortex to aspects of imaginative thought, an important question 361 

for future work to explore. 362 

363 

More generally our data suggests that different aspects of ongoing thought may vary in the 364 

degree to which unimodal systems are integrated. Mesulam (1998) argued that if a cortical 365 

system only contained unimodal regions, it would have difficulties in performing cognitive acts 366 

that depended on regularities that spanned multiple modalities. The connectivity pattern 367 

identified in gradient two recapitulates this theoretical functional organization proposed by 368 

Mesulam; the relative segregation of the unimodal systems coupled with common connectivity 369 

with transmodal and integrative systems such as the default mode network (See figure 5 for a 370 

schematic of this architecture). It is possible that the degree of integration between these 371 

unimodal systems may help encode and retrieve visual and auditory features of an experience, 372 

a process for which regions in the medial temporal lobe such as the hippocampus (Moscovitch 373 

et al., 2016) or the anterior temporal lobe (Ralph et al., 2017) may be particularly important.  374 

Based on our data we hypothesise that different types of experience may vary with the degree 375 

of overlap between these primary systems. Plausibly, a focus on thoughts relating to the past 376 

can rely on co-recruitment in both visual and motor regions because these experiences can 377 

capitalise on pre-existing memory traces and which may have been particularly strongly 378 

encoded if they spontaneously come to mind in a fluent fashion. In contrast, when attempting 379 

to generate a novel solution to a problem, it is less easy to capitalise directly on whole-brain 380 

associations from the past. Problem solving, therefore, may depend to a greater extent on 381 

processes that simulate the specific sequence of actions that should be performed, or, the 382 

arrangement of specific features of the environment, and which may be relatively achievable 383 

without interactions across different forms of unimodal cortex. 384 
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385 

386 

Figure 5. Schematic of a hypothesised relationship between the macroscale organization and 387 

patterns of thought with different features. Left panel (top): Simplified schematic of gradient 388 

two representing the segregation of unimodal systems with intermediary transmodal regions 389 

in between. Left panel (bottom): Word clouds representing the Neurosynth terms associated 390 

with the positive (red) and negative (blue) end of gradient two demonstrating the differences 391 

in function in the different unimodal systems. Font size represents the magnitude of the 392 

relationship, while the colour illustrates the associated system (blue = visual and red = 393 

sensorimotor). Right panel (top): Modified illustration of Mesulam’s (1998) proposal of how the 394 

cortex is organised according to a functional hierarchy of processing from distinct unimodal 395 

systems to integrative transmodal regions. Gradient 1 and 2 labels correspond to the results 396 

reported in Margulies et al. (2016).  Right panel (bottom): Schematic illustration of how 397 

unimodal segregation and integration may be differentially associated with distinct aspects of 398 

experience. We divided individuals into low, medium and high groups based on the similarity 399 

between visual and sensorimotor systems and plotted the mean scores for problem-solving 400 

and past related thoughts. It can be seen that based on our data individuals showing less 401 

segregation between unimodal systems reported more thoughts about past events and fewer 402 

problem-solving thoughts (and vice versa). Error bars indicate the 95% confidence intervals. 403 

404 

Finally, the current results lend further support to the view that it is necessary for researchers 405 

to distinguish between distinct types of ongoing thought (Seli et al., 2018). Our study shows 406 

that different types of ongoing thought are differentially associated with macroscale 407 

connectivity patterns, suggesting that different types of ongoing thought are supported by 408 
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related but distinct mechanisms. Previously, many researchers have conflated various types 409 

of ongoing thought under one unitary measure (e.g. Mason et al., 2007; Smallwood et al., 410 

2008). The current results suggest that in doing so, researchers may have made erroneous 411 

conclusions regarding the neural correlates of states that may often be discussed together 412 

under broad umbrella concepts such as ‘mind-wandering’. Accordingly, our results 413 

demonstrate the value of the family-resemblances view of mental states which stresses the 414 

importance of operationalizing and describing the specific type of experience under 415 

investigation (Seli et al., 2018). 416 

417 

Although our study highlights a relationship between the macroscale organization of neural 418 

function at rest and concurrent patterns of ongoing experience, it nonetheless leaves several 419 

important questions unanswered. First, the present study focused on assessing static rather 420 

than dynamic functional connectivity and so cannot address important features of the 421 

relationship between neural dynamics and experience (Kucyi, 2018; Lurie et al., 2018). The 422 

choice of static functional connectivity coupled with retrospective sampling at the end of the 423 

scan means that the current study is unable to identify neuro-experiential associations that 424 

are highly transient and dynamic. One way to extend the current findings could be to 425 

incorporate sliding window analysis which consists of calculating a given functional 426 

connectivity measure (e.g. correlation) over consecutive windowed sections of data and to 427 

measure experience on multiple occasions. This method results in a time series of functional 428 

connectivity values which can then be used to assess the temporal fluctuations in functional 429 

connectivity within a scanning session (Hutchison et al., 2013). Future work combining 430 

gradient analyses with dynamic functional connectivity techniques such as Hidden Markov 431 

modelling (Vidaurre et al., 2018) or time-varying multi-network approaches (Betzel & Bassett, 432 

2017) with multiple online experience-sampling measures, could help understand how 433 

macroscale connectivity patterns and ongoing thought patterns fluctuate together over time.  434 

435 

While retrospective sampling was chosen in the current study to allow neural dynamics to 436 

unfold in a relatively natural way over the scan period (Smallwood & Schooler, 2015), this 437 

method is not without its limitations which are important to consider when interpreting the 438 

current results. For example, retrospective sampling, compared to online sampling, relies 439 

more heavily on the participant’s ability to remember their own thoughts. This introduces a 440 

number of potential confounds such as participants only reporting their most salient thoughts 441 

over the scanning period or some participants being more able than others to accurately recall 442 

their own thoughts. However, it is important to note that with more frequent sampling of 443 

ongoing experience the time series upon which cortical gradients are calculated would be 444 

shortened and this could temper the reliability of these metrics as indicators of neural function 445 
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(Hong et al., 2020). Another limitation of the current study is that there was no experimental 446 

manipulation, making the causal link between macroscale patterns of neural activity and 447 

ongoing thoughts unclear. This issue could be fruitfully explored by priming participants to 448 

think about finding solutions to problems or goals and observe the changes in ongoing neural 449 

connectivity, or through the use of techniques such as trans-magnetic stimulation to disrupt 450 

either visual or motor cortex and observe the subsequent changes in patterns of ongoing 451 

thought.  452 

453 

Finally, it is important to note that it is not necessarily the case that the absence of 454 

associations with the majority of the items in this battery indicates that these aspects of 455 

experience are unimportant at rest. It is possible that other types of neural metric that focus 456 

on local patterns are important (such as fractional amplitude of low-frequency fluctuations 457 

[fALFF] or regional homogeneity [ReHo]; for example, see Gorgolewski et al., 2014) and that 458 

these types of relationship would be missed by our current analytic approach which focused 459 

on macroscale patterns of neural organization. It is also possible that other features of 460 

analysis are more state-like and detecting these types of patterns would require the capacity 461 

to measure both ongoing experience and neural experience across several time points (see 462 

Vatansever et al., 2020 for an exploration of this question). Finally, although resting-state is 463 

a common method for acquiring brain data and one in which patterns of ongoing experience 464 

are important, it is also possible that other contexts provoke different types of experience (for 465 

example see Ho et al., 2020). Thus, while our study shows that patterns of problem solving 466 

and past related experience are likely to be important aspects of a participants experiences 467 

at rest, in the future it will be important to carefully determine the most appropriate items for 468 

efficiently describing different features of experience in different situations and examining 469 

their relationships to a range of different metrics of static and dynamic neural function.        470 

5 Conclusions        471 

The current study investigated whether individual variation in ongoing thought patterns is 472 

associated with low-dimensional representations of macroscale functional connectivity at rest. 473 

Results revealed that reports of thoughts about finding solutions to problems was linked to 474 

greater segregation between the visual and sensorimotor systems, while thoughts about past 475 

events was linked to less segregation. These associations suggest that the degree of 476 

segregation of unimodal systems determine important features of ongoing experience. Future 477 

work could investigate the extent to which priming individuals to think about particular topics 478 

changes patterns of ongoing neural activity, or, use neurostimulation techniques to alter neural 479 

activity and examine how this changes ongoing experience. Such studies would provide 480 
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important causal evidence on the relationship between macroscale patterns of neural activity 481 

and patterns of ongoing thought. Moving forward, it is likely to be increasingly important for 482 

scientists studying patterns of functional connectivity in states such as rest, or even tasks to 483 

acquire measures of ongoing experience in order to fully appreciate the significance of neural 484 

motifs that are revealed through the application of advanced analysis methods. Likewise, it 485 

will be important for researchers studying patterns of ongoing thought to recognise that these 486 

states are sometimes encoded in complex distributed whole-brain pattern of neural activity, 487 

and are not always localizable to a specific modular region of cortex.  488 
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9 Supplementary materials  498 

Inline Figure S1. Scree plot showing the proportion of variance explained by each of the 499 

group-averaged whole-brain connectivity gradients one to ten. Y-axis shows the eigenvalues 500 

scaled to a sum of 1. X-axis shows the gradient number. The first three gradients were retained 501 

for further multivariate analyses as these gradients have the clearest mapping to cognitive 502 

function (e.g. Murphy et al., 2018, 2019; Turnbull et al., in press).  503 
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Inline Figure S2. Demonstration of how aligning the group-level gradients to a subsample of 504 

the HCP dataset using Procrustes rotation changes the first three group-level gradients.505 

Regions that share similar connectivity profiles fall together along each gradient (similar 506 

colours) and regions that have more distinct connectivity profiles fall further apart (different 507 

colours). It is important to note that the positive and negative loading is arbitrary and can flip 508 

each time the diffusion embedding is applied to the data. For example, in this figure, the visual 509 

cortex along gradient two has a positive loading in the unaligned map but has a negative 510 

loading in the aligned map. Thus, differences in loadings are not meaningful and occur 511 

randomly.  512 
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513 

Inline Figure S3. Individual-level connectivity gradients one to three which have the highest 514 

(left), median (middle) and lowest (right) similarity with the respective group-level gradients to 515 

demonstrate the variability of gradients across participants in the current sample. Regions that 516 

share similar connectivity profiles fall together along each gradient (similar colours) and 517 

regions that have more distinct connectivity profiles fall further apart (different colours). The 518 

positive and negative loading is arbitrary.  519 
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520 

Inline Supplementary Table 1. This table shows the improvement in the degree of fit (or 

similarity) between individual-level and group-level gradients when extracting ten 

gradients compared to only extracting three gradients. Mean similarity was calculated by 

averaging all participant’s R-to-Z transformed Spearman Rank correlation coefficients for 

each respective gradient. 

Extracting 3 gradients: Minimum  Maximum Mean  Std. Deviation

Gradient 1  0.31 1.31 0.84 0.21 

Gradient 2  0.28 1.48 0.84 0.25 

Gradient 3  -0.07 1.04 0.57 0.19 

Extracting 10 gradients: Minimum Maximum Mean Std. Deviation

Gradient 1  0.7 1.76 1.36 0.16 

Gradient 2  0.9 1.85 1.37 0.16 

Gradient 3  0.58 1.38 1.12 0.12 

521 

522 
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Inline Supplementary Table 2. Spearman rank correlation values for the first five 

aligned and unaligned group-level gradients with the first five group-level gradients 

reported in Margulies et al (2016). This demonstrates that aligning the group-level 

gradients to the subsample of HCP data improves correspondence between the 

gradients calculated in the current study and previous literature.  

Aligned to HCP Unaligned to HCP 

Gradient 1 0.62 0.4 

Gradient 2 -0.47 0.23 

Gradient 3 -0.45 -0.38 

Gradient 4 -0.2 0.07 

Gradient 5 -0.18 -0.03 

523 
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