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Abstract

Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates 

endogenous glucocorticoids and catalyses an important step in bile acid synthesis. 

Endogenous and synthetic glucocorticoids are potent regulators of metabolic phenotype 

and play a crucial role in hepatic glucose metabolism. However, the potential of synthetic 

glucocorticoids to be metabolised by AKR1D1 as well as to regulate its expression and 

activity has not been investigated. The impact of glucocorticoids on AKR1D1 activity was 

assessed in human liver HepG2 and Huh7 cells; AKR1D1 expression was assessed by 

qPCR and Western blotting. Genetic manipulation of AKR1D1 expression was conducted 

in HepG2 and Huh7 cells and metabolic assessments were made using qPCR. Urinary 

steroid metabolite proȴling in healthy volunteers was performed pre- and post-
dexamethasone treatment, using gas chromatography-mass spectrometry. AKR1D1 

metabolised endogenous cortisol, but cleared prednisolone and dexamethasone less 

eɝciently. In vitro and in vivo, dexamethasone decreased AKR1D1 expression and 

activity, further limiting glucocorticoid clearance and augmenting action. Dexamethasone 

enhanced gluconeogenic and glycogen synthesis gene expression in liver cell models and 

these changes were mirrored by genetic knockdown of AKR1D1 expression. The eects 
of AKR1D1 knockdown were mediated through multiple nuclear hormone receptors, 

including the glucocorticoid, pregnane X and farnesoid X receptors. Glucocorticoids 

down-regulate AKR1D1 expression and activity and thereby reduce glucocorticoid 

clearance. In addition, AKR1D1 down-regulation alters the activation of multiple 

nuclear hormone receptors to drive changes in gluconeogenic and glycogen synthesis 

gene expression proȴles, which may exacerbate the adverse impact of exogenous 
glucocorticoids.
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Ζntroduction

Glucocorticoids (GCs) are steroid hormones that are 

released in response to stress and play a crucial role in 

inlammation and in carbohydrate, lipid and protein 

metabolism. Within key metabolic target tissues, notably 

the liver, the availability of GCs to bind and activate 

the GC receptor (GR) is controlled by a series of pre-

receptor enzymes that inactivate or regenerate active 

GCs. In this regard, the role of the 11β-hydroxysteroid 

dehydrogenases (11β-HSD, type 1 and 2) and the 

5α-reductases (type 1 and 2) are well established (Morgan 

et al. 2014, Nasiri et al. 2015). We have recently shown that 

5β-reductase (AKR1D1) is also a potent regulator of GC  

availability and GR activation in human hepatocytes 

(Nikolaou et al. 2019a).

AKR1D1 is a member of the aldo-keto-reductase 

(AKR) superfamily 1 of enzymes and is the irst member 

of the 1D subfamily (Onishi et  al. 1991, Faucher et  al. 

2008). The human gene consists of nine exons and six 

transcript variants that have been identiied, three of 

which lead to functional protein isoforms. AKR1D1 is 

principally expressed in the liver, where levels are more 

than ten-fold higher than in any other tissue (Chen & 

Penning 2014). In addition to governing GC availability 

(as well as the availability of other steroid hormones 

including progesterone and androgens) (Kondo et  al. 

1994, Chen et al. 2011, Nikolaou et al. 2019a), we have 

shown that AKR1D1 has an important role in regulating 

lipid metabolism in human hepatocytes, largely, although 

not exclusively, through its role to limit the generation of 

bile acids (BAs) that can activate the farnesoid X receptor 

(FXR) (Nikolaou et al. 2019b).

However, important questions remain unanswered 

regarding the role of AKR1D1 in GC metabolism, 

speciicially with regard to regulation of AKR1D1 

expression and activity by GCs, the capacity of AKR1D1 to 

metabolise synthetic steroids and its role in the regulation 

of established GC target genes. There is a precedent for 

GCs regulating their own pre-receptor metabolism. GCs 

are known to increase 11β-HSD1 activity and expression 

and this has been postulated as a mechanism driving local 

GC excess and fueling an adverse metabolic phenotype 

(Jamieson et  al. 1995, Dube et  al. 2015). While the 

differential feedback of BAs to regulate AKR1D1 expression 

has been previously described (Valanejad et al. 2017), to 

date, the interplay between GCs and AKR1D1 expression 

and activity has not been explored.

Our study therefore had two major aims; irst, to 

examine the potential for GCs to regulate AKR1D1 

expression and activity and, secondly, to determine 

if established GC sensitive molecular targets are also 

regulated by changes in AKR1D1 and, if so, whether this is 

mediated through GR or non-GR mediated mechanisms. 

Materials and methods

Cell culture

HepG2 cells (Cat#HB-8065) and HEK293 cells 

(Cat#CRL-11268) were purchased from ATCC. Huh7 

cells were purchased from the Japanese Cancer Research 

Resources Bank (Cat#JCRB0403). All cell lines were 

cultured in Dulbecco’s minimum essential medium 

(DMEM) (Thermo Fisher Scientiic), containing 4.5 g/L 

glucose and supplemented with 10% fetal bovine serum, 

1% penicillin/streptomycin and 1% non-essential amino 

acids (Thermo Fisher Scientiic).

Dexamethasone (500 nM), cortisol (500 nM), 

prednisolone (500 nM), GW4064 (5 μM), GSK2033  

(100 nM), 22(S)-hydroxycholesterol (10 μM) and RU486 

(5 μM) were purchased from Sigma-Aldrich. SPA70  

(10 μM) was purchased from Axon Medchem (Groningen, 

Netherlands). For all cell treatments, HEK293, HepG2 and 

Huh7 cells were cultured in serum-free and phenol red-

free media containing 4.5g/L glucose and supplemented 

with 10% fetal bovine serum, 1% penicillin/streptomycin 

and 1% non-essential amino acids.

Transfection studies

AKR1D1 over-expression studies were performed in 12-well 

cell bind plates (Corning). The pCMV6-XL4 + AKR1D1 

(Origene Technologies, Rockville, MD, USA) construct 

was used and 0.5 μg DNA and 1 μL X-tremeGENE DNA 

transfection reagent (Roche) were diluted in 100 μL 

OPTIMEM serum-free media (Invitrogen). The mixture 

was vortexed and incubated at room temperature for  

20 min and, subsequently, 100 μL was added to each well 

and cells were incubated at 37°C for 48 h prior to treatment.

For AKR1D1 knockdown studies, cells were plated 

in 24-well cell bind plates (Corning). AKR1D1 siRNA 

molecules (HSS1101183, HSS1101184) were purchased 

from Invitrogen. 20 nmol of AKR1D1 siRNA was diluted 

in 25 μL OPTIMEM serum-free media (Invitrogen) and, in 

a separate tube, 2.5 μL Lipofectamine RNAiMAX (Invitrogen) 

was diluted in 25 μL OPTIMEM serum-free media. The 

contents of the two tubes were combined by gentle 

pipetting and incubated at room temperature for 5 min.  
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50 μL of the resulting transfection solution was added 

drop-wise and cells were incubated at 37°C for 48 h prior 

to treatment.

Luciferase reporter assay

To determine GR activation, HEK293 cells were plated 

in 24-well cell bind plates (Corning) and co-transfected 

with AKR1D1 over-expression vector (as described 

above) and GRE-reporter: a mixture of an inducible  

GRE-responsive irely luciferase construct and a 

constitutively expressing renilla luciferase construct 

(#CCS-006L, Qiagen). Cell lysates were harvested in 

passive lysis buffer, and reporter activity was measured 

using the Luciferase Assay System (Promega) and an 

EnSpire Multimode plate reader (PerkinElmer). The data 

were presented as the percentage ratio of irely to renilla 

luciferase activity (Fluc/Rluc).

RNA extraction and gene expression 
(quantitative PCR)

Total RNA was extracted from cells using the Tri-Reagent 

system (Sigma-Aldrich), and RNA concentrations were 

determined spectrophotometrically at OD260 on a 

Nanodrop spectrophotometer (ThermoFisher Scientiic). 

RT was performed in a 20 μL volume; 1 μg of total RNA 

was incubated with 10× RT Buffer, 100 mM dNTP Mix, 

10× RT Random Primers, 50 U/μL MultiScribe Reverse 

Transcriptase and 20 U/μL RNase Inhibitor (ThermoFisher 

Scientiic). The reaction was performed under the 

following conditions; 25°C for 10 min, 37°C for 120 min 

and then terminated by heating to 85°C for 5 min.

All quantitative PCR (qPCR) experiments were 

conducted using an ABI 7900HT sequence detection 

system (Perkin-Elmer Applied Biosystems). Reactions were 

performed in 6 μL volumes on 384-well plates in reaction 

buffer containing 3 μL of 2× Kapa Probe Fast qPCR Master 

Mix (Sigma-Aldrich). All probes were supplied by Thermo 

Fisher Scientiic as predesigned TaqMan Gene Expression 

Assays (FAM dye-labeled). The reaction conditions were 

95°C for 3 min, then 40 cycles of 95°C for 3 s and 60°C 

for 20 s. The Ct (dCt) of each sample using the following 

calculation (where E is reaction eficiency, determined 

from a standard curve): ΔCt = E(min Ct−sample Ct) using the 

1/40 dilution from a standard curve generated from a pool 

of all cDNAs as the calibrator for all samples. The relative 

expression ratio was calculated using the following 

formula: Ratio = ΔCt(target)/ΔCt(ref) and expression values 

were normalized to 18SrRNA (Pfafl 2001).

Protein extraction and immunoblotting

Total protein was extracted from cells using RIPA buffer 

(150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium 

deoxycholate, 0.1% SDS, and 50 mM Tris, pH 8.0) (Sigma-

Aldrich) and protease inhibitor cocktail (Thermo Fisher 

Scientiic). Protein concentrations were measured using 

a commercially available assay (Bio-Rad Laboratories) 

according to the manufacturer’s protocol. Primary human 

AKR1D1 (dilution 1/250; HPA057002, Atlas Antibodies 

AB, Bromma, Sweden), GILZ (sc-133215, Santa Cruz 

Biotechnology), β-tubulin (#15115, monoclonal) (Cell 

Signaling), β-actin (#3700, monoclonal) (Cell Signaling), 

CYP8B1 (#PA5-37088, polyclonal) (ThermoFisher 

Scientiic) and secondary antibodies (P044801-2, 

polyclonal) from Dako (Agilent) were used at a dilution 

of 1/1000 (primary) and 1/2000 (secondary) respectively, 

unless stated otherwise. Bands were visualised with Bio Rad 

Clarity Western ECL and ChemiDocXS imager (Bio Rad). 

Western blots were quantiied by densitometry analysis 

using ImageJ (https://imagej.nih.gov/ij/), normalised to 

β-tubulin to correct for variability in gel loading.

Clinical protocol

The study was approved by the South East Wales Research 

Ethics Committee, and all participants gave written 

informed consent. The study protocol was authorised 

by the Medicines and Healthcare products Regulatory 

Agency (EudraCT number: 2013-000259-42). Fourteen 

healthy male participants with no signiicant past 

medical history and who were on no regular prescribed 

medication were recruited into the study and investigated 

on two occasions. On their irst assessment, participants 

performed a timed (8 h) urine collection starting at  

24:00 h and ending at 08:00 h the following morning. On 

their second assessment, they took dexamethasone 1 mg 

at 23:00 h, and then performed the timed urine collection 

from 24:00 to 08:00 h as before. Urine collection aliquots 

were stored at −20°C until analysis by gas chromatography-

mass spectrometry as described.

Steroid hormone measurements

For in vitro media steroid hormone treatments, quantitative 

gas chromatography-mass spectrometry (GC-MS) was 

undertaken in selected ion-monitoring analysis mode as 

described previously (Shackleton 1986). An Agilent 5973 

instrument was used in a selected ion monitoring mode and 

the following steroids were identiied: cortisol, cortisone, 
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5β-tetrahydrocortisone (5β-THE), 5β-tetrahydrocortisol 

(5β-THF), 5α-tetrahydrocortisol (5α-THF) and cortisol-d4. 

Cortisol was positively identiied by comparison to an 

authentic reference standard that gave a double peak 

at approximately 24.17 min, monitored ion was 605. 

Cortisone was positively identiied by comparison to an 

authentic reference standard that gave a double peak at 

approximately 23.20 min, monitored ion was ion 531. 

The monitored ions for 5β-THE and 5β-THF were 578 

and 562, respectively, and were positively identiied at 

approximately 18.87 min and 19.95 min, respectively. 

In selected experiments, cell media cortisone levels were 

also determined using a commercially available cortisone 

ELISA assay (<0.1% cross-reactivity with dexamethasone), 

according to the manufacturer’s protocol (Invitrogen). 

Cell media prednisolone and dexamethasone were 

measured by liquid chromatography-mass spectrometry  

(LC-MS/MS) using previously published methods 

(Owen et  al. 2005, Hawley et  al. 2018). The lower limit 

of quantitation was 5.2 nmol/L and 0.25 nmol/L for 

prednisolone and dexamethasone, respectively.

Urinary corticosteroid metabolite analysis was 

performed by GC-MS, as described previously (Shackleton 

1986, Palermo et al. 1996). Total cortisol metabolites were 

deined as the sum of cortisol, 6-OH-cortisol, cortisone, 

5β-THF, 5α-THF, 5β-THE, α-cortolone, β-cortolone, 

α-cortol and β-cortol. 5β-THF is the 5β-reduced metabolite 

generated by AKR1D1, whilst 5α-THF is generated 

through the activity of 5α-reductases (type 1 and 2). The 

5β-THF/5α-THF ratio provides a measure of the relative 

activity of AKR1D1 and 5α-reductases.

Statistics

Data are presented as mean ± S.E., unless otherwise stated. 

Normal distribution was conirmed using Shapiro–Wilk 

test. Two-tailed, paired t-tests were used to compare single 

treatments to control. For comparisons between control 

and different treatments, statistical analysis was performed 

using one-way ANOVA with Dunnett corrections. To 

compare mean differences between groups that had 

been split on multiple treatments, doses or times, two-

way ANOVA with Sidak corrections was used. Statistical 

analysis on qPCR data was performed on mean relative 

expression ratio values (Ratio = ΔCt(target)/ΔCt (Pfafl 

2001)). Data analysis was performed using Graphpad 

Prism software (Graphpad Software Inc) and considered 

statistically signiicant at P < 0.05, unless otherwise stated.

Results

AKR1D1 dierentially regulates endogenous and 
synthetic glucocorticoid clearance in vitro

We irst explored the capacity of AKR1D1 to metabolise 

endogenous and synthetic GCs. HEK293 cells were 

transfected with either empty pCMV6-XL4 vector (EV) 

or AKR1D1 containing vector (Origene Technologies) for  

48 h. Successful over-expression was conirmed using 

qPCR and Western blotting (Supplementary Fig. 1A and B, 

see section on supplementary materials given at the end 

of this article).

Following AKR1D1 over-expression, HEK293 cells 

were treated with cortisol, prednisolone or dexamethasone 

(500 nM, 24 h) and cell media GC concentrations 

measured using mass-spectrometry. Cortisol was almost 

completely cleared within 24 h in cells over-expressing 

AKR1D1 in comparison with empty vector controls 

(Fig. 1A). In contrast, there was only partial clearance of 

prednisolone (33%) and dexamethasone (15%) (Fig. 1B 

and C). To determine the impact of these observations 

on GR activation, dual transfection experiments were 

performed. HEK293 cells were transfected with both the 

AKR1D1 expressing vector and a commercially available 

GR-element (GRE) luciferase construct. Consistent with 

the mass-spectrometry data, AKR1D1 over-expression 

decreased cortisol-mediated GR activation (EV: 100% 

vs AKR1D1: 43.1 ± 1.2%, P < 0.001). The impact on 

prednisolone-mediated GR activation was less marked, but 

remained signiicant (EV: 100% vs AKR1D1: 73.0 ± 4.4%, 

P < 0.05). There was no effect of AKR1D1 over-expression 

on dexamethasone-mediated GR activation (EV: 100% vs 

AKR1D1: 94.0 ± 10.8%, P = ns) (Fig. 1D).

Cortisol fails to regulate GC target genes in human 
hepatoma cells due to rapid clearance

To further demonstrate the potent ability of human 

hepatoma cell lines to clear endogenous cortisol, HepG2 

human hepatoma cells were treated with cortisol (500 nM, 

24 h). Cortisol failed to regulate hepatic gene expression 

(Fig. 2A, B and C). Subsequent GC-MS analysis of the cell 

media demonstrated enhanced clearance of cortisol with 

a parallel increase in cortisone production, as a result of 

endogenous 5αR/5βR and 11β-HSD2 activity, respectively 

(Fig. 2D). As expected, the levels of 5β-reduced metabolites 

of cortisol and cortisone, 5β-THF and 5β-THE, increased 

signiicantly (Fig. 2E). These data suggest that increased 
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cortisol clearance underpins the lack of effect of cortisol 

on gene expression in HepG2 cells.

Dexamethasone treatment down-regulates AKR1D1 
expression and activity in vitro and in vivo

Due to its limited clearance by AKR1D1, dexamethasone 

was used to examine the potential regulation of AKR1D1 

activity and expression by GCs. HepG2 cells were treated 

with dexamethasone (500 nM) for 24 h; successful 

activation of the GR was conirmed by elevated mRNA 

levels of the GR-regulated genes DUSP1 and GILZ, with a 

concomitant increase in GILZ protein expression (Fig. 3A  

and B). Dexamethasone decreased AKR1D1 mRNA 

and protein expression, without impacting on the 

expression of SRD5A1 and 11BHSD2 (Fig. 3C and D). 

To assess functional AKR1D1 activity, cortisone (which 

is metabolised by AKR1D1 in hepatocytes) clearance  

(200 nM, 8 h) was measured in cells that had been treated 

with dexamethasone. Paralleling the gene expression data, 

dexamethasone limited cortisone clearance in HepG2 cells, 

consistent with decreased AKR1D1 expression (Fig. 2E).  

In addition to regulating AKR1D1, dexamethasone 

increased the expression of other key genes involved in 

the BA synthetic pathway, including CYP7A1, CYP8B1 

and HSD3B7 (Fig. 3F).

GILZ mRNA expression was increased following 

treatment with dexamethasone (500 nM, 24 h) and, as 

expected, this was abolished following co-treatment 

with RU486 (5 μM, 24 h) (Supplementary Fig. 2A). In 

a similar manner, the down-regulation of AKR1D1 by 

dexamethasone (both mRNA and protein) was reversed 

by co-treatment with RU486 (Fig. 4A and B), indicative 

of a GR-dependent mechanism. RU486 treatment 

also prevented the dexamethasone-induced increased 

expression of CYP7A1 and CYP8B1 (Fig. 4C, D and 

Supplementary Fig. 2B).

Additional experiments were performed in Huh7 

human hepatoma cells. Similar patterns of gene expression 

changes were observed with decreased AKR1D1 and 

increased CYP7A1, CYP8B1 and HSD3B7 mRNA levels 

following dexamethasone treatment (500 nM, 24 h). The 

data are summarised in Table 1.

Figure 1
AKR1D1 dierentially regulates endogenous and synthetic GC metabolism 
in vitro. AKR1D1 over-expression (grey bars) increases cortisol (A) and 

prednisolone clearance (B), following 24 h of treatment, compared to 

no-cell controls (white bars) or vector only transfected cells (black bars). 

AKR1D1 over-expression had a limited, although signiȴcant eect on 
dexamethasone clearance, following 24 h of treatment, compared to 

no-cell controls (white bars) or vector only transfected cells (black bars) 

(C). AKR1D1 over-expression (grey bars) signiȴcantly decreased activation 
of the glucocorticoid receptor in HEK293 cells, following cortisol and 

prednisolone treatment, but not following dexamethasone treatment (all 

500 nM, 24 h), as measured by activation of GRE-luciferase-reporter (D). 

Fireȵy luciferase activity was normalised to renilla luciferase. Data are 
presented as meanɋ±ɋS.E. of nɋ=ɋ8 experiments, performed in duplicate. 
*Pɋ<ɋ0.05, ***Pɋ<ɋ0.001, compared to vector only transfected controls.

Figure 2
Endogenous GCs fail to regulate AKR1D1 expression in vitro. Cortisol 

treatment of HepG2 cells (500 nM, 24 h) has no eect on the expression 
of steroid metabolising, glucocorticoid receptor regulated or bile acid 

synthesis genes (A, B and C). Mass spectrometry analysis of cell culture 

media demostrates increased cortisol clearance with a parallel increase in 

cortisone formation, indicative of 11β-HSD2 activity (D). Cell culture media 

5β-tetrahydrocortisol (5β-THF) and 5β-tetrahydrocortisone (5β-THE) levels 

increased following cortisol treatment (500 nM, 24 h) (E). qPCR data were 

normalised to 18SrRNA. Data are presented as meanɋ±ɋS.E. of nɋ=ɋ5 
experiments, performed in triplicate, *Pɋ<ɋ0.05, compared no-cell controls.
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To determine if our in vitro observations had relevance 

in vivo, we examined urinary steroid proiles in an 

overnight timed (8 h) urine collection from 14 healthy 

male participants (age: 32.9 ± 3.1 years, BMI: 24.7 ±  

0.5 kg/m2) investigated on two occasions, one with 

and one without dexamethasone treatment (1 mg), 

administered at the start of the timed urine collection.

As expected, total cortisol metabolites decreased 

following dexamethasone treatment consistent with 

suppression of the hypothalamo-pituitary-adrenal axis 

(1898 ± 162 vs 1308 ± 135 μg/8 h, P < 0.01). While there 

was no change in 5α-THF levels, the production of the 

5β-reduced metabolite of cortisol, 5β-THF, decreased 

following dexamethasone treatment (Fig. 5A and B). 

The 5β-THF/5α-THF ratio also decreased (Fig. 5C), data 

consistent with a dexamethasone-mediated selective 

reduction in AKR1D1 activity with no impact on 

5α-reductase activity.

AKR1D1 knockdown alters glucose metabolism gene 
expression through FXR, GR, and PXR-dependent 
mechanisms

GCs have a profound effect on carbohydrate metabolism 

through upregulation of hepatic gluconeogenesis and 

glycogen synthesis (Sistare & Haynes 1985, Schneiter 

& Tappy 1997, Tounian et  al. 1997). Dexamethasone 

treatment of HepG2 cells (500 nM, 24 h) increased 

mRNA expression related to these two processes, 

namely phosphoenolpyruvate carboxykinase (PEPCK), 

pyruvate carboxylase (PC), fructose-bisphosphatase 1 

(FBP1) and glycogen synthase (GYS1) mRNA expression 

(Supplementary Fig. 2C).

Successful AKR1D1 knockdown in HepG2 cells was 

achieved using siRNA techniques (AKR1D1 siRNA variant 

Figure 3
Synthetic GCs down-regulate AKR1D1 expression and activity in vitro. 

Dexamethasone treatment of HepG2 cells (500 nM, 24 h) increases the 

mRNA and protein expression of the glucocorticoid regulated genes, 

DUSP1 and GILZ (A and B). Dexamethasone treatment decreases the 

mRNA and protein expression of AKR1D1, but it had no eect on the 
expression of the steroid-metabolising genes SRD5A1 and 11BHSD2 (C and 

D), with a concomitant decrease in cortisone clearance, following 8 h of 

cortisone treatment (200 nM) (E). Dexamethasone treatment increases 

the expression of the bile acid synthesis genes CYP7A1, CYP8B1 and 

HSD3B7 (F). Representative Western blot images are shown, and formal 

quantiȴcation was performed in nɋ=ɋ5 replicates. qPCR data were 
normalised to 18SrRNA. Data are presented as meanɋ±ɋS.E. of nɋ=ɋ5Ȃ7 
experiments, performed in triplicate, *Pɋ<ɋ0.05, **Pɋ<ɋ0.01, ***Pɋ<ɋ0.001, 
compared vehicle-treated controls.

Figure 4
GCs regulate AKR1D1 expression through GR activation. Dexamethasone 

treatment decreases AKR1D1 mRNA (A) and protein expression (B). 

Addition of the glucocorticoid receptor antagonist RU486 (5 μM, 24 h) in 

the dexamethasone-treated HepG2 cells normalises the expression levels 

of AKR1D1 (A and B). RU486 also normalises the dexamethasone-induced 

expression of CYP8B1 (C and D). Representative Western blot images are 

shown, and formal quantiȴcation was performed in nɋ=ɋ5 replicates. 
Representative Western blot images are shown, and formal quantiȴcation 
was performed in nɋ=ɋ5 replicates. qPCR data were normalised to 
18SrRNA. Data are presented as meanɋ±ɋS.E. of nɋ=ɋ5 experiments, 
performed in triplicate, *Pɋ<ɋ0.05, **Pɋ<ɋ0.01, ***Pɋ<ɋ0.001, compared to 
vehicle-treated controls.
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HSS1101183, Suppementary Fig. 3A and B). Mirroring the 

impact of dexamethasone treatment, and in the absence 

of steroid hormone supplementation in the cell media, 

AKR1D1 knockdown also increased the expression of 

PEPCK, PC, FBP1 and GYS1 (Fig. 6A). To conirm that 

the effect of AKR1D1 knockdown on gluconeogenic 

gene expression is not siRNA speciic, additional 

experiments using a second siRNA variant (HSS1101184) 

were performed in HepG2 cells. The results revealed 

similar upregulation of PEPCK, PC and FBP1 expression, 

following AKR1D1 knockdown (Supplementary Fig. 3C 

and D). Additional AKR1D1 knockdown experiments were 

also performed in Huh7 cells, revealing similar changes 

in gene expression with increased PEPCK, PC and FBP1 

mRNA levels, following AKR1D1 knockdown. The data 

are summarised in Table 2.

AKR1D1 knockdown has been previously shown to 

result in alterations in both FXR and LXR activation, due to 

decreases in primary BA synthesis and increases in oxysterol 

accumulation, respectively (Janowski et al. 1996, Nikolaou 

et  al. 2019b). We proposed that FXR agonism and/or  

LXR antagonism would have the potential to rescue the 

phenotype in our cells. Cell treatments using the FXR agonist 

GW4064 (5μM, 24 h) normalised the expression of GYS1 to 

levels seen in scrambled-transfected cells, but failed to rescue 

the upregulation of PEPCK, PC or FBP1 expression, caused by 

AKR1D1 knockdown (Fig. 6B). Additional treatments with 

the LXRα and LXRβ antagonists 22(S)-Hydroxycholesterol 

(10 μM, 24 h) and GSK2033 (100 nM, 24 h) also failed to 

restore PEPCK, PC or FBP1 expression, suggesting that 

the observed phenotype is not driven by increased LXR 

activation (Supplementary Fig. 4A and B).

Οxysterols and cholesterol metabolites have been 

recently shown to activate the GR (Voisin et  al. 2017, 

Silvente-Poirot et al. 2018). In AKR1D1 knockdown cells, 

treatments with RU486 treatment (5 μM, 24 h) limited 

the induction of PEPCK and GYS1 levels, suggesting that 

this observation was mediated, at least in part, through 

activation of the GR. However, RU486 treatment failed to 

rescue the up-regulation of PC or FBP1 seen in AKR1D1 

knockdown cells (Fig. 6C).

In addition to LXR and GR, oxysterols are endogenous 

ligands of the Pregnane-X-Receptor (PXR) (Shenoy et al. 

2004a,b, Li et al. 2007). Treatment of AKR1D1 knockdown 

cells with the PXR antagonist SPA70 (10 μM, 24 h) limited 

the increase in gene expression of PC, FBP1 and GYS1, 

Table 1ɅmRNA expression analysis following 24 h 

dexamethasone treatment in Huh7 cells.

Gene Vehicle Dexamethasone P-value

AKR1D1 0.81ɋ±ɋ0.04 0.66ɋ±ɋ0.04b <0.001
GILZ 1.15ɋ±ɋ0.12 1.25ɋ±ɋ0.11a 0.037
DUSP1 1.05ɋ±ɋ0.15 1.14ɋ±ɋ0.17a 0.024
CYP7A1 0.92ɋ±ɋ0.04 1.08ɋ±ɋ0.02a 0.021
CYP8B1 0.44ɋ±ɋ0.1 0.70ɋ±ɋ0.12b <0.001
HSD3B7 0.56ɋ±ɋ0.05 0.69ɋ±ɋ0.06a 0.015
11BHSD2 0.52ɋ±ɋ0.10 0.50ɋ±ɋ0.11 0.613

Dexamethasone treatment (500 nM, 24 h) signiȴcantly decreases the 
expression of AKR1D1 and increases the expression of GILZ, DUSP1, 

CYP7A1, CYP8B1 and HSD3B7 in Huh7 human hepatoma cells. qPCR data 

were normalised to 18SrRNA. Data are presented as meanɋ±ɋS.E. of nɋ=ɋ5 
experiments, performed in triplicate, aPɋ<ɋ0.05, bPɋ<ɋ0.001, compared to 
vehicle-treated controls.

Figure 5
Synthetic GCs down-regulate AKR1D1 activity in vivo. Urine 

5β-tetrahydrocortisol (5β-THF) levels decrease following over-night 

dexamethasone treatment, compared to overnight samples without 

treatment (A). There is no alteration in 5α-tetrahydrocortisol (5α-THF) 

levels (B). The 5β-THF/5α-THF ratio decreased following dexamethasone 

treatment, indicative of decreased AKR1D1 activity (C). Data are presented 

as meanɋ±ɋS.E. of nɋ=ɋ14 participants, ***Pɋ<ɋ0.001.
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indicative of an additional PXR activation mechanism of 

action (Fig. 6D).

Discussion

We show that although AKR1D1 represents a crucial step in 

endogenous cortisol clearance, it clears synthetic steroids 

poorly in comparison. We demonstrate that dexamethasone 

decreases expression and activity of AKR1D1 in vitro and  

in vivo (without any effect on 3α-HSD activity, as evidenced 

by the lack of change in 5α-THF levels) and, inally, we 

reveal that the actions of AKR1D1 to regulate the expression 

of genes involved in glucose metabolism are mediated 

through FXR, GR and PXR activation.

Synthetic GCs, including dexamethasone, prednisone 

and prednisolone, are frequently prescribed for a variety 

of oncological and inlammatory conditions (van Staa 

et  al. 2000, Wooldridge et  al. 2001, Amin et  al. 2014).  

Although less eficiently cleared than cortisol, we did 

observe some prednisolone clearance by AKR1D1, with 

even more limited metabolism of dexamethasone. 

Considering the crucial role of AKR1D1 to metabolise 

endogenous cortisol and cortisone, the impaired 

clearance of synthetic GCs that we have observed suggests 

an additional mechanism (over and above potency of 

GR activation), through which synthetic GCs may have 

more potent actions (both therapeutically desirable anti-

inlammatory and anti-proliferative, but also undesirable 

metabolic and musculoskeletal side effects).

The potential role of steroid hormones, including GCs 

and androgens, to regulate the expression of the A-ring 

reductases is poorly described and has been predominantly 

focused on the role of androgens, only (Berman et  al. 

1995, Torres & Ortega 2003, Li et al. 2011). In our study, 

we have demonstrated that GCs decrease hepatic AKR1D1 

expression both in vitro and in vivo and that this effect is 

mediated by activation of the GR. It is likely that these 

effects are mediated through glucocorticoid response 

elements within the promoter of AKR1D1; indeed, a study 

from Nakamoto et al. (Nakamoto et al. 2017) has recently 

shown putative GR binding sites in the AKR1D1 gene 

promoter in HepG2 cells.

Published studies have shown that over-expression of 

AKR1D1 regulates a variety of cytochrome P450 enzymes, 

including increased expression of CYP3A4 (Chaudhry 

et  al. 2013). Modulation of CYP3A4 activity has a 

profound inluence of the availability of synthetic GCs; 

CYP3A4 inhibition along with concomitant synthetic 

GC administration frequently leads to the development 

of iatrogenic Cushing’s syndrome (Mahlab-Guri et  al. 

2011, Bernecker et al. 2012). Therefore, down-regulation 

Figure 6
AKR1D1 silencing drives hepatic gluconeogenic 

and glycogenic gene expression. AKR1D1 

knockdown (grey bars) increases the expression 

of PEPCK, PC, FBP1 and GYS1 (A). GW4064 

treatment (FXR agonist: 5 μM, 24 h) normalises 

the expression of GYS1 in AKR1D1 knockdown 

cells to levels seen in scrambled controls (B). 

RU486 treatment (GR antagonist: 5 μM, 24 h) 

limits the increase in the expression of PEPCK and 

GYS1 in AKR1D1 knockdown cells (C). The PXR 

antagonist, SPA70 (10 μM, 24 h), limits the 

increase in the expression of PC, FBP1 and GYS1 

seen in AKR1D1 knockdown cells (D). 

Representative Western blot images are shown, 

and formal quantiȴcation was performed in nɋ=ɋ5 
replicates. qPCR data were normalised to 

18SrRNA. Data are presented as meanɋ±ɋS.E. of 

nɋ=ɋ5 experiments, performed in triplicate, 
*Pɋ<ɋ0.05, **Pɋ<ɋ0.01, ***Pɋ<ɋ0.001, compared to 
vehicle-treated or scrambled-transfected controls. 

KD, AKR1D1 knockdown.

Table 2ɅmRNA expression analysis of gluconeogenic and 

glycogen synthesis genes in Huh7 cells, following AKR1D1 

knockdown.

Gene Scrambled control AKR1D1 knockdown P-value

AKR1D1 0.87ɋ±ɋ0.11 0.09ɋ±ɋ0.01a 0.006
PEPCK 0.59ɋ±ɋ0.09 0.71ɋ±ɋ0.08b <0.001
PC 0.74ɋ±ɋ0.05 0.96ɋ±ɋ0.05a 0.003
FBP1 0.18ɋ±ɋ0.006 0.32ɋ±ɋ0.01a 0.005
GYS1 0.78ɋ±ɋ0.11 0.87ɋ±ɋ0.12 0.22

AKR1D1 knockdown signiȴcantly increases the expression of PEPCK, PC 

and FBP1 in Huh7 human hepatoma cells. qPCR data were normalised to 

18SrRNA. Data are presented as meanɋ±ɋS.E. of nɋ=ɋ4 experiments, 
performed in duplicate, aPɋ<ɋ0.01, bPɋ<ɋ0.001, compared to scrambled-
transfected controls.
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of AKR1D1 by GCs might lead to decreased CYP3A4 

and further exacerbate the adverse effects of prescribed 

steroids through both CYP3A4 and AKR1D1 dependent 

mechanisms.

AKR1D1 is down-regulated in patients with type 2 

diabetes and we have recently shown a similar decrease in 

expression with advancing severity of non-alcoholic fatty 

liver disease (NAFLD) (Valanejad et al. 2018, Nikolaou et al. 

2019b). In this context, AKR1D1 knockdown increased 

the expression of key enzymes involved in lipogenesis 

as well as increasing functional de novo lipogenesis, as 

measured by deuterated water incorporation into fatty 

acids (Nikolaou et  al. 2019b). The data from our study 

now provide additional evidence of the adverse impact of 

AKR1D1 down-regulation, here to drive gluconeogenesis, 

with the potential to fuel hepatic glucose output. The 

down-regulation of AKR1D1 by synthetic steroids may 

therefore be an important contributing factor to the 

adverse metabolic features associated with their use.

Oxysterols, the oxidised derivatives of cholesterol, 

are predominantly, although not exclusively, produced 

in the liver through activity of the cytochrome P450 

(CYP) enzyme family (Guillemot-Legris et al. 2016), and 

they serve as potent ligands for many nuclear receptors 

including the LXRs, GR, PXR and the retinoic acid 

receptor-related orphan receptors (RORs) (Ma & Nelson 

2019). In this regard, there is compelling evidence on the 

role of oxysterols as important mediators of metabolic 

syndrome (Tremblay-Franco et  al. 2015, Guillemot-

Legris et al. 2016, Mutemberezi et al. 2016). Indeed, some 

oxysterols are now used as biomarkers for monitoring 

a variety of pathologies, including atherosclerosis, BA 

diarrhea and Alzheimer’s disease (Eusufzai et  al. 1993, 

Wang et  al. 2016, Zmysłowski & Szterk 2019). In our 

study, we were not able to directly measure cell media 

oxysterol levels; however, we have previously shown 

that AKR1D1 knockdown results in decreased primary BA 

formation (Nikolaou et al. 2019b) potentially leading to 

increased accumulation of 7α-hydroxycholestenone and 

7α,12α-dihydroxycholestenone levels (oxysterols that are 

AKR1D1 substrates) in the cell media.

AKR1D1 has a key role in BA synthesis and drives 

the formation of cholic acid and chenodeoxycholic acid. 

Endorcing our observations, dexamethasone has been 

shown to increase the expression of CYP7A1 and CYP8B1 

in both human and rat hepatocytes (Princen et al. 1989, 

Ellis et al. 1998, Mörk et al. 2016). In rodent models, data 

have been conlicting; in rats and mice, treatment with 

dexamethasone and prednisolone, respectively, resulted 

in decreased BA synthesis, as measured by decreased 

Cyp7a1 and Cyp8b1 expression and decreased faecal BA 

excretion. However, there was enhanced enterohepatic 

cycling of BAs with elevated plasma BA levels and biliary 

BA secretion (Out et al. 2014, Xiao et al. 2016). In contrast, 

another study has demonstrated that dexamethasone 

exposure to neonatal rats increased the expression of genes 

involved in the synthesis and enterohepatic cycling of 

BAs, including Cyp7a1, Cyp8b1 and sodium taurocholate 

co-transporting polypeptide (Ntcp) (Liu et al. 2008).

The role of GCs on hepatic gluconeogenesis and 

glycogen synthesis has been extensively investigated. 

GCs increase the transcription of the gluconeogenic 

genes PEPCK, PC, FBP1 and GYS1 and their action is 

predominantly conveyed through activation of the 

GR (Stalmans & Laloux 1979, Kuo et  al. 2015). In our 

study, AKR1D1 knockdown mimicked the cellular 

phenotype of GC (dexamethasone) treatment. Although 

we have previously demonstrated the ability of AKR1D1 

knockdown to increase hepatic intracellular glycogen 

storage (Nikolaou et  al. 2019b), this is our irst effort 

to elucidate the mechanistic insight of the observed 

phenotype. Plausible hypotheses have been that this 

arises as a result of either impaired FXR activation, due to 

reduced primary BA synthesis, or increased accumulation 

of oxysterols, which are able to bind to and activate the 

GR (Voisin et  al. 2017, Silvente-Poirot et  al. 2018). In 

AKR1D1 knockdown cells, FXR agonism normalised GYS1 

expression only; however, we were able to partially restore 

the gene expression proiles through the use of the GR 

antagonist RU486, suggesting that some of the observed 

changes are also driven by GR activation. Nevertheless, 

RU486 treatment did not correct all the changes that  

were observed.

Recent studies have implicated PXR in the regulation 

of glucose homeostasis. In vitro, data have been conlicting; 

in Huh7 cells, PXR activation using the PXR agonist 

rifampicin has been shown to repress gluconeogenic 

gene transcription (Kodama et al. 2007) while, in another 

study using HepG2 cells, rifampicin induced PEPCK 

expression (Gotoh & Negishi 2014). The latter indings 

are in agreement with clinical studies, where rifampicin 

increases blood glucose levels in humans (Rysä et  al. 

2013, Hakkola et al. 2016). Consistent with this, our data 

revealed that the gene expression phenotype associated 

with AKR1D1 knockdown was partially attributable to 

PXR activation.

In conclusion, we have shown that AKR1D1 poorly 

metabolises synthetic GCs and that synthetic GCs decrease 

AKR1D1 expression and activity in the liver, potentially 

fueling the adverse metabolic phenotype associated with 
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their use. In vitro, AKR1D1 down-regulation mimics the 

action of GCs in driving hepatic gluconeogenesis and 

glycogen storage. As such, this represents an additional 

novel mechanism by which glucocorticoids indirectly 

regulate glucose metabolism highlighting, in total, the 

complex role of AKR1D1 to govern the activation of 

multiple nuclear hormone receptors, with signiicant 

implications for the regulation of metabolic phenotype 

within the liver.
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