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Summary. In the absence of evidence from randomized controlled trials on the relative effec-
tiveness of treatments, cost-effectiveness analyses increasingly use observational data instead.
Treatment assignment is not, however, randomized, and naive estimates of the treatment effect
may be biased. To deal with this bias, one may need to adjust for observed and unobserved
confounders. In this work we explore and discuss the challenges of these adjustment strategies
within a case-study of negative pressure wound therapy (NPWT) for the treatment of surgical
wounds healing by secondary intention. We could not demonstrate that existing uncontrolled
confounding affects NPWT effectiveness, and thus there was no evidence that NPWT was cost
effective compared with standard dressings for the treatment of surgical wounds healing by
secondary intention.

Keywords: Economic evaluation; Instrumental variables; Observational data; Statistical
methods; Surgical wounds

1. Introduction

System level decisions regarding the use of healthcare technologies are often informed by clinical

and cost-effectiveness evidence, relying crucially on evidence from randomized controlled trials

that the technology improves health outcomes. Observational studies are, however, increasingly

recommended to support such decisions where, after looking at randomized controlled trial

evidence, significant clinical uncertainty remains—for example, the Cancer Drugs Fund in the

UK (NHS England, 2019) or the ‘Surveillance, epidemiology, and end results program’ in

the USA (National Cancer Institute, 2019)—or to provide crucial intelligence on technologies

such as medical devices that face no regulatory requirement to demonstrate efficacy (European

Medicines Agency, 2020) and thus often present with limited effectiveness evidence (Akhmetov

and Bubnov, 2015; Henshall et al., 2011; Byron et al., 2014).
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But non-randomized observational evidence means that there is no control over assignment.

In this situation treatment groups may differ in aspects that are related to the outcome (prog-

nostic variables) generating potential for confounding. There is little guidance on the analysis

of observational data: it is presented either as a description of methods (Faria et al., 2015)

or generic checklists or questionnaires (Berger et al., 2014; Kreif et al., 2013; Motheral et al.,

2003). Where there is a good understanding of the process of selection into treatment, and

this information has been collected, analyses may attempt to adjust for imbalances, e.g. us-

ing regression adjustment, propensity scores or matching. However, these methods cannot rule

out the possibility of confounding on prognostic factors that have not been observed, and

hence causality cannot be established. Alternative adjustment methods use instrumental vari-

ables (IVs) (Cameron and Trivedi, 2005; Greene, 2012; Wooldridge, 2013), variables that are

associated with treatment assignment but not directly with health outcomes (only through

treatment assignment). The use of instruments enables the identification of the effects of ‘pure’

changes in treatment assignment (not related to confounders), and in this way to estimate causal

effects. Only a few applications have been published to date on the use of IV methods in health

technology assessment (Hadley et al., 2003; Brookhart et al., 2006a, b; Schneeweiss et al., 2008;

Prentice et al., 2014).

This paper explores the use of an existing observational cohort study (Chetter et al., 2019)

to establish the clinical and cost effectiveness of a medical device that is widely used in the

National Health Service for surgical wound healing by secondary intention (SWHSI) called

negative pressure wound therapy (NPWT).

Section 2 gives a description of the case-study and a summary of the observational data,

together with the methods of analyses. The (causal) cost-effectiveness model is described, to

provide the framework by which potential improvements in time to wound healing by NPWT

impact on health-related quality of life (HRQOL) and costs. We also describe the specific regres-

sion methods that are used to determine the effectiveness of NPWT on time to wound healing,

using adjustments for observed factors and IV estimation. Section 3 gives a description of the

results of analyses for effectiveness, costs and HRQOL. The paper finishes with a discussion of

the challenges that are encountered (Section 4) that can be generalized to the use of IVs in other

health technology assessment contexts.

2. Methods

2.1. Description of the case-study and observational data available

NPWT is a medical device that is applied to the wound surface and creates a suction force

(or vacuum) removing tissue fluid away from the treated wound area into a canister. NPWT

has been claimed (Banwell and Musgrave, 2004) to speed up healing (the outcome that is most

valued by patients (Cullum et al., 2015)). However, there is no conclusive randomized control

trial evidence of such an effect (Berger et al., 2014) and, in light of this, the National Institute for

Health and Care Excellence in 2008 did not reject NPWT but recommended further research

(Leaper et al., 2008; National Institute for Health and Care Excellence, 2008). Since, however,

there has been no new relevant evidence (National Institute for Health and Care Excellence,

2011a, b) and, in all this time, NPWT has been widely used by health systems with no insight

into its value for money.

2.1.1. Summary description of the data

The largest and most comprehensive study to date in this population is a recent observational
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Fig. 1. Time to healing: descriptive Kaplan–Meier curve: , NPWT patients; , other treatments
(non-NPWT patients)

cohort study that was undertaken in the UK (Chetter et al., 2019). This study was longitudinal,

conducted over a 21-month period (from February 18th, 2013, to November 30th, 2014) in eight

study sites across Yorkshire, UK. Participants were recruited with incident surgical wounds

requiring treatment (the inclusion and exclusion criteria have been reported elsewhere (Chetter

et al., 2019)) and were aimed to be followed up for 12 months or more.

The study recruited 393 participants and followed them up for 499 days, on average. Out of

the total 393 participants, 22 died (5.6%) and 320 (81%) healed within the study. The mean

time to healing of those who healed was 99 days. A full list of summary characteristics can be

found in the on-line supplementary material (appendix 1, Table A1.1). 115 participants (29%)

were treated with NPWT at some point during follow-up. Of those receiving NPWT only 69%

(79 participants) healed within the study compared with 87% healed in those people who never

received NPWT. Patients who received NPWT took longer to heal (a median time to healing

of 175 days for NPWT versus 63 days without)—as highlighted in the Kaplan–Meier curve in

Fig. 1. Given the observational nature of the study, imbalances in important prognostic variables

(observed or unobserved) can justify the worse outcomes. The following subsection examines

observed imbalances.

2.1.2. Imbalances and overlap between the groups

The majority of NPWT patients had a large (bigger than 25 cm2) wound compared with only

12% of non-NPWT patients and were more likely to have experienced skin and subcutaneous

tissue loss whereas patients who did not receive NPWT had wounds involving skin only. These

and other identified differences demonstrate that there is the potential for selection bias in the

cohort data.
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For a set of baseline covariates, Fig. 2(a) shows the mean differences between groups (NPWT

minus non-NPWT), standardized (by dividing the differences by the standard deviation of the

whole sample). Although there may be differences between the groups across a multitude of

factors, none of the covariates analysed shows a difference bigger than 1 standard deviation

across groups. The distribution of values for each covariate was also compared across groups

to assess whether there were regions of non-overlap (an example plot is shown in Fig. 2(b)

for the wound area). We verified that there was always some overlap, which indicates that the

mechanism of selection of patients into the treatment groups is not clearly determined.

2.1.3. Participants for whom an event (healing) was not observed (hard to heal)

There were 73 patients who did not heal within the study, introducing censoring in the data.

These patients were followed up on average for 416 days which, compared with average time

to healing in those that healed of 99 days, suggests that these are ‘hard-to-heal’ patients. Also,

these patients differed in their baseline characteristics from the patients who healed; for example,

there were 23% more diabetics and 24% more patients with larger wounds, among others. A full

list of summary characteristics by healing status can be found in appendix 1, Table A1.2, in the

on-line supplementary material. This implies that censoring cannot be assumed uninformative

which needs to be acknowledged in the methods of analyses (see Section 2.4).

2.2. Causal model for determining cost effectiveness

The outcome of analyses in determining cost effectiveness was the QALY: quality-adjusted life

years gained (National Institute for Health and Care Excellence, 2013). QALYs weight lifetime

lived for the HRQOL that the years are lived in. A 1-year time horizon was used and the UK

National Health Service perspective was adopted for costs. To establish cost effectiveness it is

important that the costs and HRQOL are based on the adjusted causal effect of NPWT on time

to healing, ∆t, and not the observed, unadjusted, effect. The cost-effectiveness model (equations

(1)–(4)) computes the cost and HRQOL implications of treatment with NPWT. Equation (1)

details that differences in QALY, ∆Q, are evaluated from ∆t and from uh and uunh, the HRQOL

weights of healed and unhealed patients respectively:

∆Q=∆t.uh −uunh/, .1/

∆C =∆Cdis +∆Ct , .2/

∆Cdis =∆t.cunh − ch/, .3/

∆Ct = c1 ToT+ c0.∆t −ToT/
︸ ︷︷ ︸

NPWT group

− c0 ∆t
︸ ︷︷ ︸

:

non-NPWT group

.4/

The difference in costs, ∆C, is broken down into disease-related costs, ∆Cdis, and the costs

of the treatments themselves, ∆Ct (equation (2)). ∆Cdis are determined by applying ∆t to the

difference in the costs of unhealed and healed patients, cunh and ch respectively (equation (3)).

∆Ct (equation (4)) assumes that patients receive some form of treatment up to healing. The

treatment costs of the ‘non-NPWT group’ is simply the average cost of dressings, c0, multiplied

by ∆t. For patients receiving NPWT, the average daily cost of NPWT, c1, is applied to the mean

time on NPWT treatment, TOT, and in the remaining time that patients are assumed to use

dressings (with a daily cost equal to c0; see equation (4)).

The description of the model above identifies evidence requirements, and the subsections

ahead detail the estimation of the causal effect of NPWT on time to healing and inferences on
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the effects of healing on HRQOL weights and costs. The remaining parameters (ToT, c0 and

c1) were informed by the means observed in the data set.

2.3. Implementation and software

A Bayesian approach was used throughout to allow for the uncertainty in predicting treatment

allocation to be fully considered and thus correctly reflected in decision uncertainty. Analyses

were implemented in R (R Development Core Team, 2013) and inferences in WinBugs (Lunn

et al., 2000). Model selection was based on the deviance information criterion (DIC) (Spiegel-

halter et al., 2002; Gelman, 2014; Lunn, 2013), which reflects a trade-off between model fit

and model complexity. DIC differences of 5 were considered meaningful (Spiegelhalter et al.,

2002, 2014). Econometric tests of the relevance and validity of instruments are not developed

in the Bayesian context, and frequentist methods were thus implemented in Stata (StataCorp,

2013). Decision uncertainty was reported by using the probability that each intervention was

cost effective.

2.4. Inferences on time to healing

In cost effectiveness, where expected values are of interest, time-to-event outcomes are tradi-

tionally analysed by using parametric survival analysis. In this case-study, standard parametric

analyses would struggle to provide a good fit because of the asymptote that is observed in

Fig. 1, and more complex, and therefore flexible, functions (such as splines) would need to be

used. However, these are not readily available in software packages that are used for Bayesian

analyses (such as WinBugs (Lunn, 2013; Lunn et al., 2000)). For this reason, we took a different

approach. We first generated a complete data set, enabling the use of linear regression in which

IV methods are well established. We acknowledge that linear regression assumes that times to

event (conditional on the explanatory variables) are normally distributed, which is unlikely

because of the right skewness of these data. We therefore extend the analyses to consider more

explicitly the hard-to-heal patients, who account for some degree of skewness.

2.4.1. Using a complete data set

To generate a complete data set, censored times to healing were imputed by assuming that

patients healed the day after they were censored. This will closely reflect the data but, as it is

unlikely that all individuals healed so close to censoring, it will systematically underestimate

healing times. Time to healing (the index i for patients is omitted from the text throughout),

y, was then regressed on treatment, x, and a set of relevant adjustment factors that have been

observed, A (the design matrix). The model that was implemented is described in equation (5):

yi ∼N.yÅ
i , σ/,

yÅ
i =µ1 +µ2 ·xi +µadj

·Ai for i=1, : : : , n:
.5/

When IVs are considered, a two-stage regression is needed (equation (6)). The first stage

predicts treatment allocation conditional on the instrument(s), z, and a set of relevant covariates,

B. The predicted probabilities pÅ are then used in a second-stage regression of time to healing

that conditions on the same set of covariates, B (the design matrix): stage 1,

xi ∼Bern.pÅ
i /,

logit.pÅ
i /=α0 +αIV

· zi +αadj
·Bi;

.6a/
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stage 2,

yi ∼N.yÅ
i , σ/,

yÅ
i =β0 +βIV

·pÅ
i +βadj

·Bi for i=1, : : : , N:
.6b/

We also explored treatment effect interactions (equations (7)). An interaction term will be

endogenous (i.e. subject to confounding) in describing health outcome, even if the covariate

is not itself endogenous. This means that we need to define two first-stage regressions (stage

1A and stage 1B) and, therefore, two valid instruments, one for each endogenous term, the

treatment variable x and the treatment interaction variable x ·w. However, if z is a valid (single)

instrument for the treatment variable and if the interaction variable w is exogenous then z ·w is

a valid instrument for the interaction term (Mullahy, 1994, 1997; Bun and Harrison, 2014). The

set of associated regressions when evaluating the treatment effect are then as follows (where C

is the design matrix): stage 1A,

xi ∼Bern.pa
i /,

logit.pa
i /=α0 +αIV

· zi +αIV intzi ·wi +αint
·wi +αadj

·Ci;
.7a/

stage 1B,

xiwi ∼Bern.pb
i /,

logit.pb
i /=γ1 +γIV

· zi +γIV int
· zi ·wi +γint

·wi +γadj
·Ci;

.7b/

stage 2,

yi ∼N.yÅ
i , σ/,

yÅ
i =β1 +βIV,a

·pa
i +βIV,b

·pb
i +βint

·wi +βadj
·Ci, for i=1, : : : , N:

.7c/

Standard non-informative normal priors were used (not shown).

2.4.2. Selection of variables for adjustment

By definition, relevant adjustment covariates are those that are associated with outcomes and

are imbalanced across treatment groups, i.e. the intersection of covariates that are associated

with outcomes and with treatment allocation. Given the absence of good epidemiological in-

formation in this area, and the concern that relevant predictors of healing cannot be identified

on our sample because of the potential imbalances in treatment assignment, instead of using

the intersection of the covariates that are associated with outcomes and treatment allocation

we used their union. Although precision may be lost by the inclusion of potentially irrelevant

covariates, accuracy may be gained by not missing important confounding factors.

A logistic regression with treatment received as the dependent variable was used to identify

factors that are associated with treatment assignment. A thorough model selection process was

devised. We started by regressing all available baseline covariates individually and selected those

leading to differences of 5 units in the DIC (Lunn, 2013) in relation to the null model. We then

evaluated models by using combinations of these covariates (2 by 2, 3 by 3, etc.) and selected

the covariate set in the model with the best DIC.

To identify determinants of healing and potential treatment effect modifiers, we looked at the

relationship of available covariates with healing by using the covariate selection process that was

described above. To avoid potential confounding, we did this on participants who used NPWT

and, separately, on those who did not use NPWT. To accommodate potential treatment effect

modifiers we fitted treatment-by-covariate models to the full data set by using all adjustment

covariates identified.
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2.4.3. Identification of instrumental variables z

A critical step in IV regression is the identification of instrument(s) z. On the basis of previous

applied examples in healthcare (Brookhart et al., 2006a,b), the project team defined a priori

potential instruments which related to clinicians’ practice patterns and stated preferences on

the use of NPWT. The expectation was that a patient is more likely to be treated with NPWT if the

clinician has a preference for it, and it was assumed that preference for NPWT is not associated

with time to healing except through the choice of treatment. Specifically, we considered as

a potential instrument a covariate describing whether the health professional had prescribed

NPWT to their previous patient. We also surveyed the health professionals on the cohort study

regarding their stated preferences for NPWT and relevant proxies (see the on-line appendix

3). Health professionals who thought that NPWT was better at managing these wounds, were

less expensive or represented better value for money were assumed to be more likely to use

NPWT.

Formal tests were conducted to assess the performance of each instrument (appendix 4 in

the on-line supplementary material), namely for evidence of endogeneity (the Durbin–Wu–

Hausman test (Greene, 2012)), evidence of the instrument set not being valid (the Hansen–

Sargan test (Sargan, 1958; Hansen, 1982)), evidence of a weak instrument set (the Stock and

Yogo procedure (Andrews et al., 2005)) and finally evidence of model misspecification (the

Pesaran–Taylor reset test (Pesaran and Taylor, 1999)).

2.4.4. Extended modelling approach to consider more explicitly the ‘hard-to-heal’ subpopulation

In this section we broaden the analyses to ignore the imputation and instead model the cohort

data in two parts: the first part describes the probability of healing within follow-up, ph, and

the second the expected time to healing for those who healed, xÅ. The first part used logistic

regression and the second part linear regression. Determinants of the probability of healing

could differ from determinants of time to healing. We implemented adjustment on observables

first (analogously to that described earlier) and then added the adjustment on unobservables by

using IV regression. The implementation of the IV regression is more complex as a treatment

effect is included in each equation and thus IVs are required for both.

As shown in equations (8), the predicted values for the probability of treatment allocation,

ph, are used in the two stage 2 regressions (where D is the design matrix): stage 1,

xi ∼Bern.pÅ
i /,

logit.pÅ
i /=α0 +α1 · zi +αadj

·Di;
.8a/

stage 2A,

hi ∼Bern.ph
i /,

logit.ph
i /=γ0 +γIV

·pÅ
i +γadj

·Di;
.8b/

stage 2B,

yh
i ∼N.yÅ

i , σ/,

yÅ
i =β0 +βIV

·pÅ
i +βadj

·Di, for i=1, : : : , N:
.8c/

The mean time to healing was evaluated from the stage 2 equations and from expert opinion

on the expected time to healing for censored observations. This was elicited according to best

practice (Kahneman et al., 1982; O’Hagan, 2006; Soares et al., 2018; Sullivan and Payne, 2011)

by asking three health professionals (who were involved in the cohort study) about their beliefs
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on the additional time to 50% and 90% of patients healed (the wording is reproduced in appendix

5 in the on-line supplementary material). The elicited quantities from each expert were used to

derive the parameters of a gamma distribution (a and b) and the logarithm of the gamma

parameter values were then pooled by using a standard multivariate normal formulation.

2.5. Inferences on health-related quality-of-life weights and costs

Given that the causal cost-effectiveness model assumes that NPWT affects overall HRQOL and

costs only via effects on healing, inferences here aim to quantify the difference in HRQOL and

costs between the unhealed and healed, i.e. the difference in the group means. Hence, models that

are implemented here are not adjusted for further covariates, but these are implicitly averaged

over so that the results can be considered to be representative of the population that is included

in the cohort study.

Observations of EuroQol 5 dimensions, EQ-5D, that were collected within the cohort study

at baseline and every 3 months thereafter up to 18 months follow-up were used. The EQ-5D

index score was computed by using a published valuation algorithm (Brooks and De Charro,

1996). A panel data approach (a mixed model with random intercept) to capture both within-

and across-patient variation was used to model change in the index score from baseline, using

a time-dependent indicator of whether the patient had healed or not as the only covariate.

Exchangeability across time within individuals was assumed. Flat uniform priors were used for

variance parameters, and others used vague priors (which are not shown here). The estimated

effect of healing on HRQOL was used to inform directly the term uh −uunh in the causal cost-

effectiveness model in equation (1).

As with EQ-5D, resource use was collected within the cohort study at baseline and at

3-monthly intervals, and included general practitioner visits, nurse visits, outpatient visits and

hospital admissions. Costs per patient were obtained by multiplying resource use by relevant

unit costs (2014 prices). Unit costs were obtained from the Personal Social Services Research

Unit, 2014 (Curtis, 2014), and National Health Service reference costs 2013–2014 (Department

of Health, 2014). Treatment costs were obtained from the British National Formulary (2014)

as well as specific costing information from the two centres (Hull and Leeds) on NPWT. A

detailed listing of the specific values of unit costs is shown in appendix 2, Table A2.1, in the

on-line supplementary material.

Many observations over the different time points were expected to have zero costs, and hence

a Bayesian two-part mixed model was used: the first part captured the probability of zero costs

and the second part the costs of those with non-zero values. A mixed gamma model with log-

link was used because of data skewness. Note that costs for patients healed are not necessarily

expected to be zero as time to healing collected within the cohort study refers to an index wound

and the patient may have other wounds.

3. Results

3.1. Effectiveness

3.1.1. Using the complete data set

Wounds were more likely to be treated with NPWT if the wound was larger, if there was more

tissue involvement and if the patient was an inpatient (the results are not shown here). Within at

least one treatment group, wound history (‘yes’ versus ‘no’ to having had an SWHSI before) and

treatment location (inpatient versus outpatient) were associated with healing. Of these, wound

history was identified as a treatment effect modifier.
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Table 1. Effectiveness results: complete data set†

Results for the following models:

Model 0 Model 1 Model 2 Model 3 Model 4

Instrument used, z None None None Previous Previous treatment
treatment with interaction

Equation Time to Time to Time to (Stage 2) time (Stage 2) time
healing healing healing to healing to healing

Adjustment None Observables Observables+ Observables Observables+

covariates interaction interaction

Area .> 25 cm2/‡ — 18.0 21.1 23.8 20.7
[−23:1, 58:0] [−20:3, 62:1] [29.8, 43.7] [−42:9, 80:4]

Treatment location§ — 45.3 43.8 48.9 48.2
[11.3, 79.2] [9.9, 76.8] [3.0, 63.8] [−2:7, 100:5]

Tissue involvement§§ — 31.9 26.6 33.8 31.0
[−1:5, 65:0] [−5:3, 58:7] [−8:0, 73:1] [−11:1, 71:7]

History — 7.5 −29:3 7.2 −9:1
[−28:4, 42:9] [−71:5, 12:1] [−29:5, 44:6] [−62:3, 39:3]

NPWT 108.0 73.2 41.9 56.9 53.8
[73.6, 142.2] [33.8, 112.8] [−1:1, 84:1] [−71:7, 192:8] [−81:9, 199:8]

NPWT×History — — 138.7 — 52.4
— — [56.9, 221.8] — [−70:4, 212]

Constant 116.8 81.4 92.7 81.1 88.1
[97.9, 135.2] [53.3, 110.0] [64.5, 120.8] [52.3, 109.1] [57.5, 118.6]

Observations 393 372 372 372 372

†Imputation using minimum date of healing.
‡Wound area above 25 cm2 (versus wound area below 25 cm2).
§Treatment location: inpatient (versus outpatient).
§§Tissue involvement, skin and subcutaneous tissue loss (versus skin loss).

Effectiveness results under the complete, imputed, time to healing data are summarized in

Table 1: model 0 is unadjusted (presented for completeness), model 1 adjusts for observables but

excludes the interaction term and model 2 includes wound history as an interaction term. The

results show that, after adjustment, patients using NPWT are still expected to take longer to

heal than those who do not use NPWT. Model 1 estimates an increase in time to healing of 73.2

days: a statistically significant result. Model 2 estimates that patients with a history of SWHSI

take 181 days longer to heal with NPWT, whereas patients without a history of SWHSI took

42 days longer to heal with NPWT.

Regarding the IV approach, previous treatment used by the treating health professional was

the variable that performed best (see appendix 4 in the on-line supplementary material). Us-

ing this instrument, however, still led to higher time to healing estimates (but not statistically

significant) for patients using NPWT—Table 1, models 3 and 4.

3.1.2. Extended analysis

The determinants of the probability of healing (stage 2A, equation (8)) identified were the body

mass index BMI and wound location. For time to wound healing, determinants identified were

surgery type (colorectal versus other surgeries), wound duration and diabetic foot wounds (stage

2B, equation (8c)). No evidence of relevant interaction terms was found.
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Table 2. Time to healing: extended modelling approach†

Results for the following models:

Model b0 Model b1

Equation (Stage 2A) P.heal/ (Stage 2B) time (Stage 2A) P.heal/ (Stage 2B) time
(odds ratio) to healing (odds ratio) to healing

Type of regression Logit Ordinary least IV, logit IV, ordinary
model squares least squares

Adjustment None None Adjustment Adjustment
set set

Area .> 25 cm2/‡ — — 0.52 27.7
— — [0.24, 0.99] [0.6, 54.5]

Treatment location§ — — 0.52 30.9
— — [0.22, 1.04] [9.2, 52.3]

Tissue involvement§ — — 0.50 11.4
— — [0.25, 0.91] [−8:1, 30:9]

BMI — — 1.04 —
— — [1.00, 1.09] —

Location—foot — — 0.34 30.1
— — [0.16, 0.64] [9.2, 52.3]

Surgery type — — — 13.1
— — — [−6:1, 32:4]

SWHSI duration — — — 2.3
— — — [0.6, 4.0]

Diabetic feet 42.8
[9.1, 76.3]

NPWT 0.35 69.0 0.59 46.0
[0.20, 0.57] [48.2, 89.1] [0.28, 1.12] [19.6, 72.5]

Constant 6.56 82.0 6.98 36.9
[4.70, 9.37] [71.9, 92.1] [1.62, 29.55] [12.4, 61.3]

Observations 393 354

†x1, x2, x3, v1, v2, v4 and v5 are adjustment covariates; w is the covariate interacted with treatment; t is the
treatment covariate; w · t is the treatment interaction; z is the instrument.
‡Wound area above 25 cm2 (versus wound area below 25 cm2).
§Treatment location: inpatient (versus outpatient).

The extended model predicted that NPWT was associated with poorer healing outcomes

(46 expected additional days to wound healing compared with the non-NPWT patients), using

previous treatment used by the health professional as the instrument (Table 2, model b1). This

result was not statistically significant.

3.2. Modelling of health-related quality-of-life weights and costs

There were 1484 observations of the EQ-5D index score over all time points and 1166 observa-

tions of disease-related costs (614, or 53.7%, had a zero value of costs). A descriptive summary

of results is shown in appendix 2, Table A2.2, of the on-line supplementary material. The for-

mal modelling of the EQ-5D index score (Table 3) shows that the effect of healing is small (an

increase of 0.055 in the index score for those who healed compared with those who did not) but

statistically significant (the credible interval does not include zero).

The modelling of costs shows that, overall, expected costs for unhealed and healed patients

were respectively £1124.4 and £258.9 per quarter (Table 3)—a difference of £865 attributed to
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Table 3. EQ-5D index score and disease-related costs (regres-
sion analysis)

Model Mean (£) 95% credible
interval

Expected EQ-5D, unhealed 0.091 0.036 0.146
Expected EQ-5D, healed 0:091+0:055 0.098 0.193

=0:146
Difference in EQ-5D 0.055 0.015 0.094

attributed to healing
Expected costs, unhealed 1124.45 916.9 1359.1
Expected costs, healed 258.91 208.1 317.7
Difference in costs attributed 865 674.2 1126.5

to healing

Table 4. Elicited evidence on additional time to healing from follow-up for censored patients

Elicited evidence Fitted values for parameters of a gamma distribution

50th 90th Shape, 1st Scale, 1st Mean (days), 50th percentile, 90th percentile,
percentile percentile and 3rd and 3rd 1st and 3rd (days), 1st (days), 1st

(days) (days) quartiles quartiles quartiles and 3rd and 3rd
quartiles quartiles

Expert 1 1044 3234 1.12 1290 1445 1031 3322
Expert 2 496 679 15.3 33.1 506 495 683
Expert 3 180 3650 0.23 5222 1201 176 3176
Pooled using formal — — 1.79 615 1038 559 1820

synthesis [95%
credible interval]

[0.03, 54.5] [241, 1615] [29, 39065] [0, 28011] [15, 37161]

healing (the standard error over the difference was £111.9). Further details can be found in

appendix 2, Tables A2.3 and A2.4, in the on-line supplementary material.

The estimated patient time on NPWT at any stage was 36.9 days on average (standard error

SE=6:0). The average per-patient cost of NPWT treatment is thus evaluated at £1180.0 (SE=

£189:2/.

The responses to the elicitation exercise highlight that experts believe that up to 10% of

these hard-to-heal patients may be unhealed 2–10 years after having exited the cohort study

(Table 4). The pooled gamma distribution across the three experts determines a median ad-

ditional time to healing of 1038.5 days. In the cost-effectiveness model, time to healing was

replaced by the patient’s life expectancy when patients were predicted to heal after their life

expectancy. Considering the gender split in our sample (56.4% were male), the life expectancy

for the sample is 83.9 years of age (Office for National Statistics, 2014).

Cost-effectiveness results, for the complete data set analyses, indicate that NPWT is less

effective and more costly, and thus would not be recommended for use in SWHSI patients—

Table 5. The results show no decision uncertainty, indicating that the confidence in the decision,

based on the data and assumptions of analyses, is high and that further research is unlikely to

change this recommendation.
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Table 5. Cost-effectiveness results†

Results for complete data set Extended
analysis,

Model 1 Model 2 Model 3 Model 4 model b1

With Without With Without
history history history history

Incremental QALYs −0:012 −0:029 −0:007 −0:008 −0:013 −0:001 −0:027
[0.005] [0.012] [0.004] [0.011] [0.017] [0.011] [0.017]

Incremental costs 1979 3573 1592 1749.4 2144.8 1187.0 3116.1
[316] [534] [330] [809.8] [1210.8] [844.9] [1025.9]

ICER Dominated Dominated Dominated Dominated Dominated Dominated Dominated
Probability 0 0 0 0.026 0.053 0123 0.002

CE(£20000)†
Probability 0 0 0 0.032 0.060 0.144 0.003

CE(£30000)†

†Probability that NPWT is cost effective at £20000/QALY or £30000/QALY cost-effectiveness thresholds.
Standard errors are in brackets.

The extended analyses indicated that for average patient characteristics (BMI=29; diabetes=

26%; cardiovascular or peripheral disease = 43%; smoker = 29%; wound area bigger than

25 cm2
= 24%; emergency surgery = 64%; location other than abdomen = 66%; open wound

planned=41%; history of SWHSI=25%) those treated with NPWT would be expected to heal

in 251 days whereas those not treated with NPWT would be expected to heal in 137 days. The

results indicate that NPWT is not cost effective for the treatment of SWHSI and, again, there

is very little uncertainty over this result (Table 5, model b2).

4. Discussion

Recent policy developments, in the UK and elsewhere, are increasingly establishing the use of

observational data to support decisions about the use of healthcare technologies, particularly

where significant clinical uncertainties remain. This paper uses an applied example where data

from an observational cohort study are used to evaluate the clinical and cost-effectiveness of

NPWT in the healing of SWHSI. We explored different ways of adjusting for confounding

and implemented adjustment for observables (using regression) and unobservables (using IV

regression). But the different modelling approaches produced similar results, all suggesting that

NPWT is neither effective nor cost effective compared with standard dressings. The IV approach

reduced the mean additional days to heal for NPWT patients compared with other treatments

from 112 (95% credible interval [94,141]) (unadjusted estimate) to 57 days with a wide credible

interval (95% credible interval [−72, 193]), potentially better reflecting the existing uncertainty

surrounding the effectiveness of NPWT.

Our analysis identified many challenges to the analysis of observational data that have not

been hitherto considered in guidance. A first relates to core definitions, such as of outcomes that

are affected by treatment or the definition of treatments themselves. Our analyses focused on

time to wound healing: the outcome that is considered clinically most relevant (Cullum et al.,

2015; Dumville et al., 2015). However, treatment may also affect other outcomes—it may reduce

the rate of wound infection or facilitate wound management—and failing to identify the relevant
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outcomes of treatment can misinform recommendations. In what concerns the definition of the

treatments, given the limited sample size our study pooled patients who received NPWT at

baseline and patients who received NPWT at a later stage (89 and 26 respectively). However,

patients receiving NPWT at inception can be argued to differ (and to have a different prognosis)

from those who received NPWT during follow-up. There may also be a potential bias from

the presence of time-dependent confounding, as patients who start NPWT after baseline are

likely to have been switched to NPWT as a result of previous treatment failure. In addition, we

have merged the different dressings that were used within the cohort into a single comparator

(the ‘non-NPWT’ group). This intervention ‘lumping’ may be a source of further heterogeneity.

All analyses of observational data are likely to have to make similar decisions on practical

grounds. Within observational data sets, heterogeneity is expected to be more pronounced than

in randomized controlled trials that define clear inclusion and exclusion criteria, determine

the intervention and how it is applied and often determine follow-on care. In our case-study,

heterogeneity in the patients who were recruited was extensive, e.g. in what concerns the location

of the wound, the surgery that led to the wound, its size at baseline and the setting of care.

However, the small sample size .n=393/ was insufficient to explore the consequences of existing

heterogeneity, i.e. to explore the implications of treatment within potentially relevant subgroups

of the population (such as open abdominal wounds versus diabetic foot and leg wounds).

A second aspect relates to the potential for the data set to show a lack of overlap, where

regions of the covariate space have relatively few treated or control units. If there is selection

into treatment, a lack of overlap (to a bigger or lesser extent) is expected. Inferences that are

made for such regions rely on extrapolation (Imbens and Rubin, 2015), with results being more

dependent on model specification and less on direct support from the data (Gelman and Hill,

2007). This is relevant for any form of adjustment, whether just on observed characteristics

and/or on unobserved characteristics through IV regression. Although some overlap is required

to enable meaningful analyses (Faria et al., 2015b) there is no clear guidance on how to establish

when overlap is a significant problem. Further research is needed to understand how alternative

methods (e.g. regression adjustment, matching or inverse probability weighting) could capitalize

on the underlying overlap issue (Gelman and Hill, 2007). Our case-study highlighted that, in

practice, it may even be difficult to identify the sources of lack of overlap, especially when no

single covariate arises as meaningful.

A third aspect relates to the adjustment on observables. The fact that health outcomes and their

determinants were not known a priori in our case-study, and that the mechanism for selection

was also not known, meant that it was difficult to identify the appropriate adjustment set. In

terms of covariate selection, we opted for an information theoretic approach and considered

models with different combinations of covariates to identify the best fitting one according to the

DIC. Because these methods are computationally intensive (even for a relatively small number

of covariates), within this study we developed a thorough and protocol-driven variable-selection

process that can be generalized and used in any other application. There are various alternative

approaches to variable selection in the literature, and further research could explore these in

the context of this case-study. We highlight the Bayesian spike and slab, that defines mixture

priors for the covariate effects (Bayarri et al., 2012; O’Hara and Sillanpää, 2009) and hence

integrates uncertainty over covariate selection in the model estimates. In terms of methods of

adjustment for observables, the use of an adjustment regression approach facilitated the further

application of the IV method to address unobserved confounding. Although there is a range

of alternative methods of adjustment, such as matching approaches, their relative performance

is as yet unclear (Faria et al., 2015; Kreif et al., 2013), particularly with small sample sizes and

poor overlap.
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Another set of challenges relates to the application of IV techniques to control for unobserved

confounding. Such methods depend on finding good and reliable, but difficult to validate,

sources of exogenous variation (instruments) (Faria et al., 2015). More research is needed in

defining instruments that are relevant in the context of health technology assessment, and on

extending analyses to outcomes such as time-to-event data.

Also, in our case-study we used a Bayesian context for inferences, which we believe has clear

advantages. It enables flexibility in specifying the model according to what is believed to be

plausible without being limited to linearity or normality assumptions. Although in this work

we used linearity and normality to describe time to healing, an important extension for future

work is either to consider a log-normal transformation or to use time-to-event distributions and

to explore potential non-linearity. Another important advantage is where the sample is small

or the instruments weakly related to treatment assignment, in which case Bayesian methods are

thought to return more accurate estimates of causal effects (Crespo-Tenorio and Montgomery,

2013). This is crucial, as in this area of research it is likely that the sample size is limited. However,

Bayesian research on IV models is limited and recent, relative to the broad literature from the

classical (i.e. frequentist) statistical perspective. An informal search (without date restriction)

identified only 24 methodological papers focusing on aspects of Bayesian IV regression—one

provides an overview (Kleibergen and Zivot, 2003), 16 develop Bayesian estimators for particu-

lar model specifications (Hollenbach et al., 2019; Kato and Hoshino, 2018; Shi and Tong, 2017;

Li and Lu, 2015; Lopes and Polson, 2014; Crespo-Tenorio and Montgomery, 2013; Kato, 2013;

Zellner et al., 2014; Chamberlain and Imbens, 1996, 2003; Wiesenfarth et al., 2014; Kobayashi

and Ogasawara, 2016; National Cancer Registration and Analysis Service, 2016; Conley et al.,

2008, 2012; Burgess et al., 2010), one focuses on variable selection (Sabnis et al., 2019) and six

consider aspects of the validity of instruments (Kraay, 2012; Koop et al., 2012; Eicher et al.,

2009; Lenkoski et al., 2014; Karl and Lenkoski, 2018; Henry et al., 2018). It is important to

highlight that none provided generic software code of the model or for testing the validity of

instruments.

Future methodological research is needed to help to guide the many practical challenges that

are faced. This is important for analysts, but crucial for policy as it may improve the confidence

that decision makers place in the results of such analyses. Even with our case-study indicating

that NPWT should not be recommended for the healing of SWHSI and that further research

is unlikely to change this recommendation, the National Institute for Health Research in the

UK funded a follow-on pilot trial (which is likely to report in 2022). Such a lack of confidence

in analyses of observational data may become a problem when these types of analyses are to

be used more widely to inform system level decisions such as those required within the Cancer

Drugs Fund (Grieve et al., 2016).
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