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Abstract—This work focuses on building a Forward-Looking
sonar simulator capable of generating large volumes of ground
truth data to test algorithms such as: novel image registration
techniques for trajectory estimation, three-dimensional recon-
struction or to be used as training data for machine learning
algorithms. The simulator is capable of generating realistic data
sets of images and providing ground truth data with the exact
position and attitude of the sonar related to objects in a test
scenario. The sonar simulator is developed using the Unity
software platform. This work also shows an example application.
Simulated image data sets for different sonar trajectories and
seabed textures were created. These data sets are used by an
attitude-trajectory estimation method and a quantitative analysis
of the method is presented.

Index Terms—forward-looking sonar, image registration, sonar
simulator

I. INTRODUCTION

In recent years there has been a growing interest in un-

derwater environments and considerable effort in creating and

developing technologies to explore and exploit them. Accurate

detection, identification and localization of underwater objects

is difficult due to the conditions experienced underwater,

such as poor visibility, poor propagation of radio waves and

constant motion of the water body.

The utilization of acoustic imaging techniques presents

advantages in scenarios where optical cameras have a poor per-

formance due to scarce illumination or turbidity of water [1].

Two-dimensional (2D) Forward-Looking Sonars (FLSs) can

generate high-resolution images. Regardless the technical

specifications defined by each manufacturer, the image for-

mation process is mostly identical [2]. This type of image

is created when an acoustic pulse is emitted from the sonar

and reflected by objects in the scene. The reflections are

collected by a sensor in the sonar from different azimuth (θ)

and elevation (φ) directions, revealing the distance, position

and acoustic reflectivity of the objects. The information is

compressed into a 2D image by losing the elevation dimension

in the process (Fig. 1). Using polar coordinates, the intensity

of a pixel on a sonar image can be represented by [3]

Is(r, θ) =

∫ φ2

φ1

β(φ)Vs(r, θ, φ)Ds(r, θ, φ)dφ, (1)

Fig. 1: Image formation geometry.

where a single pixel is formed by the contribution of all

the intensities from points in three-dimensional (3D) space

(r, θ, φ) over the aperture [φ1, φ2]. β(φ) is a function related

to the beam pattern, Vs(r, θ, φ) is a measure related to objects

reflectivity and Ds(r, θ, φ) =
~v·~nrθφ

‖~v‖‖~nrθφ‖
, is the cosine of the

angle between the direction of the beam ~v and the surface

normal ~n at point (r, θ, φ).
The development of new models and techniques based on

sonar imaging often requires large collections of data taken

from a controlled test scenario and accurate knowledge of

position and attitude of objects and sensors in the scene. For

that reason underwater simulators have been developed where

all these features can be easily manipulated and tuned.

Simulating aquatic environments can be a challenging task.

The process of recreating realistic data sets becomes complex

when including such factors as object motion.

In [4], a novel open source simulator is presented. It uses the

OpenSceneGraph (OSG) programming interface and specialist

libraries for realistic underwater rendering. This simulator

uses Robot Operating System (ROS) for interaction between

the user, vehicles and sensors. The authors created different

simulation sensors, but none of them is for an imaging sonar.



In order to create test samples for a 3D reconstruction algo-

rithm, [5] built an imaging sonar sensor using the underwater

simulator from [4]. The simulator uses a ray tracing technique

which obtains the angle of incidence between the sonar beam

and the normal to the object (Lambertian model [6], [7]). It

considers a constant reflection coefficient for all the objects,

i.e., the intensity of the reflected beam is only affected by the

angle of incidence and not by the reflectivity of the material.

The beam pattern is shaped as a sinc function and noise is

added according to a noise model for the BlueView P900

imaging sonar [8]. Although this simulator is open source

software, one of difficulties in its use is the background

knowledge required to operate it, specifically, as it requires

advanced skills in C++, Python and XML languages besides

some experience with ROS. Furthermore, it only works on

Linux systems.

The Rock-Gazebo framework developed in [9] is used by

[10] to build a simulator for a Mechanical Scanning Imaging

Sonar (MSIS) and a FLS. The simulated sensor emits pulses

into the scene and stores three parameters in memory using

the 8-bit RGB channels: (i) the distance to the object; (ii)

the intensity of the reflected signal, which is proportional to

the incidence angle of the beam and normal to the surface;

and (iii) the angle of arrival. Speckle noise (modelled by a

Gaussian distribution) is applied to the final image. However,

noise is added to every pixel with no distinction of the origin

of the pixel, e.g., if it was generated by an acoustic shadow

or an object, they are treated equally.

The work [11] proposes an approach to development of

an imaging sonar simulator that is focused on adding three

types of distortions to the images. It considers the speed of

sonar motion, the navigation course deviation and the optical

noise on the pixels of the image. The imaging procedure

uses the ray tracing approach and no environment conditions

are considered such as different values of reflectivity on the

surface of the objects.

Another image simulation approach consists in a less con-

ventional combination of ray tracing with a frequency domain

algorithm [1]. Similar to other methods, three parameters are

collected to construct the image: (i) Euclidean distance from

the source to points in the scene; (ii) reflected intensity; and

(iii) a number associated with each of the polygonal surfaces

that make the objects. The number is used to avoid overlapping

(summation) of rays that return from the same area when

producing the image. This reduces the computational cost.

However, if an object presents a large surface or a low

number of polygons, most of its surface will be ignored. There

is a risk of missing information and producing incomplete

images. Another feature to remark is the angle ray separation

which can choose one of two configurations: (i) the same

angular separation or (ii) the same separation on the seabed.

In a similar way, another scanning strategy is described in

[12]. Rays in elevation angle are non-uniformly distributed to

scan only the points on the surface of the objects that offer

more information of the shape. However, this ray separation

approach may require greater computation when analyzing the

object shape to chose the right scanning pattern.

The simulator in [13] uses two methods for sonar imaging:

(i) a ray tracing method and (ii) a method that uses the rays to

create tubes for modelling the propagation of acoustic waves.

When a tube is emitted from a transmitter, it produces a

footprint on the surface of the objects. The intersection of two

or more footprints from different tubes represents one path

of the ray traveling in the space, allowing the consideration

of multipath in simulations. This simulator also defines two

concepts for textures in the objects that, when scanned, help

to produce more realistic images: macro-textures, which are

small deformations in the surface of the objects, and micro-

textures, which are represented by variations in the color or

image attached to the surface of the object.

Summarizing the features of previous works and considering

that the aim of the new desired simulator is to supply large

volumes of samples to feed image registration techniques, the

following characteristics are needed to be considered:

• Reflectivity: It should consider material properties on the

surface of the objects in the scene. Therefore macro and

micro-textures similar to that in [13] should be used.

• Angle of incidence: Total reflectivity should consider the

angle between rays and surface of objects.

• Noise: Model of noise that is present on FLS images.

It should be able to be adapted or customized to the

simulated sonar.

• Computational and time consuming cost: Since it is

expected to generate large volumes of data.

• Adaptability: It can be easily modified to simulate

different types of FLS.

• Mobility: Sonar motion paths must be set and controlled

easily in order to scan the scenes from multiple points of

view.

• Multi-platform: The simulator can be used in different

operating systems.

The sonar simulator proposed in this work considers aspects

mentioned above in order to produce realistic sonar images

from underwater environments. The generated data set can be

used for testing image processing techniques while having a

low computational cost. Equal separation between rays is used

to reduce the processing time when scanning the scene rather

than a non-equally spaced scheme. The present work focuses

on building an imaging sonar simulator using the increasingly

popular and low-cost platform Unity [14]. Unity is a well-

tested development platform capable of creating 3D scenarios,

providing a large programming toolset, an intuitive workspace

and realistic manipulation effects controlled by its own physics

engine [15]–[17]. The physics engine is a software program

that enables simulating motions and reaction of objects under

the laws of physics, in a similar way to the real world. Unity

initially focuses on the creation of videogames. However, it has

also been used in education, medical, animation, construction

design and industrial applications [18]. Project testing and

editing can be done on-the-fly, i.e., while a simulation is

running. Programming codes are written in C# language.



Fig. 2: Image formation process.

They can operate directly with the objects in the scenes

allowing a highly efficient management of the environment.

Moreover, Unity platform can be run on Windows, Mac and

Linux operating systems.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the design of the imaging sonar simulator.

Section 3 presents results and evaluation of an attitude-

trajectory estimation method using data sets generated by the

simulator. Finally, conclusions are given in Section 4.

II. SONAR SIMULATOR DESIGN

The sonar simulator is divided into three parts. The first

part emulates the underwater scenario, defining the sonar and

its motion and acquiring the data required to produce images.

The second part processes the information collected in the first

part to generate a set of images. The third part adds noise to

the images. The whole process is summarized in Fig. 2.

A. Generation of the underwater scenario and data acquisi-

tion

The first part is based on the Unity platform. The simulator

developed in this work is based on a ray tracing technique

where a series of rays are emitted from the sonar at certain

angles that then collide with the objects in the scene. When a

ray hits an object, it stores in memory three features needed to

produce the image: (i) Euclidean distance from the sonar to the

collision point, i.e., the length of the ray when it hits an object;

(ii) the pixel color information (in RGB color system) of the

point being hit. The color represents a measure of the acoustic

reflectivity of the material; and (iii) the angle of incidence

between the ray and the vector normal to the surface of the

object following the Lambertian model.

Multiple rays are equally spaced in elevation angle over

a beam (Fig. 3a). In order to obtain more realistic imagery

within a low simulation time, a trade-off between resolution

and computation/storage cost can be established.

The sonar field of view (FOV) is formed by a set of

beams uniformly separated in the azimuth aperture (Fig. 3b).

(a) Multiple rays forming a beam. Only seven rays are shown here but
a larger number is used to generate images, e.g., 700.

(b) Multiple beams forming the FOV of the sonar. For demonstration
purposes only four beams are displayed, the exact number NB depends
on the sonar being simulated. λ represents the azimuth angle or aperture,
ψ the elevation angle and Rmax is the maximum measurable range
from the sonar.

Fig. 3: Description of the sonar FOV composition.

The number of beams NB and the aperture angle λ are set

according to specifications of the sonar that is emulated. The

elevation angle ψ, the number of rays per beam NR, the

maximum measurable range Rmax, position and orientation

of the sensor, defined by six degrees of freedom are defined

in a Unity dashboard created to control the sonar.

The motion-scanning algorithm of the sonar defines a tra-

jectory by specifying start and end points in the 3D scenario

(Pi = [xi, yi, zi] and Po = [xo, yo, zo], respectively) and

the number of image frames to be acquired N . N points

equally spaced on the trajectory are calculated and an image is

obtained from each of these points. The sonar can rotate while

it moves by specifying initial and final orientations angles

(Proti = [αi, γi, ǫi] and Proto = [αo, γo, ǫo], respectively).

For each position in the trajectory, an orientation angle is

calculated using the points Proti , Proto and N . For simplicity,

these angles are also equally spaced.

For each position, the sonar stores the data that was col-

lected by the rays in three matrices of size NB × NR. The

first matrix R contains the Euclidean distance from the sonar

to each of the points hit by the rays. The second matrix C

stores a value between 0 and 1. For this simulator, only red

component from RGB baseline is saved, this color information

is used as a measure of reflectivity on the surface of the object,

the redder a pixel is, the more reflective it is, and if it is darker,

it absorbs more energy and its reflectivity is low. The third

matrix L keeps the cosine of the angle of incidence between

the ray and a vector normal to the surface of the object.

These matrices represent the functions in (1), where Vs(r, θ, φ)
and Ds(r, θ, φ) correspond to C and L, respectively, and for

simplicity, the beam pattern β(φ) is set to one. R is used to

map the information of the objects to the correct position in

the image. The information about the position and orientation

of the sonar at each point of the trajectory is also stored to be

used as the ground truth.



B. Image formation

For each position in the trajectory, an image is generated

from the data acquired in the previous step. This process is

described for a single frame, but it is repeated for each of

N desired images. A 3D matrix I of size NR × M × NB

is created (elevation, range and aperture, respectively). M is

defined by the emulated sonar and represents the number of

different possible range values, i.e., the number of pixel rows

in the final image. Initially, the matrix is filled with zero values

and only some of its elements are replaced by an intensity

value at specific coordinates that are defined by

I

(

⌈

R(i, j)M

Rmax

⌉

, i, j

)

= C(i, j)L(i, j), (2)

where i and j are indexes that represent coordinates in the

image matrix and ⌈a⌉ is the ceiling operation that returns the

nearest integer greater than or equal to a number a.

The matrix I is compressed into a square matrix to create

the final image Ĩ of size M ×NB . Compression is performed

by adding all the values in each single column:

Ĩ(m,n) =

NR
∑

k=1

I(k,m, n). (3)

Therefore the elevation axis of the 3D matrix is lost and only

aperture and range axes remain. If resulting values from the

summation exceed a threshold, the value is truncated to that

threshold, e.g., 255, since pixel values in this type of images

have a scale from 0 to 255 (from dark to bright, respectively).

C. Adding noise to images

After the image has been produced, its pixels are distorted

by adding noise according to a model using the following

criteria. If the pixel lacks the information about objects in

the scene, i.e., it is of a zero value, then it is considered to

be produced by an acoustic shadow or the water column and

being affected only by electrical noise inherent to the sonar;

thus the pixel value is modified according to a Gaussian distri-

bution model [19]–[21]. Otherwise, if the pixel created using

the information from object surfaces, the Rayleigh distribution

is applied, since it corresponds to a surface represented by

many small scatterers [20]–[23]. The parameters of Gaussian

and Rayleigh distributions are chosen according to measures

obtained from real imaging sonar devices. The result of adding

noise is the final image Î . Examples of simulated images

obtained can be seen in Fig. 4.

III. IMAGE REGISTRATION USING THE SIMULATED IMAGES

This section presents results of applying an image regis-

tration method on multiple data sets of simulated images.

Image registration is a process that compares a reference image

with one or more images of a scene from different points of

view at different moments in order to obtain information of

the change in the imaging conditions [25]. This paper uses

the method for trajectory estimation and mosaicing developed

Fig. 4: 3D testing scenario and resulting images acquired from
positions A, B and C in front of a cannon, barrel and boat respectively,
imitating DIDSON 300 sonar features [24].

in [26], which is capable of estimating pixel displacements

between two frames with subpixel accuracy. The displacement

information is used to estimate the attitude and trajectory of

the imaging sonar sensor. In this estimation, three parameters

of the sensor motion are calculated: rotation around z axis and

translation in x and y axes according to directions displayed

in the coordinate system of Fig. 2. Finally, a mosaic is built

using the image data set and the attitude-trajectory estimates

are obtained. This method was applied on the data sets for

validating its performance using the ground truth provided by

the simulator.

The data sets were constructed using three different scan-

ning trajectories over a scene defined as follows.

1) Alternation between translation in x and y directions: 250
frames along 5 m in y direction, 100 frames along 1.2 m

in x direction, 250 frames along 5 m in −y direction, 100



Fig. 5: Testing scenario seen from above. Gaussian noise as seabed
texture. Red arrow represents the trajectory of the sonar moving 5 m
in y axis and 2.3 m in x axis with no rotation.

frames along 1.1 m in x direction and 250 frames along

5 m in y direction, 950 frames in total.

2) Translation in xy direction: 300 frames along 2.3 m and

5 m in x and y directions respectively.

3) Rotation over z axis: 300 frames over 120◦ around z axis

on the same position.

The testing scenario can be seen in Fig. 5. It was built using

3D geometric shapes. Four cuboids of size 50× 50× 2.5 cm

forming a “T” shape and four pairs of parallel bars enclosing

the cuboids were set over the seabed. This pattern was chosen

since it is easy to recognize when the mosaic is built.

Six seabed textures (see Fig. 6) were set on the bottom,

which, when combined with the three trajectories, make a total

of 18 data sets. Three of these seabed textures were produced

using random generators: the first one was produced by a

Gaussian noise generator with a pixel value independent from

its neighbours. Two textures were produced using a Perlin

random process [27], [28], which generates natural appearing

textures. An image produced using this method provides a

correlation between a pixel and its neighbours that can be

seen as smooth transitions. For this work, the Perlin textures

are produced with a low and a high correlation. The other three

seabed textures were created by taking photographs from real

surfaces. The purpose of using real surface textures is to obtain

realistic representations of the seabed on the images.

The sensor to be simulated is the DIDSON 300 [24] with

FOV of 29◦×14◦ (aperture and elevation angles, respectively),

96 beams, image size of 512 × 96 pixels and intensity range

between 0 and 255. The images generated by the sonar

are truncated in the range to zoom into the objects that

appear in the scene only. This interval is chosen because it

(a) Gaussian noise (b) Perlin with high correlation

(c) Perlin with low correlation (d) Photograph of real surface 1

(e) Photograph of real surface 2 (f) Photograph of real surface 3

Fig. 6: Seabed textures used in the simulator.

encloses the area in front of the sonar where the objects are.

Noise parameters are set according to measurements from real

images in [29]. The Gaussian noise added to the pixels in the

image has a mean of 35 and a standard deviation of 8, whilst

the Rayleigh distribution has an offset of 50 and its peak is

reached at 70.

Fig. 7 shows the absolute error of motion estimates, which

represents the difference between the estimated and actual dis-

placement between two consecutive images. This was obtained

using the Gaussian seabed texture and the sonar trajectory

type 2.

Tables I, II and III summarize the root mean square error

(RMSE) obtained for each of the data sets for the three types

of motion. These results show that the trajectory estimation

method has a higher performance when the bottom texture

presents more independence between pixels, which is the

case of the Gaussian noise texture. The image registration

process identifies motion of a pixel from one frame to another.

However, if a pixel value is very similar to the values of pixels

around it and considering that noise has been added, it is



Fig. 7: Absolute errors from displacement estimation between con-
secutive frames for data set with motion motion type 2 and Gaussian
noise in the seabed texture.

possible that the displacement is estimated inaccurately. This

problem appears in textures with the Perlin noise, where pixel

values have a dependance to their neighbours. Another point

to remark is that estimation is more accurate in x translation

compared to y translation. This is due to the similarity between

y translation and z rotation when pixels move from one point

to another between consecutive frames in the polar coordinate

system. In this system, when the object pixels change their

positions in x direction, they move vertically. However z

rotation of objects can be seen as horizontal movement while

y translation can be seen as a rotation as it is shown in

Fig. 8. Therefore, it is more likely that the image registration

algorithm interprets the sonar movement in y direction as a z

rotation, producing a higher estimation error.

A mosaic is built when the attitude-trajectory estimation is

completed. Fig. 9 shows an example of such a mosaic for the

data set with the Gaussian seabed texture and motion type 2.

IV. CONCLUSIONS

The imaging sonar simulator presented in this paper is able

to generate realistic data sets of images from 3D scenarios,

exploiting capabilities of the Unity platform. Sonar features

such as FOV, maximum range and number of beams can be

adjusted in accordance with real sensors. A large number of

(a) (b) (c)

Fig. 8: Sequence of displacement of an object between image frames
in polar coordinates. When the sonar moves in y direction, the objects
in the images seem to rotate rather than displacing horizontally.

TABLE I: Errors in trajectory with alternation between x

translation and y translation

Seabed RMSE from motion estimation

texture x-trans (mm) y-trans (mm) z-rot (deg)

Gaussian noise 0.95 4.40 0.01

Perlin high correlation 3.33 11.86 0.06

Perlin low correlation 2.45 9.03 0.04

Photograph 1 3.93 12.29 0.05

Photograph 2 4.83 15.98 0.05

Photograph 3 3.95 13.78 0.05

TABLE II: Errors in trajectory with xy translation

Seabed RMSE from motion estimation

texture x-trans (mm) y-trans (mm) z-rot (deg)

Gaussian noise 0.86 2.27 0.03

Perlin high correlation 1.70 6.19 0.08

Perlin low correlation 1.28 4.29 0.06

Photograph 1 2.49 5.93 0.07

Photograph 2 4.69 12.59 0.10

Photograph 3 4.24 11.56 0.09

TABLE III: Errors in trajectory with rotation around z axis

Seabed RMSE from motion estimation

texture x-trans (mm) y-trans (mm) z-rot (deg)

Gaussian noise 2.88 10.63 0.31

Perlin high correlation 1.13 13.06 0.41

Perlin low correlation 1.17 13.39 0.38

Photograph 1 0.55 11.00 0.39

Photograph 2 0.71 7.55 0.41

Photograph 3 0.78 7.44 0.41



Fig. 9: Mosaicing of a data set of 300 simulated frames. Red line and
green lines represent estimated and simulated trajectories respectively.
Dark blue and cyan arrows represent the attitude of the sonar for
estimated and simulated data, respectively.

different imaging sonars can be simulated using this tool as

long as their parameters are known and set on the simulator.

Also, other noise models can be implemented and customized

for different sonars. Attitude and position parameters of the

sonar are provided by the simulator, allowing the simulated

images to represent a ground truth, e.g., for image registration

techniques. As an example, when the images were used as data

source for the attitude-trajectory estimation and mosaicing, it

was possible to make a quantitative analysis of this method.
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