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Carbon mitigation in domains of high consumer lock-in

Abstract

As climate policy needs to address all feasible ways to reduce carbon emissions,ahénerieasing
focus on demand-side solutions. Studies of household carbon footprints have a#otagohs during
production to the consumption of the produced goods, and provided an understanding of what products
and consumer actions cause significant emissions. Social scientists have investigaatiitutns,
social norms, and structural factors shape salient behavior. Yet, there is often a disz®engssion
reductions through individual actions in the important domains of housing andtynaiglichallenging
to attain due to lock-ins and structural constraints. Furthermore, most draehagsearch focuses on
actions that are easy to trace but of limited consequence as a sharbeshiggeons. Here we study
specific alternative consumption patterns seeking both to understand the behavioralcodalst
factors that determine those patterns and to quantify their effect on éaotjanints. We do so utilizing
asurvey on consumer behavioral, attitudinal, contextual and socio-demographi ifa&bor different
regions in the EU. Some differences occur in terms of the driving forcasdbleéhaviors and their
carbon intensities. Based on observed differences in mobility carbon footprivgs households, we
find that the key determining element to reduced emissions is settlement dehséycar ownership
rising income and long distances are associated with higher mobility fastgtor housing, our results
indicate that changes in dwelling standards and larger household sizes may reduaseeaisrgypd the
reliance on fossil fuels. However, there remains a strong need for incentives d¢e tkedwcarbon
intensity of heating and air travel. We discuss combined effects and the pm#cgfin overcoming

structural barriers in domains where consumers as individuals have limited agency.

Keywords

Climate change mitigation, lock-in, consumer behavior, carbon intensity, determinants, policy
measures
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1. Introduction

Scientists and policy makers are increasingly calling for demand-side solatiangtifjating climate
change (Creutzig et al., 2018; Wood et al., 2017). Shelter, transport, food, and masdfaciducts
have been identified as high-impact consumption domains (Hertwich and Petersydff9alet al.,
2016) and mitigation actions and targets have been suggested (Girod et al., 2014). Hakgetieg
consumer behavior poses its own challenges (Barr et al., 2011; Dietz 2808);,Kl6ckner, 2015)
Behavioral scientists have questioned the presumption of control consumers haveheiver t
consumption in the context of systematic barriers (Akenji, 2014; Sanne, Ed0Rpnmental footprints
depend to a significant degree on external factors such as infrastructteetaradogy, institutions (e.g.
social conventions, power structures, laws and regulations), and unsustainable hahitg,lcokaitns
(Jackson and Papathanasopoulou, 2008; Liu et al., 2015; Sanne, 2002; Seto et al., 2016). $sch lock-i
reinforce existing social structures and may hinder a transition towardssostainable systems (Geels,

2011), although opportunities for positive lock-ins have also been explored (Urgez\airah, 2018).

Here we explore the carbon footprints of mobility and housing, and the fatabnmay explain their
variation. Mobility and shelter stand out among the highest contributors thotieehold carbon
footprint (CF) in the EU (lvanova et al., 2017, 2016), making their de-carliomza high priority.
While previous work has addressed some of these concerns in parts, this study intbgrates
investigation of attitudinal, structural and socio-economic factors of consumgbiceces and their CF

in four EU regions, thereby enhancing policy relevance of the results.

The importance of context for behavior has been a longstanding theme in consumer bebeation r
where studies have broadly explained behavior through individual and contextual (Bciorst al.,

2016; Newton and Meyer, 2012; Stern, 2000). According to the low-cost hypothesis, attitudinal
variables have less influence when a behavior is too difficult to perfegm due to high structural
barriers). Mobility and energy behaviors are identified as typical-¢tigh domains (Diekmann and
Preisendorfer, 2003; Kléckner, 2015) as complex decisions, such as location of reaidtregicle

ownership, define the use-patterns for a long time (Kléckner, 2015).

Most research effort on sustainable consumption focuses on either the physical dimension (tgchnolog
supply chains, urban form) or the social dimension (attitudes, behavior) (Ba2@§t®y Thomsen et al.,
2014). For example, studies on behavioral drivers generally do not introduce tootmiirols and
instead rely on measuring pro-environmental behaloxies. This may introduaebehavior-impact

gap (Csutora, 2012) and lead to targeting the most visible, or eagy thath the most environmentally
relevant behaviors(Kléckner, 2015). In contrast, studies that focus onlg éectimical characteristics
leave out important factors for consumption change, such as attitudes, habits, arnofddgblasticity

(Dietz et al., 2009; Thggersen, 2013). The importance of socio-economic effects sxgemaditure

and income (lvanova et al., 2017; Minx et al., 2013; Wilson et al., 2013a), household size (Ala-Mantila
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et al., 2014; Minx et al., 2013; Wilson et al., 2013b), urban-rural typology (Alaislatal., 2014;
Heinonen et al., 2013; Minx et al., 2013), demographics (Baiocchi et al., 2010) and cahguvihinx

et al., 2013; Ornetzeder et al., 2008) for the household carbon footprint hasibely discussed (see

Sl table 15). However, prior work differs in fundamental ways in termsibfof analysis (lvanova et

al., 2017, 2016), consumption detail (Newton and Meyer, 2012), and geographical coverage (Heinonen
et al., 2013; Minx et al., 2013).

Here we examine individual-level behavior and carbon intensity determinants sgparaiteth is not

a common practice; we do so to uncover potential differences in their diiwvsesf Determinants may

also be significantly interrelated, e.g. with urban cores exhibitifgrdiit incomes and household types
(Ottelin et al., 2015). Therefore, we explore combined effects and their ifdoigplications.
Furthermore, w evaluate potential emission trade-offs from other consumption areas. Focusing on a
single consumption domain may overlook substantial rebound effects, e.g. where l@iermgsions

in one domain causes emission increases in another (Hertwich, 2005; Ornetzatler2608;
Wiedenhofer et al., 2013). For an adequate mitigation of greenhouse gas (Gid&dresrirom the

consumption side, we argue that several main facets need to be considered:

¢ lifecycle emissions from various consumption domains
e technical and social dimensions of mitigation potential

e lock-in effects beyond the individual’s control

Our study is the first one, to our knowledge, to combine these considerations iryais ariacarbon
emissions that integrates consumption-based accounting with determinantsistagieticy-relevant

framework.

2. Data and method

We examined consumption patterns through a survey on behavioral, attitudinal, comrtedtsatio-
demographic factoris a survey sample of four European regidgbalicia (Spain), Lazio (ltaly), Banat-
Timis (Romania) and Saxony-Anhalt (Germany). The total sample included 1,617 responddnitd) of
1,399 (85%) and 1,407 (87%) provided enough detailrfability and shelter-specific calculations
respectively. Details about survey design, sampling and distribution caaruif the “Survey design”

section of the Supplementary information.

Below we present the carbon footprint calculator used as an input to our statistical afila¢ydissign

of the calculator was informed by prior product-level input-output assessment®usthold
consumption (lvanova et al., 2017, 2016) and mixed approaches to cover emissions andabehavior
aspects (Birnik, 2013; West et al., 2018Je focus on the domains of mobility and shelter, with an
additional estimation of food and clothing consumption, to capture most of tik éatissions of

European households and enable mitigation discussions in relevant low-agency domains. For survey
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95  background information, uncertainty and validati@rfootprint calculations, see the “Carbon footprint

96 calculations in the SI.
97 2.1 Mobility footprint calculations

98  We collected data on transport means and distance of regular return tripdingpelctive transport

99  (walk, bicycle, e-bicycle), private motorized transport (car, motorbike) and prastsport (bus, tram,
100 underground, train). Regular travel distance (bottom-up) was validated with the aopnaiwn
101  estimate that car users provided. Additional adjustments were made in th@fceagsooling. We
102  assumed regular travel of 35 weeks/year for work purposes and 40 weeks/yeasaterurposes.
103  Observations with annual land travel above 80,000 passenger km (km)/year (or 220 kvefgay)
104 treated as outliers, conformingthe upper limit of the top-doweartravel range. Air travel was based
105 on annual number of short- and long-haul return flights with assumed distance ofa2d380000
106  km/return trip, respectively. Se®l “Carbon footprint calculations” for a detailed discussion of the
107  distance assumptions. We treated observations with a number of return flights above $8ar as

108 outliers.

109  The total carbon intensity of mobility results from dividing the nigbfbotprint by the total distance
110 travelled. Lifecycle (indirect) emissions from cratibegate and direct tailpipe emissions were based on
111 lifecycle assessment (LCA) studies and the Ecoinvent database (GWP100 iseg{a®senger km
112 (pkm)) (Frischknecht et al., 2005). The emission intensity of electricity mx eonsidered where
113  relevant (GWP100 in kgC@g/kWh, Ecoinvent). We utilized car- and fuel-specific intensities where
114  additional car and fuel data were available. We allocated emission factonsdepending on flight
115  length (see Ross, 2009). Figure 1 visualizesample’s mobility CF as a function of distance travelled

116  (x-axis) and carbon intensity (y-axis).

117  The mean and median of annual land-based travel was about 9,500 km (26 km/day) and 41900 km (
118  km/day), respectively (table 1). About 13% of the land-based distance was traesiled,, with an

119  average daily return trip of 6 km (for sub-sample estimates seaid iy Our sample had active travel

120  with annual emissions of 4 kgGéy/cap. About 29% of distance on land was travelled by public
121 transport, with an average trip of 19 km/return trip. Private motorized traal5y%00 km/cap on

122 average (or 22 km/daily return trip), with a footprint of 1.2 $€§dcap. About 36% of respondents

123 owned a car and used it alone, while 51 % shared the car with other members of the household.

124  Even though about 47% of respondents only travelled to short-haul destinations, air trestél thas

125 largest contributor to mobility emissions (Figure 1). Air transpastight about an annual CF of 2.4
126 tCOseq/cap on average, compared to 1.5 #c¢frap for land-based travel (table 1). These estimates
127  seemhigher than prior MRIO assessments, which may be due to the lack of consistezyrimg

128  standards for air transport calculation (Usubiaga and Acosta-Fernandez, 2015).
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Figure 1: Land and air mobility carbon footprint (CF) by travel mode showing carbon intensities (in kgCO2eq/pkm)
and distance (in km). The area of each rectangular depictsthe CF of that transport mode and the %s - the footprint
share from total mobility (all summing to 100%). The top graph displays land-based travel by car and motorbike
(private motorized transport), bus, tram/underground and train (public transport), electric bike, bike and walking
(active transport) (from left to right); the bottom graph displays air-based travel by short- and long-haul flights (from
left to right).

2.2 Shelter footprint calculations
Energy use covers use of electricity (ELEC), space heating (SH) and wateg h(#¥H). Annual
electricity consumption was derived from reported monthly payments in winter andessimm
discounting any space and water heating powered by electricity to avoid doublexgothiysical
energy demand for space and water heating was modelled using the TABULA magiydsiided on
Europe-representative dwelling sample (IWU, 2013). Regression coefficients were esfonaited
effects of dwelling type, period of construction, refurbishment level and climate zapeicad energy
demand per square me(®&? = 0.48). The total theoretical energy demand per square meter was then

scaled up by living space and divided by the number of inhabitants in the househaolaurF launslysis

5
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excludes emissions embodied in construction materials, which have been quantifigoviolety; e.g.

with shares between 2-38% for conventional buildings (Sartori and Hestnes,2@0adiied emission

in construction materials gain more relevance for low-energy buildings, where thayooamt for up

to 50% of total emissions (Blengini and Di Carlo, 2010; Dahlstrgm et al., 2018ri$end Hestnes,

2007). We also excluded private and communal energy costs embodied in housing management fees
(Heinonen and Junnila, 2014). A prior assessment of communal electricity (stutyusing
companies) quantified it at about 5% of energy use ande@@ssions from energy consumption in
multi-family apartment buildings (Kyro et al., 2011). The carbon interdigpace and water heating

was calculated based on the lifecycle emissions by heating source (inekgkd®h, Ecoinvent)We

adopted region-specific carbon intensities of the electricity mix.

Figure 2 depicts the shelter CF as a function of the carbon intensity gfyearat energy use. Our
sample had a mean annual energy use of 6,200 kWh (17 kWh/day) and a median of 4,700 kwh (13
kwh/day). Electricity comprised about 25% of average energy use and 42% of theretaied CF
Region-specific electricity mix had carbon intensity between 0.52 and 0.75&g®®/h. About 47%

of the shelter CF and 63% of energy wss associated with space heating. The mean and median of
daily energy use for space heating was estimated to be 11 and 7 kWh/cap, resp@éitezlreating
contributal to about 10% and 12% of annual shelter CF and energy use, respectivelyh&stteyis

more relevant in low-energy buildings, where energy use for heating is dhasédaced (Roux et al.,

2016).

/3 Electricity [ Space Heating [ Water Heating
0.7

0.6 @ s

0.5

Carbon Intensity (kgCO,eq./kWh)
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Figure 2: Electricity, space heating and water heating showing car bon intensities (in kgCO2eq/kWh) and energy use (in
kWh). The area of each rectangular depicts the CF and the %s - the footprint share of shelter CF (all summing to
100%). Space heating by electricity and district heating, by oil and gas, and by renewables (pellets/firewood or solar -
ther mal heater) and heat pump (from left to right).
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2.3 Regression model
We conducted linear multivariate regression analyses with behavior and catdsity of behavior as
dependent variables (individual level). For mobiliyg explored explanatory factors behind the carbon
intensity of land and air travel (in grG€y/pkm), and travel distance (in km/day). For shelter, we
examined the factors behind energy use (in kWh/day) and its carbon intensity QreghcVh).
Intensities were set to zero for the zero-footprint cases. Distanceenyy ese enter the model in linear
terms (instead of logarithmic) in order to keep the zero observations (e.g. those who do not fly

We further explored the choice of transport mode and heating source, which had dilieations for

the carbon intensity of mobility and shelter. We performed a pooled multinomitahiodel (MLOGIT)

to assess the likelihood (probability) of opting for a specific transportaiimgemode. MLOGIT is
suitable when the dependent variable is categorical and cannot be ordered (Fan et al.,r20071 $fo
We performed MLOGIT on a trip rather than individual level (long formatjrfobility asindividuals
generally repodd multiple regular trips. We further fit a MLOGIT with fixed effeqFE) accounting
for the unobserved heterogeneity where individuals regdtie regular use of several transport modes
(Sl table 17). We reported marginal effects (table 3 and table 5) depicting the predicted pesbabilit
belonging to one of the dependent variable outcomes and the predicted changes in @®badiliting
from changes in the independent variables.

The regression approach allows for the investigation of effects in isolatiorevdowhe change in one
factor important for the CF may be associated with a change in other facta. &owexample, the
carbon savings achieved from urbanization may be reduced or even removed altoghthease tof
higher income levels or smaller household sizes (e.g. see Ottelin et al., 2015). Wreusadginal
effects results to explore combined effects of selected highly correlated faate 2) on the CF (table
4 and table 6), setting all other factors to mean levels. For odds ratios of poole BHdDGIT, as
well as food- and clothing-specific footprint determinant analysés‘Results” in the Sl.

Variable selection was informed by prior literature and survey desigrthd mobility-specific
regressions, we controlled for travel distance, purpose of travel /fwivete), car ownership, and
attitudes and use of ride sharing and car sharing initiatives and platforshelter-specific regressions,
we controlled for energy use, dwelling characteristics, attitudes and use of enepgratives. As we
incorporated a large number of independent variables, we additionally performedforests
multicollinearity, or the potential for instability of the coefficients and their “inflated” variance (Belsley

et al., 1980; Chen et al., 2003). We reported variance inflation factor (VIEpkenance values in Si

table 16, which pointed to no strong evidence for multicollinearity.



Definition and Unit Total Galicia (ES) Banat-Timis (RO Lazio (IT) Saxony-Anhalt (DE
Sample size No. respondents 1,617 488 292 458 379
Land-mob footprint  LMOB_FP Annual carbon footprint from land travel, t@&/cap 15 (22 14 (19 11 (2.0) 15 (2.1) 2.0 (2.5)
Air-mob footprint AMOB_FP Annual carbon footprint from air travel, tG&y/cap 24 (68) 23 (45 26 (7.7) 26 (5.9 20 (9.0)
Electricity footprint ELEC_FP Annual carbon footprint from electricity use at home, 1€flcap 10 (14 09 (09 03 (0.5) 15 (2.2) 1.0 (0.9)
Space heating footprin SH_FP Annual carbon footprint from space heating, t€@cap 11 (19 08 (09 1.0 (1.6) 0.7 (0.9) 1.9 3.2)
Water heating footprinf WH_FP Annual carbon footprint from water heating, t@@/cap 0.2 (0.1) 0.2 (0.1) 0.2 0.2) 0.2 (0.1) 0.3 (0.1)
Land-mob distance  LMOB_DIS Daily distance travelled by land, km/day 26.0 (34.7) 245 (34.3) 20.6 (33.7) 25.8(30.6)32.4 (39.7)
Short flights AMOB_SHORTAnNnNual N short flights 196 (7.0) 2.27 (3.7) 198 (9.4) 2.11(3.6) 1.30  (10.5)
Long flights AMOB_LONG Annual N long flights 0.51 (2.0) 0.39 (1.6) 0.58 (1.7) 0.57(2.2) 054 (2.4)
One-user car CAR_ONE Share of respondents who own a car and use it alone 0.36 (0.48) 0.28 (0.45) 0.29 (0.45) 0.43(0.50)0.45 (0.50)
Many-user car CAR_MANY  Share of respondents who own a car and share it with othezht@mdsnembers 0.51 (0.50) 0.59 (0.49) 0.46 (0.50) 0.48(0.50)0.46 (0.50)
Attitude mob initiative MINI_ATT Attitude towards ride/car sharing initiatives/platforms, 7-pointesca Very negative, 7. Very positive 52 (1.7) 56 (15) 44 1.9) 5.3 (1.7) 5.3 (1.6)
Use mob initiative MINI_USE Use of ride/car sharing initiatives/platforms, 7-point scale: 1. fiegative, 7. Very positive 23 (19 24 (2.0 27 (2.0) 23 (1.8) 2.2 1.7)
Electricity use ELEC_USE Daily electricity use, kWh/day 43 (6.0) 47 (46) 12 (2.0) 6.2 (9.1) 4.2 (3.6)
Space heating use SH_USE Daily space heating energy use, kWh/day 10.7 (19.0) 8.1 (9.1) 95 (14.7) 7.6 (7.4) 18.2 (33.0)
Water heating use WH_USE Daily water heating energy use, kWh/day 20 (05 2.0 (05) 20 (0.5) 2.0 (0.4) 22 (0.5)
Dwelling size DSIZE Surface in A 113.9(146.4)115.9(100.7)109.7 (120.4) 96.3(50.9) 135.2 (247.7)
Dwelling type DTYPE 1. Single family house, 2. Terraced house, 3. Multi-family ho#éis@partment block (> 10 dwellings) 24 (1.4 27 (14 26 (1.5) 25 (1.3) 1.7 (1.1)
Period of construction CONSTR 1. Before 1900, 2. 1900-1945, 3. 1945-1970, 4. 1970-1990, 5. 1990-2000, 6. After 2000 42 (13) 46 (11) 44 1.1) 42 (1.2) 35 (1.6)
Electricity production EPROD Share of electricity produced (and consumed) by the holgseh 0.04 (0.19) 0.02 (0.14) 0.02 (0.13) 0.04(0.19)0.07 (0.26)
Refurbishment REFURB Quality of thermal insulation, 7-point scale: 1. Very bad, 7 y\gerod 46 (1.7) 43 (18 51 (1.6) 41 (1.8) 51 (1.5)
Attitude energyinitiative EINI_ATT Attitude towards energy cooperatives, 7-point scale: 1. Verytivegd. Very positive 51 (1.6) 56 (1.4) 49 (1.6) 5.1 (1.6) 4.8 1.7)
Use energy initiative  EINI_USE Use of energy cooperatives, 7-point scale: 1. Very negative,ry.pdsitive 21 (1.8) 21 (18 3.0 1.9) 19 (1.6) 1.8 (1.5)
Urban-rural RURAL 1. Urban, 2. Sub-urban, 3. Rural 1.61 (0.80) 1.57 (0.77) 1.49 (0.81) 1.42(0.65)2.00 (0.87)
Household size HHSIZE No. household members 2.93 (1.91) 3.28 (2.82) 3.03 (1.59) 3.03(1.20)2.28 (1.07)
Female FEMALE Share of female respondents 0.62 (0.49) 0.70 (0.46) 0.60 (0.49) 0.60(0.49)0.55 (0.50)
Age AGE No. years 40.1 (15.6) 34.9 (13.4) 31.5 (12.2) 40.1(13.6)53.3  (14.3)
Education EDUC 1. No education, 2. Primary school, 3. Secondary school, 4.ddlgéol, 5. Vocational school, 6. University degret5.07 (1.14) 5.42 (0.90) 4.87 (0.98) 5.21(1.00)4.63 (1.46)
Married MARRIED Share of married respondents (relationship status) 0.52 (0.50) 0.37 (0.48) 0.44 (0.50) 0.59(0.49)0.69 (0.46)
Income INCOME Monthly net household income: 1. < 600€, 2. 601-1500€, 3. 1501-3000€, 4. 3001-4500€, 5. 4501-6000 €, 6. >6000€. 3.10 (1.09) 2.99 (0.93) 3.41 (1.36) 2.95(1.01)3.21 (1.08)

RO sample: 1. < 176€, 2. 177-330€, 3. 331-552€, 4. 553-882¢€, 5. 883-1214¢€, 6. >1214€
Working time WHRS 1. <20 hrs./week, 2. 20-40 hrs./week, 3. 40-60 hrs./week, 4. >60 hrs./week 2.94 (1.06) 3.05 (1.06) 3.10 (1.05) 2.67(1.07)3.00 (0.99)

Table 1: Descriptive statistics. M eans and standard deviations (in parenthesis) reported for the total sample and acrosstheregional sub-samples.
individuals as units of analysis. See SI “Descriptive Statistics” for additional variables.

Descriptive statistics are reported for



201 3. Resaults

202  Table 1 outlines descriptive statistics and definitions of all variabhéshventer the regression models.
203  An analysis of the pairwise correlation coefficients and their significance betiveezxplanatory
204  variables is presented in table 2. The correlation table highlights where more éauteeded to
205 interpret regression coefficients. It can also be useful for profilingclagsifying respondents who use

206  mobility- and energy- initiatives.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

CAR_ONE 1 |1.00

CAR_MANY 2 |-0.75 1.00

MINI_ATT 3 |[-0.03-0.02 1.00

MINI_USE 4 |-0.07 0.08 0.28 1.00

DSIZE 5 (0.02 0.04 -0.03-0.011.00

DTYPE 6 |-0.10 -0.00 0.03 0.03 -0.22 1.00

CONSTR 7 (0.02 0.01 -0.05-0.08 -0.07 0.07 1.00

EPROD 8 |[-0.000.04 -0.04-0.02 0.09 -0.10 0.03 1.00
REFURB 9 |0.04 0.01 -0.09 -0.05 0.06 -0.040.05 0.05 1.00

EINI_ATT 10 |-0.09 0.04 051 0.7 -0.010.05 0.01 -0.01-0.05 1.00

EINI_USE 11 |-0.07 -0.00 0.03 0.46 0.04 0.03 -0.010.05 0.05 0.20 1.00

RURAL 12 |0.06 0.05 -0.06 -0.06 0.21 -0.51 -0.04 0.11 0.05 -0.07 -0.011.00

HHSIZE 13 |-0.17 020 0.01 0.04 0.09 -0.08 0.07 0.01 -0.04 0.05 0.05 0.07 1.00

FEMALE 14 {-0.13 0.09 0.06 0.02 -0.020.03 0.04 0.01 -0.010.04 0.01 0.01 0.05 1.00

AGE 15|0.18 -0.03-0.07 -0.19 0.03 -0.10 -0.22 0.07 0.15 -0.11 -0.13 0.10 -0.26 -0.17 1.00

EDUC 16 [0.09 -0.02 0.12 -0.00-0.06 0.12 0.05 -0.02 -0.04 0.13 -0.07 -0.16 -0.03 -0.04 0.01 1.00

MARRIED 17 [0.03 0.13 -0.09-0.150.06 -0.10 -0.050.07 0.16 -0.10 -0.08 0.10 0.03 -0.11 0.44 0.01 1.00

INCOME 18 |0.08 0.05 -0.02-0.10 0.13 -0.08 0.01 0.06 0.19 0.01 -0.040.04 0.12 -0.09 0.15 0.19 0.27 1.00

WHRS 19 |-0.17 0.04 -0.04 0.07 0.04 -0.040.00 0.02 0.03 0.00 0.08 0.08 0.06 0.02 -0.17 -0.23 -0.21 -0.17 1.00
207 Table 2: Pair-wise correlation coefficients of explanatory variables. Bold valuesindicate 99% significance, italic
208 valuesindicate 95% significance, and rest areinsignificant.

209 3.1 Mobility

210  The total carbon intensity model has high values of adjusted R-sq0&&dl he distance models have
211 lower Adjusted R between 0.03 and 0.04 (table 3). The pooled MLOGIT model reported a PSeudo R
212 of 0.17.

213 3.1.1 Distance and travel characteristics
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215 Figure 3: Predictive Marginswith 95% Clscalculated for the daily km predictor of the pooled MLOGIT. Y axis
216 (probability %) and x axis (return trip distance km/day).
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M obility Distance Carbon intensity Land-travel marginal effects
Total Land Air Total Active Public Private motorize:
LMOB_DIS (km/day) -0.609*** -0.012%** 0.005*** 0.008***
(0.13) (0.0012) (0.0012) (0.001)
LMOB_DIS sq. 0.001 0.000*** -0.000*** -0.000***
(0.00) (0.000) (0.000) (0.000)
AMOB_SHORT 8.390***
(1.03)
WORK 0.023* 0.063*** -0.086***
(0.014) (0.012) (0.016)
CAR_ONE 1.040 2.217 -1.526 63.636*** -0.209*** -0.284*** 0.493***
(5.35) (3.22) (4.30) (6.76) (0.026) (0.021) (0.034)
CAR_MANY -0.104 1.845 -2.415 34.219*** -0.150%** -0.162*** 0.311***
(5.26) (3.12) (4.20) (6.78) (0.026) (0.020) (0.036)
MINI_ATT 0.012 -0.569 0.594 -0.572 0.007 0.007* -0.014***
(0.89) (0.58) (0.62) (1.13) (0.005) (0.004) (0.005)
MINI_USE 3.251** 1.345%* 1.891* 0.504 0.004 -0.007* 0.002
(1.34) (0.62) (1.10) (1.01) (0.004) (0.004) (0.005)
RURAL 3.641* 5.029%** -1.418 11.256*** -0.037*** -0.027*** 0.063***
(1.89) (1.32) (1.30) (2.36) (0.009) (0.009) (0.010)
HHSIZE -1.709 -0.614 -1.081* -0.844 0.006** -0.002 -0.004
(2.07) (0.74) (0.63) (0.91) (0.003) (0.003) (0.004)
FEMALE -12.200*** -6.440*** -5.792* -0.842 -0.022 0.044*** -0.022
(3.79) (2.00) (3.02) (3.63) (0.014) (0.014) (0.017)
AGE -0.179 -0.128* -0.050 -0.179 0.001 -0.002** 0.001
(0.12) (0.08) (0.09) (0.15) (0.001) (0.001) (0.001)
EDUC 4.350** 0.646 3.794x** -0.854 0.026*** -0.013** -0.014*
(2.73) (0.98) (1.37) (2.73) (0.007) (0.006) (0.008)
MARRIED -2.756 -1.210 -1.381 13.644*** -0.032** -0.053* 0.082**
(4.32) (2.19) (3.54) (3.87) (0.016) (0.028) (0.019)
INCOME 6.630*** 2.720%** 3.865%** 5.869*** -0.011* 0.001 0.010
@.77) (1.05) (1.33) (1.88) (0.007) (0.006) (0.009)
WHRS -2.161 -1.224 -0.900 -4.053** 0.011* 0.013* -0.025***
(1.54) (0.93) (1.17) (1.79) (0.007) (0.007) (0.008)
Adjusted (Pseudo) R?  0.035 0.040 0.026 0.282 (0.172)
N individuals (N trips) 1399 1409 1399 1399 1,394 (4,393

Table 3: Multiple linear regressions (b/se) with total carbon intensity (in gr CO2eg/pkm) and daily travel distance (in
km). Marginal effects from pooled MLOGIT with land-based transport mode as dependent variable. Independent
variables measured per return trip (for variablesin italic) and individual (for other variables). WORK is a binary
variablewith avalue of 1 for work and O for privatetrips. Regional controlsand robust standard errorsincluded. *p<
A, ** p<.05,*** p< .0l

The longer the distance, the less likely the travel is active. A one-kilometease in the distance of

the daily trip decreases the probability of walking or biking by 1.2% erage. The percentage change
decreases with rising distance non-linearly (figure 3), where an increasb fooh® km per return trip
reduces active travel by 6.8%, from 10 to 15 km by only 5.9%, and so on. Thusndpdistances
widens the travel mode choice (see also Chapman et al., 2016; Pucher and Buehler, 2006aQuinn et
2016).There is a slight increase in the likelihood of opting for public transport (Onb&)one-km
distance rise, though public travel is less susceptible to changing distance3)taMerk trips (or
regular commuting) are associated with a 6% higher probability of occurring via public trgteggert

3), at 16.7% and 23.2% for private and work respectively. We do not control for pbépliianatory
factors such as time of travel (e.g. rush hours and traffic), opportunitydéshiaring, or the role of

affective and instrumental factors for trips (e.g. see Anable and Gatersleben (2005)).

Car owners have higher carbon intensity of travel, 64 and 34.gdf8km for single- and multi-users,
respectively (table 3). On average, sole users of cars are 49.3% ratyr¢dildrive compared to those
who do not own a car (table 3), with a high probability of driving even for sfijest The likelihood of

driving for daily return trips at 5 km is 46.9% (figure 3). @amership is not associated with changes
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238 in travel distance. While car ownership has influenced travel distancestamdplanning historically
239  (e.g. the Marchetti Constant (Newman and Kenworthy, 2006)), the effect may be less inipatant
240  cross-sectional study controlling for urban-rural typoldde also find car ownership and use increase
241  the likelihood of having car trips for both work and private (Sl table 18).the sub-sample with
242 positive number of car trips, the selected variables have much lower power to eapkions in car
243 trips. Particularly, being a single- and multi-user is associated with an increasennuberaumber of
244 car private trips by 89 and 72, respectively, but had no effect on the number of work trips.

245  Naturally, flying is associated with higher total carbon inten@éple 3), where an increase by one
246  return short flight annually is associated with a rise of 8 ge@@km. Car owners show no difference
247 in flying. Previously, car-free households have been shown to have somewhat higher air transport

248  emissions, reflecting higher income levels (Ornetzeder et al., 2008; Ottelin et al., 2017).

249 3.1.2 Attitudes and use of initiatives
250 Table 3 provides no clear evidence that use of car- and ride-sharingviegtiainslate into lower

251  mobility behavior and footprint. Instead, we find a positive coefficientaiod distance. It should be
252  noted, however, that this is the effect keeping car ownership and urban-rurad)jypohstant. Table 2
253  points to a negative correlations with car ownership (-0.07) and rural corid@)(-both of which
254  significant at the 99%. This is in support of prior findings thatstering facilities enable a reduction

255  in vehicle ownership (Schanes et al., 2016).

256  More favorable attitudes towards ride- and car-sharing initiatives are assodgtht@ddecrease in the
257  carbon intensity of land travel and likelihood of driving (table 3). Nevertheldttudes are of little
258 relevance for the distance travelled by air and land (in line with Alcocil.e2017) From a
259  psychological perspective, the result can be interpreted by the autonomy of motivatistimtiate a
260  certain behavior (Hartig et al., 2001; Ryan and Deci, 2000).

261 3.1.3 Urban-rural typology and household size
262  The likelihood of active travel rises with population density, on average 30r@%ban and 23.2% for

263 rural context (in line with Pucher and Buehler, 2006; Quinn et al., 2016). lastecrease is noted for
264  public transport, an average of 2.7% (table 3). Similarly, prior stadss noted that population growth
265 in low-density suburban areas results in more commuting via passenger vé&uode®(, 2009; Jones
266 and Kammen, 2014; Rosa and Dietz, 2012). Furthermore, the shift to rural livingastess with an
267 increase in the travel distance by Igf€5.03, p < .01).

268  Household sizés insignificant in determining the travel intensity and distance (see also vanay.,
269  2017). This points to the lack of household economies of scale for land- and air-basled.gadue to

270  differences in travel routines and preferences within the household.
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3.1.4 Socio-demographics
Females and younger respondents are more likely to opt for public transport3jtabigthermore,

females note 12 km/day lower travel distance, on average. Prior studigsoirdee to the gender- and
age-unequal distributions of time use, patterns of expenditure, and employment @Cai, 2012;
Chancel, 2014; Pullinger, 2012; Quinn et al., 2016). Relationship status hasa déffect in explaining
the CF of travel, although married respondents were 8.2% more likely to driveverage. The
relationship status has implications for time use, working schedules and ctiégesrdency (Pullinger,
2012).

Individuals with higher education are more likely to travel actively and hymd less likely to use
public transport. Differences may be partially attributed to socioeconstatias, place of residence
(Pucher et al., 2011; Whitfield et al., 2015), or higher awareness @bbanefits (e.g. health).

3.1.5 Income and working Time
Income is an important determinant of distance travelled by both land and air, wissrénaimcome

by one level brings about an increase in the average daily travel bylaykr@ur analysis confirms the
mobility domain (and particularly air mobility) as income-elastic (Criguet al., 2015; Ivanova et al.,
2017; Rosa and Dietz, 2012). The effect of working hours (in isolation oitoene effect) is
insignificant in most mobility models (table 3). This has implications fdicips that aim to reduce
working hours, while keeping the same level of disposable income. Furthermore, longer working hours
(>60 hours/week) are associated with a decrease in carbon intensity, whickinis wwith prior
hypothesis that very high work load may reduce participation in leisure and feaxdy {Czepkiewicz

et al., 2018).

3.1.6 Combined effects
Table 4 explores the combined effect of urbanity, trip distance, car ownership, aridyrimtiative

use on the choice of transport mode and land-travel CF overall. Limitidgitii¢ravel distance through
compact urban environment may produce substantial footprint savings. For example, avérdme
return trip (Case 1) is associdt&ith an annual land-travel carbon footprint close to ten times lower
than our sample’s average. However, in order to realize the full benefit from urbanization and reduced

distance, there needs to be proportionate changes in car use and ownership (e.g. Case 2-3, Case 4-5).

Land travel (mobility) Casel Case?2 Case3 Case4 Case5 Case 6
Urban/rural Urban Urban Urban Urban Rural Rural
LMOB_DIS (km/return trip) 5 10 10 20 20 30
CAR_ONE No No Yes Yes No No
CAR_MANY No No No No Yes Yes
MINI_USE Always Always Never Never Never Never
Active transport share 0.51 0.43 0.18 0.08 0.12 0.08
Carbon intensity (kgC&q/pkm) 0.09 0.10 0.12 0.20 0.18 0.19
Annual carbon footprint (tCéq/cap) 0.2 0.4 0.7 15 1.3 2.1

Table4: Land trip characteristics based by case. The table isbased on the marginal effectsregression (table 3). The

annual carbon footprint is calculated assuming trip distanceistravelled daily. The reported values have assumed the
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mean level for the rest of significant regressors. In white we present the fixated levelsfor theregressors, and in grey —
the estimated valuesfor choice of transport, carbon intensity and footprint.

Furthermore, there is a strong negative correlation between the car owrmdhige of mobility

initiative variables (table 2). The more frequent use of mobility initiatives magdsertravel distance,
holding car ownership constant (table 3); however, the use of such initiatiyealsoareduce car
ownership rates. Table 4 signals for the substantial difference in emissionsiamdracel that may

occur through the use of car sharing initiatives (e.g. Case 2-3).

3.2 Shelter
The regression models on the total energy use have a high adjusted R-squared, 0.77 (ihle 5)
varying model fit for daily electricity, space and water heating use moddl8, 0.84 and 0.57,
respectively. The total carbon intensity model has an adjusted R-squared of 0.2foitheof space
heating, particularly, is explored through the marginal effects model viddeado R-squared of 0.24.
The choice of water heating sources is much less explained through our modePegdthdo R-squared
of 0.13 (see Sl table 19

3.2.1 Energy use and dwelling characteristics
An increase of electricity use by WWk/day raises the likelihoodf @lectricity-powered space heating

by an average of 0.6%, explaining the noted increase in the total carbositinbf energy use (table
5). Own electricity production (EPROD) is insignificant for energy sisggesting that producing own

electricity does not necessarily increase its use.

Space heating needs play a significant role for the choice of heating souticeld?lr, a rise in the
daily space heating by 1 kWh raises the probability of heating by fossilifine0.8% on average and
reduces the probability of heating by district heating by the same amobhbateffect on renewables is
only partially significant. While lowering space heating needs may reduce reliance oruidssidich
efforts should be coupled with strong incentives for a transition to renevediladisources and efforts
to utilize local energy sources such as waste heat and energy-from-waste technologiee{kehassel
2016; UNEP, 2015). Water heating needs have little relevance for the choice cirsppaer heating

source.

Larger dwellings use more energy for space heating. An increase in tHmglwige by 1rf brings
about a rise in space heating needs by 0.1 kWh/day (or 41 kWh/year). Hoameardwelling have
also lower carbon intensity (a reduction of 0.15 gi®@h per ni), being more likely to be heated by
renewables or district heating (table District heating is in general a cost-competitive and cheap option
to provide heat. Yet, district heating - and renewable electricity praductihave high capital
expenditure and relative low operating cost (UNEP, 2015), making them meaiblesdor larger

dwellings.
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Apartments are associated with lower energy use (negative 3.1 kWh/day comparagetdasnily
home), particularly electricity and space heating (keeping dwelling size cgnktawever, apartment
blocks have higher carbon intensity per kWh, 62 g&egkWh more compared to single family home.
This increase in intensity is due to changes in heating source (less renewables/peatgrerdistrict
heating) with the effect being highly significant for both space andnieaating. District heating is not
well suited for single-building options with its cost structure (UNEP, 201\%glling type and urban-
rural typology are highly correlated (-0.51), with houses being moey likcated in rural areas, and

apartments in urban areas.

Newer dwellings have lower space heating needs, but higher electricity consumption andjigkece
carbon intensity per unit of energy use. Prior assessments of hew construatefend that energy
savings per fare generally offset by changes in user heating habits and the amount of eneaggeppli
(EEA, 2016; Sandberg et al., 2016b). We find a strong pairwise correlation betweeawag#iong and
inhabitants (-0.22) pointing to younger inhabitants opting for newer dwellings (tathatdy, the effect
of electricity use may be explained variation in consumption patterns among ages.cdinert
construction decade has no significant effect on the choice of space or water heating.

Energy use Carbon SH marginal effects
intensity
Total ELEC SH WH Total Electricity District Oil/gas Renewables/Not
heating heat pump Heating
ELEC (kWh/day) 5.993*** 10.006***  -0.002 -0.000 -0.000 -0.003*
(1.31) (0.001) (0.004) (0.004) (0.002) (0.002)
SH (kWh/day) 0.372  |0.002 -0.009***  0.008***  -0.002* 0.001
(0.43) |(0.002) (0.003) (0.003) (0.001) (0.001)
WH (kwh/day) -16.357* |0.005 0.050 -0.091*  0.019 0.018
(9.90) |(0.028) (0.031) (0.053) (0.035) (0.013)
DSIZE 0.112*** 0.001 0.112*** -0.000*  -0.150** |-0.001 0.001***  -0.000 0.000***  0.000
(0.02) (0.00) (0.01) (0.00) (0.06) (0.000) (0.000) (0.000) (0.000) (0.000)
DTYPE -1.029*** -0.353** -0.673*** -0.002 19.103***|-0.006 0.036***  -0.007 -0.032***  0.008**
(0.26) (0.14) (0.20) (0.01) (2.33) (0.007) (0.009) (0.012) (0.008) (0.004)
CONSTR -1.834*** (0.219**  -2.052*** -0.001 9.958*** -0.000 -0.010 0.007 -0.001 0.004
(0.23) (0.10) (0.20) (0.01) (2.25) (0.008) (0.008) (0.012) (0.007) (0.004)
EPROD 1.079 0.682 0.398 -0.001 -20.669 [0.077 -0.080 0.201* 0.087 -0.284***
(1.37) (0.79) (0.99) (0.03) (14.70) |(0.063) (0.103) (0.109) (0.047)*  (0.048)
REFURB -1.792*** -0.044 -1.752*** 0.004 8.258*** 1.0.005 -0.009 0.020** -0.010 0.002
(0.17) (0.13) (0.10) (0.01) (1.68) (0.006) (0.007) (0.009) (0.005)*  (0.003)
EINI_ATT -0.280 -0.244*  -0.038 0.001 -0.005 [-0.000 -0.010 0.004 0.004 0.002
(0.20) (0.14) (0.13) (0.01) (1.68) |(0.006) (0.006) (0.009) (0.005) (0.003)
EINI_USE 0.051 -0.041 0.091 0.001 2491  |0.000 0.009 -0.005 0.001 -0.006**
(0.15) (0.06) (0.12) (0.00) (1.59) |(0.005) (0.005)*  (0.008) (0.004) (0.003)
RURAL -0.139 0.062 -0.177 -0.024*  -16.62***|-0.016 0.011 -0.048**  0.063***  -0.011
(0.44) (0.18) (0.38) (0.01) (3.95) (0.014) (0.015) (0.020) (0.010) (0.009)
HHSIZE -2.825%** -0.475*** -2186*** -0.164*** -0.196 |0.004 0.013 -0.023 0.005 0.000
(1.00) (0.16) (0.80) (0.06) (1.99) |(0.007) (0.007)*  (0.016) (0.006) (0.003)
FEMALE 0.978*  0.000 0.982**  -0.005 2.843 |-0.017 -0.021 0.045* -0.019 0.011
(0.58) (0.35) (0.44) (0.02) (5.38) |(0.018) (0.019) (0.027) (0.016) (0.011)
AGE 0.105*** 0.036*** 0.061** 0.007*** 0.119 |-0.001 0.001 0.002 -0.001 -0.001
(0.04) (0.01) (0.03) (0.00) (0.22) |(0.001) (0.001) (0.001) (0.001) (0.001)
EDUC -0.259 -0.010 -0.269 0.020*** -1.002 |-0.007 -0.004 0.008 0.005 -0.003
(0.28) (0.20) (0.18) (0.01) (2.43) |(0.009) (0.008) (0.012) (0.008) (0.004)
MARRIED -3.035*** -0.789** -1.936*** -0.310*** -7.299 |-0.005 -0.064*** 0.085***  -0.008 -0.008
(0.92) (0.34) (0.72) (0.05) (6.67) |(0.022) (0.025) (0.032) (0.019) (0.014)
INCOME -0.206 0.177 -0.361 -0.022* 0.997 |0.003 0.004 0.027* -0.016* -0.017***
(0.30) (0.12) (0.24) (0.01) (3.15) |(0.011) (0.010) (0.014) (0.009) (0.006)
WHRS -0.360 -0.081 -0.257 -0.022*** -2.569 |-0.002 -0.015 0.008 0.009 0.000
(0.23)  (0.14)  (0.17)  (0.01) (254) [(0.009) (0.009) (0.014)  (0.008) (0.005)
Adjusted 0.766 0.104 0.844 0.565 0.269 (0.237)
(Pseudo) R?
N individuals 1407 1407 1407 1407 1407 1,133
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Table5: Multiplelinear regressions (b/se) with total carbon intensity (in gr CO2eq/kWh) and daily energy use (in kWh)
as dependent variables. Marginal effects from the pooled MLOGIT with space heating sour ce as dependent variables
with unit of analysis — an individual. We only perform marginal effects for those that have selected a single heating

source (81%). Regional controlsand robust errorsincluded in all models. *p< .1, ** p <.05, *** p < .01
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Similarly, higher level of refurbishment reduces space heating needs; the shiftjirakibe of thermal
insulation from “very bad” to “very good” is associated with a drop in space heating consumption by 11
kWh/day (or 4 MWh/year). Energy reductions potentials are directly linkedftmbishment rates

(IWU, 2013), with refurbishment rates across 11 European countries varying between 0.6-1.6%
(Sandberg et al., 2016a). At the same time, better thermal insulation is tessagin a higher
likelihood of opting for oil or gas space heating and, hence, higher carbon intpaditularly the shift

from “very bad” to “very good” increases the likelihood of heating by fossil fuels by 12%.

3.2.2 Attitudes and Use of Initiatives
Finally, attitudes and use of energy cooperative initiatives are afnificance for the annual energy

needs (see Diekmann and Preisendorfer, 2003). The use of energy cooperatives is agighdated
likelihood of not heating (table 5). Those who freqiyense energy cooperative initiativeé\lways”)
are 6% more likely to heat water by electricity, suggesting a possible linersing effect (Tiefenbeck

et al., 2013), and 13.8% less likely to heat by fossil fuels, than those who never use such initiatives

3.2.3 Urban-Rural Typology and Household size
We find the effect of rural typology to be insignificant for energy uses &ffect is likely influenced

by the high correlation between urban-rural typology and dwelling type in Europatext (table 2).
Furthermore, rural dwellings are more likely to be heated by renewables. Tokfinseood is more
common to rural areas due to the close supply (Euroheat and Power, 2006). Common hetidimg solu
in urban areas have a line-based network energy supply as natural gas andheéttrig, requiring a

certain heat demand density to justify investment (Euroheat and Power, 2006).

The household scale effect is substantial for energy needs. A rigehlindkehold size of one member

is associated with a drop of individual electricity, space and watginy needs by 0.5, 2.2 and 0.2
kwh/day (or about 170, 800 and 60 kWh/year), respectively (table 5). This effeisteis dy shared
consumption of heating, cooling and light, as well as common use of electrical agpl{ancet al.,
2003; Rosa and Dietz, 2012). The co-housing model emerges as a cost-competitive sociabrinnovati
that that may further inspire a restructuring of the social institutiohousing and technological

innovations (Seyfang and Smith, 2007).

3.2.4 Socio-demographics
Females have 360 kWh/cap higher annual space heating needs, although the @figcpartially

significant for total energy use. Age has a positive effect on energy, meéeiss paribus. An additional
year brings about an increase in the annual electricity, space heating and ataigrrie=ds by 122

and 3 kWh/cap, respectively. Education is of no significance for the total energynbedsing source.

Married people have substantially lower energy needs, about 3 kWh/day (or 1,095 kyViyea
possible explanatiois the effect of household composition beyond the household size, e.g. having

children. Married respondents were 8.5% more likely to opt for fossil fuels and 6.4% ddgsdikeat
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389 by district heating. Being married was noted to be highly positively ctedelaith age (0.44), income
390 (0.27) and refurbishment level (0.16), and negatively correlated with working hours (-0.21).

391 3.2.5 Income and workingrme
392  We find energy use to be incormelastic (table 5); this effect is in line with prior findings, sanito

393  other basic needs (see lvanova et al., 2017). That being said, higher incoroei&eabsvith a lower
394  likelihood of not heating. This suggests that financial savings may be a primary reasonthfeatirgg,
395 calling attention to the potential of energy poverty-related cold housing kisth energy prices (Urge-

396  Vorsatz et al., 2014). Differences in the working time are of little relevance for the $betpzint.

397 3.2.6 Combined effects

398  According to table 5, rural dwellings are more likely to be heated by renewaitgzred to urban
399  dwellings and are, thus, less carbon intensive. Rural dwellings are also generally associédegewith
400 sizes and single family house-types (higher heating needs), and larger househdldvezdseating
401 needs). There is a significant potential for carbon savings with the shiftbem and compact
402  environment, e.g. 24% difference in the space heating footprint between Case 8 ahtl Ctsle 6).
403 Nevertheless, dwelling characteristics and household size should also be consideredetdgheeali

404  potential benefits, in both urban (e.g. Case 8-9) and rural (e.g. Case 10-12) context.

Space heating (shelter) Case7 Case8 Case9 Case 10 Case11 Case 12

Urban/rural Urban Urban Urban Rural Rural Rural

SH (kWh/day) 11 11 17 26 19 22

DSIZE 60 100 100 160 100 90

DTYPE Apartment | Apartment| Single family | Single family | Single family | Single family
block block home home home home

HHSIZE 2 4 2 4 4 2

Oil and gas share 0.67 0.62 0.71 0.59 0.57 0.65

Carbon intensity (kgCéq/kWh) 0.33 0.33 0.31 0.24 0.26 0.27

Annual carbon footprint (tCéqg/cap) | 1.3 13 2.0 2.2 1.7 2.1

405 Table 6: Space heating characteristics by case. The table is based on the marginal effects regressions (table 5). The
406 reported values have assumed the mean level for therest of significant regressors. In white we present the fixated levels
407 for theregressors, and in grey — the estimated values for choice of heating mode, car bon intensity and footprint.

408 3.3 Other consumption

409  No major increases in other consumption are noted on domain level accordmépimothand clothing-
410 specific regression results with regards to the effects discussed above. Ingtedichd pro-
411  environmental behaviors to be consistent across domains, with food- and clethted-remission
412  decreases associated with pro-environmental action in the shelter orynuiigins The models have
413  adjusted R-squared values of 0.28 and 0.20, respectively (Sl table 20

414  The shift from individualized motor transport to active or public transpa$ dot relate to emission

415  increases in other consumption domains. On the contrary, a 10% rise in actip®rtrahsare is
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416  associated with a 1% drop in food-related emissions, which may be related to lmathlbwareness

417  or concern. Car ownership and air travel are also associated with higher esnissitier consumption.

418 The use of electricity and space heating is positively related to doddclothing footprints. Own
419  electricity production is associated with a drop in other consumption. The effect oticbostdecade
420 is more ambiguous with newer dwellings having lower heating needs and fugdeCF, which may
421  be due to socio-economic differences among inhabitants. The shift to urlbgnhasg no significant
422  effect on other consumption, while lower income and more favorable attitudes towardg energ

423  cooperatives bring about drops in food and clothing footprints.

424 3.4 Limitations
425  We discuss uncertainty with regards to some of the assumptions made foinfamlculations and
426  validate our estimates and assumptions with prior studies and uncertainty (se®&d “Footprint

427  uncertainty and validation”).

428  Prior studies discuss the importance of under-reporting in consumption and expenditeys sfirv

429 irregular and small purchases (Bee et al., 2012; Ivanova et al., 2017) and more dpeuffice

430 consumption (Ottelin et al., 2017). Studies emphasize the error and uncertainty ita tbaldeted in

431 travel surveys and provide evidence for under-reporting, e.g. 10-15% and up to 50@@iortyees of

432  trips (Clarke et al., 1981). Particularly, off-peak trips and tripsnfum-work purposes seem to be

433  associated with higher measurement error and incomplete recall and reportangb{QGtarke et al.,

434  1981; Giesbrecht, 2004; Minnen et al., 2015). Minnen and colleagues (2015) findagealato-day

435  variability of travel (as a % of total variability) of 60%, varyingweén 46.7% for work and 75.7 for

436 leisure, family- and friends-related travel, suggesting that travel isemptstable across weekdays.

437  Furthermore, our survey covers only regular land-based travel and systematicatigrdis impacts

438 embodied in irregular travel. The link to our survey was distributed between the wiotehs of

439 December 2015 and February 2016, which may have contributed to some season-specific travel
440 recording. Jara-Diaz and Rosales-Salas (2015) discuss measurement issuesveyitmesponses

441  recorded in a single day. To evaluate the accuracy of our estimates, we validated the bottom-up car trip
442  data with annual mileages where available. We found that 40% of our bottom-up estiarat@sthin

443  the annual mileage range provided by respondents. About 16% of car-users hadupottontravel

444  distance that was more than 5000 km longer than their annual mileage.

445 In terms of sample selection, our sample may suffer from self-selectionsedssirepresentativeness
446  of the geographic samples with regards to observed socio-demographics; however, we contcbhot co
447  for other potentially important indicators for survey response, e.g. envirodroentern. Hence, the
448  point of our analysis is not to establish causal relationships, thetr ta explore the role of technical
449  and social factors hypothesized by prior literature 8é®odel background”) in explaining observed

450  differences in emission variance and choice of transport and heating.
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Our regression analysis focuses on factors that vary within geographic regidva/thbeen previously
suggested as important for mobility and shelter impacts. We expect that thadeligional macro-level
factors (e.g. as suggested by Ilvanova and colleagues (2017)) that our model disregards, such
geographical factors, resource availability, social and cultural norms and pracket While we cannot
measure the isolated effect of these factors on mobility and shelter, we include regional fixedceffect
account for their combined effect. There may, however, be other relevant facteesyivathin regions

(e.g. neighborhood location, infrastructure and connectivity) that we do not consider siueey

design limitations.

Furthermore, we explore the choice of heating and travel mode as explained by energylissersred
Nevertheless, it could be that the effect runs in the opposite directiogllagev example, one could
use more electricity if it is also the heating source. Or, the leveeoh#i insulation could be decided

post the choice of heating mode. Mutual causality was beyond the scope of owatatisSiderations.

We include attitudinal indicators related to mobility- and shelter- iniéatin order to contribute to the
limited literature (Moser and Kleinhickelkotten, 2017) exploring the role of psychalogariables

from impact-oriented perspective. However, our attitudinal questions do notozoaeer and relevant
consumer attitudes on energy, transportation, consumption, environment and environmentatissues et
and, thus, should not be interpreted as capturing the relevance of consumer éttitoasgslity and
shelter carbon impacts overall. While we control for use of sustainability-focusethie&i we do not

look specificallyinto initiative membership, which may have wider implications for sustainabilit
transformationgAkenji, 2014; O’Brien, 2015).

Finally, while we observe effects on a broad domain level of other consumption in the coreteatiod
concerns. This is done to provide a wider perspective on the observed effectssirofteranious
consumption. Nevertheless, our analysis as a snapshot of behaviors and imipaitésl isn capturing
income rebound resulting from monetary savings and system-wide effects (Druckmagn2ei &l
Wood et al., 2017). For example, while we can compare other consumption impactsed eardfcar-
using households, we cannot confirm that the potential emission differencdsfn@sumonetary
savings. The design of such analysis would require additional considerations, eigiengpésetting
and omitted selection threats to validity (Ottelin et al., 2017), Bpeatiatement intervention (Chitnis
et al., 2013; Druckman et al., 2011), consumption coverage detail (Ottelin et al., @digoral
dimension (Ottelin et al., 2018), consideration of direct rebound (Chitnis, @04aR), differences in
emission intensities (Chitnis et al., 2013; Druckman et al., 2011; Wood &0al’), re-spending,
savings and economy-wide effects (Chitnis et al., 2013; Druckman et al., 2011;dHe2965; Wood
et al., 2017).
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484 4. Policy implications

485  Some differences occur in terms of the driving forces behind behaviors (coimupgiterns) and their
486  carbon intensities. Particularly, distance is influenced by socio-demograginicsise of energy
487  cooperatives, while the carbon intensity of travel by distance and car ownerdhipr@&mfluenced by
488  the context (urban-rural typology) and income. Factors such as household size, age, andhiplati
489  status are important for energy use, while the amount of electricityanskeiicome are important for
490 the carbon intensity of shelter. Dwelling characteristics are impdidaritoth. We find the parallel
491  analysis of determinants to uncover potentially offsetting effects, e.g. wherptattenower the energy

492  use in the dwelling may also impact the choice of heating.

493  We summarize the effects and list some policy-relevant considerations for carboh rimitjggtion
494  associated with these effects (table 7). Table 7 should be interprefeainting to the places to
495 intervene, rather than ranking potential interventions in terms of theictigéness and upscaling
496  potential. Different disciplines have proposed various interventions aricy goktruments, and
497  assessing their effectiveness for impact mitigation is beyond the scope tfdyufesg see Abrahamse
498  etal., 2005; Creutzig et al., 2018). Considering additional co-benefits of pdopessures should also
499  be regarded in the motivation of carbon mitigation policies $$€€o0-benefits”).

500 Highly populated areas can substantially reduce emissions at a low costhtnoog compact,

501 connected and efficient design of housing and transport infrastructure. Partjoutaflpd that urban

502 living is associated with lower travel by land and a higher active and publéptrdrshare, as well as

503  smaller dwelling sizes and a larger share of apartment blocks. The “economies” of scale, proximity, and

504  connectivity of urban areas enable the provision of infrastructure foeagtt/ public transport and the

505 use policy instruments for environmental management (Dodman, 2009; Wiedenhofer et alQa013).
506 results underline the importance of shortening the travel distance for redwrisgart emissions

507 (directly and indirectly through the intensity of travel). Compact developamehteductions in distance

508 would be most enabling for active travel in the presence of proportionate reductions in travel time (e.qg.
509 Newman and Kenworthy, 2006). Furthermore, changes in car ownership and use of mobility sharing

510 initiatives are needed to reap the full benefits from reduced distance.

511  Urbanization may reduce shelter impacts through smaller dwelling sizes, hgity diging and energy
512 saving refurbishment measures. Nevertheless, policies that encourage acsimipéat urban living
513  should also aim for de-carbonization of heating sources typical for urban context. balspagment-
514  block dwellers are found to more likely use oil and gas for heating (directty, and less likely use
515 renewables and heat pumps for heating, highlighting the need for top-down incémtiess-carbon
516  heating in urban environment. Our analysis shows that lowering heating needs mayiredekance
517  on fossil fuels, but strong incentives are needed for a transition to rendvealbleg sources. Prior

518 studies have shown that district heating competes with natural gas and othdrafesdienergy supply
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519 in high heat density urban area (Euroheat and Power, 2006), pointing to the de-carbonizatioatof distri
520 heating as another priority in urban context. Furthermore, our sample suggebtaisehold sizes tend

521  to be smaller in urban areas (in line with Ottelin et al., 2015), suggesting the reeith¢o enable

522  household economies of scale in urban context. Although not investigated here, our resultsheiiggest
523  multi-household living could reduce shelter impacts, and options like co-housing havertyeesed

524  for their benefits (Williams, 2008). Finally, cities can be particularly vulnerable to climate change with
525  high-density areas exposed to, for example, heat waves or coastal flooding (Dora et al., 2015).

526  With higher income levels, there are also expected increases in the carbomtiopgaticularly
527  associated with air travel and other consumption. Our findings confirm theanele of income for
528  mobility, food and clothing domains (lvanova et al., 2017; Pullinger, 2012; Sommkrateda, 2016)
529 A reduction in working hours without proportionate decreases in incomédikaly be of little
530 relevance for emissions. Yet, longer working hours are associated with Enven éntensity of travel,
531 in line with the hypothesis that leisure travel is not only constramednoney but also time
532  (Czepkiewicz et al., 2018).

533  Furthermore, we find the primary reasons for not heating to be financialhigtier income levels
534  significantly reducing the likelihood of not heating. Importantly, green induginiadies may result in
535  rising electricity prices for consumers, with the financial burden unggdastributed across social
536  groups (Meckling et al., 2017; Wiedenhofer et al., 2013). Therefore, the transt@reteables should
537  consider the potential for energy poverty and cold-housing related social hdnayeld/prsatz et al.,
538  2014).

539  While our analysis confirms the importance of air travel in terms of @dimatact (in line with Aamaas

540 etal. (2013); Aamaas and Peters (2017)), the power of selected factors to explain observed variation in
541  air-travelled distance is rather limited. We find that higher income and educatissac@éated with a

542  higher likelihood of air travel, which confirms (international) traaghighly income-elastic and carbon-

543 intensive (Lenzen et al., 2018).

544  Car ownership is a significant carbon lock-in for our sample. This is in line with patysepointing
545  to conventional passenger vehicles as the highest carbon lock-in due to establishésksabsidl
546  norms, and supporting infrastructure (Seto et al., 2016). Nevertheless, there needsbthaeioral
547 alternative (e.g. public transport, manageable distance) for a change iavehitdroccur. Directing
548  public funds towards infrastructural development with significant social (inelnsss, equality) and
549  environmental (enabling active and public transport) consideration is key. Furtkemupscaling of
550 car and ride-sharing initiatives may widen the choice of transport mode ahbk @aapooling, thus,
551  significantly reducing mobility emissions. We also find low relevancetittid¢s and use of energy

552 initiatives for the shelter footprint, although benefits may occur beyond the ofmaitiative activity.
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Drivers

Effects on Mobility Footprint

Effects on Shelter Footprint

Effects on Other Consumption

Policy-relevant considerations

e Longer distance reduces active travel

e Higher electricity use increases the likelih

o Active travel associated with lower

eReduce travel distance (e.grban connectivity, telecommuting)

reduce the carbon intensity of travel

) so for public transport) that electricity is used as a heating sourcg food and clothing footprint eReduce carbon intensity of travekncourage active/public travel (e.d

£ g e Car ownership is a carbon loakwith Larger dwelling size more likely to be heale Air travel and car ownership urban connectivity, infrastructure, financial indeas, bans and
;’-)_ 5 g m high likelihood of driving (even at shor{ by renewables/ heat pump (and by district associated with higher food- and regulations), carpoolingackle car ownership lock-in (e.g. incentives|
9 = 5 S| distances) heating); larger dwelling have also higher| clothing footprint change habits, parking and zoning restriction, Vetdad fuel tax), fuel
=0 'g e No voluntary substitution between sho( space heating needs  Higher energy use is associated witl decarbonization and efficiency gains
% aé GU’). ‘g flights and public land travel e Apartments have lower energy needs and higher food-and clothing-footprint [eReduce long distance travel and intensity (e.gastfucture,
= % % E e Work trips more likely to be done via Igss likely to heat.by.renewgbles and mor¢e Respondents living in newer dwellir| telecommuting, efficiency improvements, capacity coirgsacarbon
S 5 T S| public transport likely to heat by district heating associated with higher food footprin{ taxes or trading schemes)
2w g g * Newer dwellings/better thermal insulation |« Own electricity production associatqeReduce energy use (e.g. efficiency improvements, dwedandards,
8 g g__Ts g associated with lower heating needs with lower clothing footprint taxes)
=TT (potentially higher electricity consumption eReduce carbon intensity of energy (e.g. regulatifimancial incentives
o e More favorable mobility-initiative e Energy-initiative attitudes insignificant for e More favorable attitudes associatedeEvaluate the holistic effect of initiatives (e.g. spiBoeffect, reduction
4 é 2 attitudes are associated with a reductiq shelter impacts with lower food/clothing footprint in car ownership)
T, o in the land-traveled intensity (lower |e No relevance of initiative use on total ene e Low relevance of domain-specific attitudes for emissions
ﬁ g 5 likelihood of driving) and a rise in air- | use; users of energy cooperatives less lik e Account for potential rebound with use of initiass
§ :g _S g based carbon intensity to “not heat”; more likely to heat water by
= f c;rs Qe Use of initiatives rise land-travel distan electricity
< © @ S| (holding car ownership constant)
_ e Urban context associated with lower (¢ No direct effect of rural context on energyle No significant household economiege High-density infrastructural development, incentivescmmpact multi
g % travel distance by land, more active an use though important urban-rural differenq scale household living (e.g. sprawl taxes) considering otfesrds (e.g.
Z ‘5 S public transport in dwelling characteristics e No relevance of urban-rural typology income, household size)
§ % g @ |e Limited household economies of scalefe Household economies of scale for energy| (keeping income constant) e Incentives for mitigating the carbon intensity of shettarticularly in
2 O£ % | (eg. due to differences in travel routin{ needs. No significance for carbon intensity urban environment

" e Females travel lower distances both bye Limited relevance for the choice of heating|Limited relevance: e Differences in time use and expenditure patterns abwsigroups

2 land and air, and are more likely to optl source e Females and more educated with Ig should be considered (e.g. flexible working schemesdisituation)

o public transport e Married and younger associated with lowe| food footprint e Raising awareness about other benefits of active t(avgl health)
& §> * Well-educated travel more actively on | energy needs; females associated with hig
g g ground and by air space heating needs
0o e Married more likely to drive
g o Air travel is very income elastic e Income and working hours are of limited [ Rising income increases footprints ineReduction in the average paid working time are ebguet produce
2 (intensity, distance) relevance for shelter. both food and clothing domains with | emission decreases in most categories.
@ e Rising income increases land-travel |eHigher income classes are less likely to no| clothing being the most income-elasteSchemes targeting only working hours (keeping incomstaat) would
% distance heat likely not produce significant footprint changes
% e Limited relevance for transport mode 4 eFuel poverty needs to be addressed (especially in fizeofaising
g car ownership (own vehicle not a luxur energy prices) with financial saving potentially beagignificant drive|
§ e Higher working hours may actually to not hea

Table 7: Summary of effectsand related policy-relevant considerations.
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This study points to key factors that shape energy demand and GHG emissionsirubigral carbon-
intensive consumption domains, which have important implications for policy desigoliavade
mitigation. Increasing settlement density, while reducing travel distance, inemhear ownership
rates, holds potential for significant emission reductions in thelityatwmain. Key considerations for
carbon mitigation in the shelter domain include dwelling characteristicd) as size, type, time of
construction, refurbishment level, as well as income, energy use and household treinelsnéret we
highlight the strong need to tackle car ownership, air travel andne&ur study makes a key
contribution towards the design of adequate policies to enable a successful transitiGrtatslityt
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