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MATTERS ARISING

Reply to: “Impact of marine processes on flow
dynamics of northern Antarctic Peninsula
outlet glaciers” by Rott et al.
Peter A. Tuckett1, Jeremy C. Ely 1✉, Andrew J. Sole 1, Stephen J. Livingstone 1, Benjamin J. Davison 2 &

J. Melchior van Wessem 3

REPLYING TO Rott et al. Nature Communications https://doi.org/10.1038/s41467-020-16658-y (2020)

I
n Tuckett et al.1, we report short-term speed-up events of
Antarctic Peninsula outlet glaciers. Modelled surface melting,
observations of surface meltwater, and speed-up event char-

acteristics led us to propose speed-ups were a consequence of
meltwater reaching the ice-bed interface; a meltwater hypothesis.
Rott et al.2 replicate the velocity data and show that during one
event, sea-ice conditions change ~90 km from three glaciers, and
at the front of another, leading Rott et al.2 to propose a sea ice
hypothesis: that sea-ice movement away from glacier fronts
reduces back-stress triggering acceleration. Simultaneously Rott
et al.2, argue that the ice velocity observations are biased due to
measurement artefacts. Here, we defend the meltwater hypoth-
esis, present evidence against the sea-ice hypothesis, and examine
potential bias in our glacier velocity measurements.

Although sea-ice evacuation is coincident with the March 2018
speed-up event observed in Tuckett et al.1, changes in sea-ice
characteristics are not synchronous across all studied glaciers.
Movement of sea ice, driven by Foehn winds (Fig. 1a), at the front
of Drygalski Glacier, and distal to Hektoria, Cayley and Jorum
glaciers (past ~90 km of unchanged multi-annual fast pack ice),
during the March 2018 event was presented by Rott et al.2 as
evidence for the sea-ice hypothesis. Foehn winds also induce
surface melting. We interpret this melting as the trigger of the
speed-up event, and the sea-ice movement as a by-product of
Foehn winds for the following reasons. First, sea-ice cover
increases near Cayley glacier during this event (Supplementary
Table 1) while during other events, wind speeds are lower (Fig. 1a)
and glacier-adjacent sea-ice conditions remain unchanged
(Fig. 1b). Second, all three speed-up events have a corresponding
spike in surface melting (Fig. 1a). Third, we find it unlikely that
changes in sea ice, far from the glacier front (~90 km), can trigger
a speed-up event. Finally, the sea-ice hypothesis cannot explain
how glaciers return to pre-event velocities1, as the sea ice does not
rapidly reform to its pre-breakup structure (Fig. 1c). Conversely,
the meltwater hypothesis incorporates an explanation for the

return to pre-event ice velocity: namely that the subglacial drai-
nage system adapts to accommodate the extra water flux, thereby
reducing basal water pressure3.

Whether water is able to penetrate the Antarctic Peninsula
glaciers is also questioned by Rott et al.2. Theory4, supported by
extensive observations5,6, demonstrates that lakes 0.25–0.80 km in
diameter (comparable to those observed in Tuckett et al.1) pro-
vide enough water to drive fracture propagation to the ice sheet
bed (hydrofracture) through >1 km of cold ice. Although we have
no direct observations of this process, and demonstrate that
refreezing of lakes is common, hydrofracture to the bed offers the
simplest explanation for the sudden disappearance of surface
lakes in crevassed regions (Fig. 5 in Tuckett et al.1). Furthermore,
speed-up events occur during large melt events (e.g. March 2017)
or those which follow a prolonged period of little or no melt (e.g.
November 2017 and March 2018), consistent with the theory that
melt supply variability is more important than magnitude for
triggering speed-ups3. Thus, the notion that there is insufficient
water to penetrate to the bed and cause a speed-up ignores a large
body of theoretical and empirical research.

Though Rott et al.2 are correct to raise our use of an outdated
grounding line, our own up to date analysis of the grounding-line
position for these glaciers shows that the majority of velocity data
were obtained from grounded or partially grounded ice (Fig. 2;
Supplementary Fig. 2). Excluding Hektoria (where the grounding-
line position is highly uncertain due to an ice plain), 69% of our
observations came from grounded ice, and 15% were located at
the grounding line. For Hektoria, the majority of observations
came from the ice-plain region, where ice-surface features indi-
cate at least partially grounded ice (Fig. 2). Regardless, the loca-
tion of velocity observations is irrelevant for the meltwater
hypothesis. Key is that meltwater drainage through ice occurs
above the grounding line, as is inferred1. Thus, the assertion of
Rott et al.2 that our interpretation depends upon the assumption
that velocity data come from grounded ice is false.
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We acknowledge that a spatially constant acceleration in ice
flow would result in a relatively smaller change toward the glacier
termini, where baseline velocities are higher. However, relative
velocities do show that the relative magnitude of speed-ups
decreases away from the location of water-filled crevasses and
potential lake drainage, even up-flow where the baseline velocity
is lower. Figure 4 in Tuckett et al.1 shows the relative size of the
ice flow perturbation is largest near a field of crevasses observed
to fill with meltwater, and the absolute magnitude of the
November 2017 speed-up is greater at 9 km inland than at 4 km
at Hektoria Glacier (Supplementary Fig. 4 in Tuckett et al.1),
inconsistent with a marine driver.

The estimates of ice motion in Tuckett et al.1 did not account
for temporal variations in radar penetration depth as the surface
evolves between snow, firn, water and ice. To our knowledge, the
effect this has on satellite radar velocity measurements has never
been fully quantified. This introduces a bias2, which for our data1

means that a change from frozen to melted snow would induce an
apparent slow-down for westward flowing glaciers and an
apparent speed-up for eastward flowing glaciers (vice-versa for

refreezing). Several lines of evidence suggest that this bias is
smaller than the signal of speed-up events (see Supplementary
Note 3). First, of our study glaciers, the bias effect should be
smallest at Hektoria glacier because the ice flow direction is
closest to the satellite heading angle, yet the largest speed-ups are
observed here1. Furthermore, speed-ups similar to those identi-
fied in Tuckett et al.1 occur at Edgeworth Glacier, which flows
roughly parallel to the satellite heading angle and so the bias
should be close to zero2 (Supplementary Fig. 2). Moreover, speed-
ups at individual glaciers vary depending on the magnitude of
melt and antecedent conditions in-line with hydrological theory.
Finally, the majority of speed-up events produce a net positive
effect on ice velocity, whereas a net zero effect would be expected
if solely due to bias. Further sources of error raised by Rott et al.2

are also unlikely to have a larger signal than that of the meltwater-
induced speed-up events identified in ref. 1 (Supplementary
Note 4).

Overall, we show that sea-ice and/or measurement bias are
unlikely to be the main cause of the short-lived (<6 day) speed-up
events observed in Tuckett et al.1. We note that sea-ice thinning
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and disintegration can cause ice flow speed-ups that are greatest
near tidewater glacier and ice shelf termini and are not followed
by slow-down (e.g. refs. 7–9), making them distinct from the
events observed in Tuckett et al.1. The spatial and temporal

pattern of ice flow variations and their relationships to environ-
mental forcings can therefore allow the underlying chain of
events to be inferred, but this is only possible with high-resolution
datasets. In addition, ground-based observations would aid in
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elucidating and enumerating the underlying causes of the speed-
up events reported in Tuckett et al.1.

Data availability
Data are available from https://figshare.shef.ac.uk/s/896c34d71a41caf5d03b. Elevation

data (Fig. 2) are available from https://www.pgc.umn.edu/data/rema/.

Code availability
Image processing to derive velocity estimates was performed using GMSTAR (https://

topex.ucsd.edu/gmtsar/) and the following Matlab © functions: Particle Image

Velocimetry framework: https://uk.mathworks.com/matlabcentral/fileexchange/45028-

pivsuite; normalised cross-correlation with same-sized images: https://uk.mathworks.

com/matlabcentral/fileexchange/29005-generalized-normalized-cross-correlation;

subpixel cross-correlation peak determination: https://uk.mathworks.com/matlabcentral/

fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation; image

segmentation filtering: https://uk.mathworks.com/matlabcentral/fileexchange/19084-

region-growing; visible structured noise filter: https://www.math.univ-toulouse.fr/~weiss/

Codes/VSNR/VNSR_VariationalStationaryNoiseRemover.html.
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