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Abstract

Wehave studied the effect of ultrafast laser-heating on themagnetization dynamics of perpendicularly

magnetizedCoFeBfilm bymeans of the time-resolvedmagneto-optical Kerr rotation effect. The

effective perpendicularmagnetic anisotropyfield HK is significantly decreasedwith enhancing the

pump laser-fluence in amoderate range of 5–12mJ cm−2. TheGilbert damping, however, is found to

be independent of the pump fluence. Thesefindings provide a newmethod of separatelymanipulating

theGilbert damping and perpendicularmagnetic anisotropy.

1. Introduction

Themagnetic filmswith perpendicularmagnetic anisotropy (PMA) are the promising candidates in the

application of the next-generation, high-densitymagnetic information storage technology due to their high

thermal stability. One of the prevailingmagnetic randomaccessmemories (MRAM) is switched by spin transfer

torque (STT) due to its good down-scalability [1, 2].With STT, the critical current density formagnetization

switching in the case of perpendicularmagnetizedmagnetic tunneling junctions (MTJs) is directly proportional

to theGilbert damping constant and PMA. This proportionality shows that a balance between the thermal

stability andwritability ofmagnetization is required. Therefore,materials with large PMAandweakGilbert

damping are preferred. TheCoFeB/MgO/CoFeBMTJwith PMA is extensively investigated due to its high

tunnelingmagnetoresistance ratio [3]. However, from a physical point of view,magnetic anisotropy andGilbert

damping both arise from the same origin, namely the spin–orbit coupling, as evidenced by previous results

[4, 5]. Usually,materials with large PMAexhibit large damping values such asCo/Ptmultilayers [6] andCoCrPt

alloys [7].

At the same time, the PMAand theGilbert damping can also be influenced by various other factors, such as

capping layer, [8–10] annealing temperature, [11, 12] element compositions, [5, 13, 14] and film thickness

[15, 16]. For instance, Liu et al [10] observed a 35% increase in PMAby replacing the Ta buffer layer, with

Devolder et al [17] reported that, similar to the annealing effect, the effective anisotropy field increased in

proportion to the irradiation fluence of light ions, while theGilbert damping constant was almost invariant.

These studies suggest that there is a possibility of tuning the anisotropy and damping constant in a separate way.

In the practical application of STT–MRAM, themagnetization switching generally takes placewithin a timescale

of nanoseconds (ns) and thermal effect arising from thewriting current is inevitably introduced into a given

device. It remains an open question that how the transient thermal effect influences the anisotropy andGilbert
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damping. It has been previously reported that the damping constants in ferromagnetic thinfilmswith in-plane

magnetic anisotropy can be transiently enhanced by increasing thefluence of femtosecond laser-pulses [18, 19].

The results showed that the transient thermal effect induced by the ultrafast laser-pulses within the ns timescale

plays an important role in transientlymanipulating damping parameter. However, studies of transiently

tailoring the PMAandGilbert damping by this kind of thermal effect are still lacking. In this letter, we report the

effect of transient laser heating on themagnetic anisotropy andGilbert damping in perpendicularlymagnetized

Ta/CoFeB/MgO film by using the time-resolvedmagneto-optical Kerr effect (TRMOKE) techniques. The

effective perpendicular anisotropy field HK has been found to be strongly dependent on the fluence of the

ultrafast laser-pulses. TheGilbert damping, however, remains stable within a pump fluence range of

5–12 mJ cm−2where the saturationmagnetization remains constant.

2. Experimentalmethods

The samplewas prepared by using themagnetron sputteringmethodwith a base pressure of 10−5Pa. After the

samplewas deposited, a post-annealing process at 300 °Cwas performed. Further growth information can be

found in our previous paper [20]. The stacking structure is Si substrate/Ta(5 nm)/Co40Fe40B20(1 nm)/MgO(3

nm)/Ta(5 nm). The numbers in brackets represent film thickness. Themagnetization dynamics wasmeasured

using the TRMOKE at room temperature. In ourmeasurements, the laser pulses were generated by a Ti:

sapphire regenerative amplifier with a central wavelength of 800 nm, a repetition rate of 1 kHz, and a pulse

duration of∼50fs. The output of the amplifier was divided into two beams.Onewas used as the pumpbeam

and the other was frequency-doubled (3.1eV) as the probe beam. The spot diameters of the pump and probe

beams focused onto the sample are∼500 and 200μm, respectively.

Figure 1(a) shows the experimental geometry employed in ourmeasurements. The pumpbeam is incident

normally and the incident angle of probe beam is∼5°with respect to the normal direction of the sample. The

appliedmagnetic fieldH is along the direction of Hq =47.5°. Figure 1 (b) shows the hysteresis loopswith the

magnetic field parallel and perpendicular to the film plane. Thesemagnetization curves weremeasured by a

quantumdesign superconducting quantum interference device. The saturationmagnetizationMs is around

1500 emu/cc, which coincides with other results [21, 22]. The experimental HK is approximately 3 kOe

obtained from the closed area between the in-plane and out-of-plane hysteresis loops.

Figure 1. (a) Schematic of themeasurement geometry of the time-resolvedKerr rotations. The pumpbeam is along the normal
direction z of the sample plane. The Hq and θ represent the angles away from the z direction for the externalmagnetic field and the
initial equilibriummagnetization, respectively. (b)Magnetic hysteresis loopswith themagnetic field parallel and perpendicular to the
sample plane, respectively. The inset shows a zoom-in of the hysteresis loop near the saturation field.
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3. Results and discussions

Figure 2(a) shows theKerr rotations of theCoFeB film as a function of the time-delay t ,D whichweremeasured

at the pumpfluence of 7 mJ cm−2under differentmagnetic fields. The instantaneous decrease of Kerr signal at

tD =0 ps is characterized as the ultrafast demagnetization [23]. This ultrafast demagnetization behavior

modifies the effectivemagnetic anisotropyfieldwithin a few ps and thus triggers amagnetization precession

which last for hundreds of ps. The oscillations shown infigure 2(a) correspond to themagnetization precession

that strongly depends on the externalfieldH. In addition, themeasured data of Kerr rotations also include a

non-oscillating component, which can be described by a single-exponential function. Thus, the experimental

Kerr dynamics can bemodeled as the following equation [24]:

a t ft b vtexp cos 2 exp , 1q q t p fD ~ - + + -( ) ( ) ( ) ( )/ /

where a τ, f, f are the initial amplitude, spin relaxation time, precessional frequency and phase, respectively. b is

the background amplitude and v is the recovery rate of themagnetization. Infigure 2(a), the red solid lines are

thefitting results. The extracted parameter of precession frequency f is plotted infigure 2(b) as a function ofH.

We reproduce f using the following equations as used in previous results [25, 26]:

f H H2 21 2g p= ( ) ( )/

with H H Hcos cosH K1
2q q q= - +( ) and H H Hcos cos 2 .H K2 q q q= - +( ) Here, γ is the gyromagnetic

ratio defined as γ=g ,B m / where g, Bm and  are the Lande’s g-factor, Bohrmagneton, and the reduced
Planck’s constant, respectively. The HK here equals K M M2 4 ,S SU p-/ where KU is the uniaxialmagnetic

anisotropy constant. The equilibriummagnetization angle θ is calculated by the equation:

H Hsin 2 2 sin . 3K Hq q q= -( ) ( ) ( )/

The value of HK =2kOe at 7 mJ cm−2 is obtained by fitting the extracted precession frequencies f in

figure 2(b)with the equation (2). The solid line infigure 2(b) is thefitting curve. Infigure 2(c), the effective

damping constant ,effa defined as effa = f1 2 ,p t/ is calculated using thefitted values of f and τ. The effa shows an

obvious dependence onmagnetic field, reaching itsminimumat the highest field of 9600 Oe.The effa values

under high fields suppress the extrinsic contributions such as the inhomogeneous anisotropy and thus

approximately equals the intrinsic 0a [5, 26]. Here, we treat the effa at the highestfield of 9600Oe as the intrinsic

damping constant .0a
To study the femtosecond laser-heating effect on the 0a and HK in our PMA film, we performed systematic

measurements of time-resolvedKerr rotation as a function ofmagneticfields under different pumpfluences,

where the HK and 0a can be derived. The rawdata offluence-dependent Kerr rotations are shown in the

supplementarymaterial (SM) is available online at stacks.iop.org/NJP/21/053032/mmedia. The upper

threshold of pump fluence is carefully checked to assure themagnetization dynamics are reversible as the pump

fluence is tuned back to the lowest value. Thus, within the pumpfluence range of 5–12 mJ cm−2, theCoFeB film

is protected fromdegradation. The average heating effect from the pumppulses can be ignored bymeasuring the

magnetization at t 6 psD = - with andwithout the pumpbeam (see figure S4 in the supporting information).

Figures 3(a) and (b) show the derived HK and 0a values as a function of pump influence F, respectively. The

0a of 0.0165 is found to be independent of Fwhile the HK ismonotonously decreased from2.4±0.5 to

Figure 2. (a)Time-resolvedKerr rotation traces for the PMACoFeB filmmeasured at different externalmagneticfieldswith
47.5 .Hq =  The pumpfluence F isfixed at 7mJcm−2. Solid lines are thefitting lines according to equation (1), which are used to

obtain values ofmagnetization precession frequency f and spin relaxation time τ. (b)The obtainedmagnetization precession
frequency f as a function of external fieldH. The red solid line is thefitting line based on equations (2) and (3). (c)The external fieldH
dependence of the effective damping constant .effa The inset shows a zoom-in of effa in the range of 5–10KOe.
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0.32±0.04KOewith the increase of F. Throughout the transientmagnetization precession process, both MS

and KU are changing.However, in comparisonwith M ,S the reduction of KU should contribute to the decrease

of H .K Because, according to the definition of HK mentioned above, if the reduction of MS is dominant, the

resultant HK would increase. This contradicts the obtained results. In addition, as shown in previous results

[18, 19], the variation of MS is negligible for analyzing the pump-fluence dependence of the effectivemagnetic

anisotropic field. Therefore, the PMA KU is proportional to H .K The pump fluence dependent results of KU and

0a demonstrate that the perpendicular interfacial anisotropy can be varied independently with damping

constant. Such a separate tunability cannot be simultaneously achieved inmost cases [27, 28] because

ferromagneticmaterials with large anisotropy constant usually have large damping factor due to spin–orbital

coupling (SOC).

For better understanding the behavior of HK and 0a in the PMACoFeB thin film under different pump

irradiation fluences, we provide a possible explanation for the irrelevance between 0a and H .K As demonstrated

in our previous work of 10nmCoFeBfilmwith in-plane anisotropy [19], the 0a increasedwith the increase of F

while the effective demagnetization field remained constant. The enhancement of 0a upon laser heating is

attributed to the transient rising values ofT T .C/ HereT is the electronic temperature andTC means Curie

temperature.However, in the case of 1 nm thickCoFeBfilm, besides the similar electron temperature rise under

different pump fluences, the interfacial effect has to be taken into consideration. The origin of PMA for the 1nm

CoFeBfilm is attributed to the hybridization of Fe and oxygen’s orbitals at theCoFeB/MgO interface due to the

interfacial SOC [29, 30]. As a consequence, the decrease of PMAas increasing the pump fluence indicates the loss

of interfacial SOC.We attribute this reduction of interfacial SOC to the transient thermal effect induced by the

pulsed laser excitations. Similar quenching of PMAcaused by high temperaturewas also reported in previous

works [31]. Based on the discussions above, in the PMACoFeBfilm, both the interfacial SOC and theT TC/ ratio

are obviouslymodulated by the thermal effect caused by the pulsed laser. These two factors should be

responsible for the different behaviors of HK and 0a of the 1nm thin film case.

Before showing how the two factors lead to our experimental results, it is essential to approximately quantify

the transient thermal effect. Illuminated by the laser pulses of differentfluence, the corresponding equilibrium

temperatures of the sample was estimated to be∼815–1310K. The temperatures were obtained according to the

ratios of the reducedmagnetic order 0q qD / at tD =5ps (see figure 4) aswell as the publishedM–T curves [32].

Here, we used the values of 0q qD / at 5 ps because at this time-delay the thermal equilibrium among electron,

spin and lattice subsystems usually has been reached. The detailed information of the temperature estimation is

given in the supplementarymaterial (SM). Since the temperatures raised by the laser pulses in both the 10 and 1

nm thickCoFeB films are in the same order ofmagnitude, we expect a similar increase of damping constant in

the 1 nmfilm due to the rising values ofT T .C/ Wedenote this damping term that increases with the increase of

pumpfluences as .ratioa The damping term ratioa originates from the bulk properties of the film. As a

consequence, to assure thefluence-independent nature of ,0a another damping term is required to compensate

the increase of .ratioa
Considering the proportional correlation between the SOC and damping parameter, it is reasonable to

define a damping term intera that arises from the interfacial SOC. As also recently demonstrated byOkada et al

[35], the interfacial PMA is found to be correlatedwith theGilbert dampingmanifested bymonitoring the

ferromagnetic resonance linewidths with varying temperatures and sample thickness. According to the

Figure 3. (a)The derived effective perpendicular anisotropy field HK and (b) intrinsic damping constant 0a of the PMACoFeB thin
film as a function of the pumpfluence F.

4

New J. Phys. 21 (2019) 053032 B Liu et al



discussions above, both the interfacial damping term intera and the bulk damping term ratioa contribute to the

total intrinsic damping constant ,0a namely .0 inter ratioa a a= + Therefore, we think that upon strengthening

the transient thermal effect the decreasing trend ofαinter compensates the enhancement of ,ratioa leading to the

stabilization of 0a within themeasured pumpfluence range.

4. Conclusion

In conclusion, the femtosecond laser-heating effect on themagnetization dynamics in the perpendicularly

magnetizedCoFeBfilm is investigated by the TRMOKE techniques. The equilibrium temperature of theCoFeB

filmwith PMA is quantitatively scaled from815 to 1310K in the pumpfluence range of 5–12 mJ cm−2.Within

such a high temperature regime, the effective perpendicular anisotropy field decreases with increasing the pump

fluencewhile theGilbert damping constant remains stable. The possible reasons forfluence-independent

behavior of 0a are discussed in terms of the interfacial SOC and electronic temperature. Our finding provides an

approach for controlling separately the perpendicular anisotropy field and the damping constant, which is

critical for achieving the best performance of STT–MRAMdevices.
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