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Abstract: 

Increasingly, repeat expansions are being identified as part of the complex genetic 

architecture of amyotrophic lateral sclerosis. To date, several repeat expansions have been 

genetically associated with the disease: intronic repeat expansions in C9orf72,  polyglutamine 

expansions in ATXN2 and polyalanine expansions in NIPA1. Together with previously 

published data, the identification of an amyotrophic lateral sclerosis patient with a family 

history of spinocerebellar ataxia type 1, caused by polyglutamine expansions in ATXN1, 

suggested a similar disease association for the repeat expansion in ATXN1. We, therefore, 

performed a large-scale international study in 11,700 individuals, in which we showed a 

significant association between intermediate ATXN1 repeat expansions and amyotrophic 

lateral sclerosis (P = 3.33 x 10-7). Subsequent functional experiments have shown that 

ATXN1 reduces the nucleocytoplasmic ratio of TDP-43 and enhances amyotrophic lateral 

sclerosis phenotypes in Drosophila, further emphasizing the role of polyglutamine repeat 

expansions in the pathophysiology of amyotrophic lateral sclerosis.

Keywords: amyotrophic lateral sclerosis; trinucleotide repeat expansions; DNA repeat 

expansion; genetic association study. 

Abbreviations: ALS = amyotrophic lateral sclerosis; FTD = frontotemporal dementia; 

GL(M)M = generalized linear (mixed) model; polyQ = polyglutamine; SCA1 = 

spinocerebellar ataxia type 1; SCA2 = spinocerebellar ataxia type 2; WGS = whole-genome 

sequencing
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by 

the loss of motor neurones leading to progressive weakness and spasticity (Brown and Al-

Chalabi, 2017; van Es et al., 2017). Genetically, ALS is a highly heterogeneous disease with 

many underpinning factors (Al-Chalabi et al., 2017). In 5-15% of patients, there is a positive 

family history and it is assumed that there is a single causal mutation (Andersen and Al-

Chalabi, 2011; Byrne et al., 2011). However, familial ALS mutations have also been 

identified in patients without a clear family history and multiple studies show that the genetic 

contribution to the risk of developing sporadic ALS is considerable (±40-60%) (Al-Chalabi et 

al., 2010; Wingo et al., 2011; Ryan et al., 2019). To date, over 40 different genes have been 

linked to ALS, mostly containing (rare) point mutations that significantly increase the risk of 

disease (Al-Chalabi et al., 2017). However, over the last few years, repeat expansions in 

several genes have also been implicated in ALS, including C9orf72, NIPA1 and ATXN2 

(Blauw et al., 2010; Elden et al., 2010; DeJesus-Hernandez et al., 2011; Ajroud-Driss et al., 

2015). ATXN2, for instance, contains trinucleotide repeat motif of CAG repeats, coding for a 

stretch polyglutamine (polyQ) and was first implicated as a risk factor in ALS after the 

discovery of it being a potent modifier of TDP-43 toxicity, an important step in ALS 

pathogenesis (Elden et al., 2010). A large expansion (>34) of the number of CAG repeats in 

ATXN2 (normally 22 or 23) is known to cause spinocerebellar ataxia type 2 (SCA2), whereas 

intermediate-length (29 - 33) repeats are associated with ALS (Elden et al., 2010; Rub et al., 

2013).  

In our outpatient clinic, we came across an ALS patient who had a positive family 

history for spinocerebellar ataxia type 1 (SCA1) (Fig. 1), a neurodegenerative disease caused 

by a polyQ repeat expansion in the ATXN1 gene (Banfi et al., 1994; Rub et al., 2012). There 

are some interesting similarities between ATXN2 and ATXN1, most importantly the presence 
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of the coding CAG repeat motif. SCA1 patients may also have upper motor neurone signs 

and autopsy studies show prominent loss of Betz cells, suggesting phenotypic overlap with 

ALS (Seidel et al., 2012; Rub et al., 2013; Saberi et al., 2015; Genc et al., 2017). 

Interestingly, a similar Italian ALS-SCA1 pedigree was reported a few years ago (Spataro 

and La Bella, 2014). This phenotypic overlap, as well as the co-occurrence of ALS and SCA1 

in two unlinked pedigrees, makes ATXN1 a plausible candidate gene for ALS. 

Three previous studies have already explored this possible association between 

ATXN1 expansions and ALS (Lee et al., 2011; Conforti et al., 2012; Lattante et al., 2017). 

However, these studies have produced conflicting results which are difficult to compare, due 

to the use of different repeat size cut-offs for expanded alleles; their conclusions mostly rely 

on nominal significance. Therefore, we set out to perform a large-scale genetic association 

study using data from 11,700 individuals and explore the possible role of ATXN1 in ALS.

Materials and methods

Subjects

All participants gave written informed consent and approval was obtained from the local, 

relevant ethical committees for medical research. Genotyping experiments were performed 

on a total of 5,088 DNA samples from four populations. All patients were diagnosed 

according to the revised El Escorial criteria. Control subjects were from ongoing population-

based studies on risk factors in ALS(Huisman et al., 2011). All related individuals were 

excluded from further analysis.

PCR, sequencing and genotyping

Samples were analyzed using PCR according to protocols described previously and results 

were analyzed in a blinded and automated fashion. To confirm PCR fragment length, 850 
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samples were additionally analyzed with Sanger sequencing. Primers: 5’- 

CAGTCTGAGCCAGACGCCGGGACACAAG-3’ (forward) and 5’-

CGGTGTTCTGCGGAGAACTGGAAATGTGG-3’ (reverse). 

To further increase sample size, we analyzed ATXN1 repeat size in whole-genome 

sequencing (WGS) data, available to us through Project MinE using ExpansionHunter 

(Dolzhenko et al., 2017; Van Rheenen et al., 2017). There was a 1,129 sample overlap in 

genotypes obtained from ExpansionHunter and PCR/Sanger sequencing, showing a 97.7% 

concordance in allele genotypes (2,207/2,258). In 30 of the 51 discordant alleles, there was 

only a single repeat unit difference between PCR and WGS, and of the remaining 21, at least 

16 could simply be explained by mix-up of eight samples. Considering this high percentage 

of concordance between ExpansionHunter and Sanger/PCR results, we did not perform 

additional validation experiments on the WGS samples and proceeded with the 

ExpansionHunter calls. C9orf72 status had been determined previously for 4,530 ALS 

samples.

To identify the number and position of CAT interruptions in the CAG trinucleotide 

repeat of ATXN1, we analyzed the Dutch WGS data of 353 control and 547 ALS cases 

sequenced using the HiseqX Sequencing System (resulting in 150bp reads, able to span the 

entire repeat). All 150bp reads mapped to the genomic region of ATXN1 (chr6:16,327,000 - 

16,329,000; hg19) were isolated and spanning reads were genotyped after the recognition of 

both the start and end-motif within a single read. Two samples (one ALS, one control) did 

not contain any spanning reads and were, therefore, excluded. We only included repeat 

genotypes with two or more supporting reads and found repeat size predictions in 95% of 

alleles  (1345/1418) comparable to genotypes determined with PCR and/or ExpansionHunter.

Cell culture and immunohistochemistry
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mCherry-Ataxin-1 constructs were synthesized by Genscript (Piscataway, USA). HeLa cells 

expressing mNeongreen fusion to the endogeneous KPNA2 were created by CRISPR-

mediated non-homologous endjoining of an mNeongreen-P2A-puromycin PCR product at the 

last codon of the KPNA2 CDS in its genomic locus. HeLa cells (ATCC) were cultured in 

high glucose DMEM (Invitrogen) supplemented with 10% fetal bovine serum (Greiner), 

4 mM Glutamax (Invitrogen), penicillin (100 U/mL), streptomycin (100 μg/mL) and non-

essential amino acids (1%). Cells were grown at 37°C in a humidified atmosphere with 5% 

CO2. Cells were transiently transfected using Lipofectamine F3000 (Invitrogen) according to 

manufacturer’s instructions. Cells were fixed 24h after transfection in 4% formaldehyde in 

PBS and stained according to standard protocols (including methanol fixation and 

permeabilization by PBS-T 0.04%). Rabbit anti-TDP-43 (12892-1-AP, Proteintech) was used 

to stain for TDP-43. AlexaFluor 488 secondary antibodies (Life Technologies) were used. 

Nuclei were visualized using NucBlue counterstaining (Thermo Scientific). Slides were 

mounted using ProLong Gold antifade reagent (Life Technologies). 

Confocal images were obtained using a Zeiss LSM 510 Meta NLO confocal microscope. 

Images were analyzed, formatted and quantified with FIJI software.

In brief, transfected cells from three independent transfections were analyzed for their 

nuclear cytoplasmic ratio of TDP-43 or KPNA2, and scored for the presence of cytoplasmic 

inclusion bodies (only observed in ATXN1, but not mCherry transfected cells). All data were 

aggregated and statistical analyses were carried out using Prism software.

Fly strains

Drosophila were maintained on a 12:12 light/dark cycle on a standard sugar-yeast medium 

(15 g/l agar, 50 g/l sugar, 100 g/l autolyzed yeast, 30 ml/l nipag and 3 ml/l propionic acid) at 

25°C. The following transgenic Drosophila strains were used in this study: GMR-TARDBP 
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(#51370), UAS-GR36 (#58692). All fly strains used, were obtained from the Bloomington 

Drosophila Stock Center at Indiana University (BDSC) or the Vienna Drosophila RNAi 

Center (VDRC). The UAS-GR36 strain was crossed with balancer CyO and driver GMR, to 

obtain a balanced fly stock expressing the DPR construct in the eye. 

Drosophila eye phenotype analysis

To assess the effect of ataxin-1 (ATXN1) repeat length, we crossed the GMR-TARDBP and 

the GMR-GR36 stocks with fly lines carrying UAS constructs expressing various sizes of the 

ATXN1 polyQ repeat. 

Following strains were used: UAS-ATX1.2Q (#39738), UAS-ATX1.30Q (#39739), 

UAS-ATX1.82Q (#37940) and UAS-eGFP (#5428). For each cross, the collected offspring 

were divided by sex and the genotypes counted according to the balancers. We used a slightly 

modified eye phenotype analysis protocol as described in Boeynaems et al., 2016. Briefly, 

each fly was individually scored in a blinded fashion for the presence of necrotic spots using 

the following scoring scale (not affected = 0, mild = 1, medium =2, heavy = 3, extreme = 4). 

We crossed each line at least three times independently to validate the specific phenotype. 

Eye phenotypes were imaged by light microscopy (Zeiss imager.M1) and the made Z-stacks 

were processed with ImageJ with the extended depth of field algorithm. 

Statistical analysis

All statistical procedures were carried out in R 3.3.0 (http://www.r-project.org). Mantel-

Haenszel method meta-analysis of odds ratios was performed on subgroup and pooled data 

using ‘metafor’ 2.0 package. For the joint analysis on individual data, a generalized linear 

model (GLM) was used with fixed-effects covariates: method of genotyping and country of 
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origin. We additionally applied generalized linear mixed model (GLMM) to account for 

possible random effects which gave similar results as the GLM. 

The effect on disease survival after onset and age at onset of the disease and were 

tested using multivariate Cox regression with sex at birth, site of onset, age at onset (for 

survival only) and C9orf72 status as covariates. To calculate the expected frequency of co-

occurring variants, we used the frequency of one variant in the unaffected population and 

multiplied this with the number of carriers of the other variant in the affected population. A 

binomial test was performed to compare the observed frequency of co-occurring variants in 

ALS patients with the calculated expected frequency.

The orthogonal data of the Drosphila eye images were analyzed with the lbl_test of 

the coin package in R. This linear by linear association test takes into account the gradual 

scoring scale, where a score of 4 impacts the p-value more than a score of 1.

Data and materials availability

Genetic data generated from these cohorts has been placed for public access on the Project 

MinE Data Browser (http://databrowser.projectmine.com). DNA tissue samples can be 

obtained by contacting the corresponding author (M.A.v.E) or Project MinE ALS Sequencing 

Consortium. Fly strains can be obtained by contacting P.V.D.

Results

Genetic association of increased ATXN1 repeat size ( 33) with ALS

In our analysis, we included data from three different sources. First, we genotyped the repeat 

expansion in ATXN1 using PCR in 2,672 ALS patients and 2,416 geographically matched 

control samples from four different cohorts (Belgium, France, Ireland and The 

Netherlands)(Supplementary Table 1). In this sample series, we found the most frequent 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
c
o
m

m
s
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/b

ra
in

c
o
m

m
s
/fc

a
a
0
6
4
/5

8
4
0
4
7
3
 b

y
 g

u
e
s
t o

n
 0

9
 J

u
n
e
 2

0
2
0



alleles contained 29 or 30 trinucleotide repeats in both cases and controls (69.8% and 71.3%, 

respectively). In SCA1, ATXN1 repeat sizes 39 CAG/CAT are considered “expanded” (Rub 

et al., 2013). We hypothesized that, similar to previous findings in ATXN2, “intermediate” 

repeat sizes (between normal and expanded) could be associated with an increased risk of 

motor neurone disease. We determined the cut-off for these intermediate size expansions to 

be 33 or more CAG/CAT repeats using receiver operating characteristics and allele 

distribution analysis (with 94.7% of control alleles being within the “normal” range) (Fig. 2). 

In this sample series, 12.2% of ALS patients (328/2,672) and 10.1% of controls (244/2,416) 

carried at least one ATXN1-allele with an expanded repeat size (i.e. above the 33 CAG/CAT 

cut-off). The fixed-effect meta-analysis of these four cohorts indicated an association 

between the presence of at least one expanded allele in ATXN1 and ALS status with an odds 

ratio (OR) = 1.37 (95% CI = 1.18-1.60, P = 1.21x10-5)(Fig. 3).

Secondly, we investigated the association with ATXN1 repeat expansions in an 

independent cohort of 2,048 ALS cases and 891 controls using whole-genome sequencing 

(WGS) (Van Rheenen et al., 2017). ATXN1 repeat sizes were estimated from WGS data using 

ExpansionHunter (Dolzhenko et al., 2017). We confirmed a subset (n = 1,129) of the 

ExpansionHunter genotypes using PCR and found 98% concordance between the two 

methods. Using the same cut-off for (intermediate) expanded alleles as in the PCR cohort 

(33 CAG/CAT), we found the direction of effect and allele frequency to be similar in all 

cohorts; expanded alleles were observed in 12.0% of cases (248/2,048) compared to 8.8% in 

controls (78/891), resulting in an OR = 1.38 (95% CI = 1.02-1.88, P = 0.037) (Fig. 3). 

Lastly, we performed a fixed-effects meta-analysis on all available data, in which we 

also included the data from all three studies that previously reported on ATXN1 in ALS 

(totalling 2,346 cases and 1,327 controls). Using a Mantel-Haenszel meta-analysis, we found 

improved evidence of an association with ATXN1 expansions and ALS status with P = 
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3.55x10-6; and OR = 1.38, 95% CI = 1.20-1.57 (Fig. 3). We additionally applied a 

generalized linear model with correction for country of origin and method of genotyping on 

the pooled data of 7,066 ALS patients and 4,634 controls and found our results to be 

essentially unchanged (OR = 1.41, 95% CI = 1.24-1.61, P = 3.33x10-7). 

No differences in CAT interruptions

In SCA1, the presence or absence of CAT interruptions in the CAG repeat can influence 

disease risk and/or phenotype (Menon et al., 2013).  We explored the possibility that 

differences between cases and controls could be attributed to differences in CAT 

interruptions by analyzing the WGS sequencing data in a subset of 352 control and 546 ALS 

cases. Almost all repeats contained one or more CAT interruptions, with only one affected 

and one non-affected individual carrying an uninterrupted repeat (13 and 30 CAG repeats 

resp.). The majority of the ATXN1 repeats in both cases and controls contained two CAT 

interruptions (Fig. 4A), with 99.9% (1,267/1,268) having a 

(CAG)n1(CAT)(CAG)(CAT)(CAG)n2 interruption pattern. Because of this minimal variation 

in the interruption number and position, we found a similar correlation and distribution of 

uninterrupted CAG repeat size compared to that of the full length repeat (Fig. 4B). 

No effect on age at onset or survival

Several ALS associated risk factors also affect the clinical phenotype. We investigated the 

effect of ATXN1 repeat expansions on survival and age at onset in a subset of 1,890 ALS 

patients for whom clinical data were available, but found no significant effects (Fig. 5A-B).

Ataxin-1 overexpression perturbs nucleocytoplasmic transport of TDP-43. 
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The pathological hallmark of ALS is the aggregation and cytoplasmic mislocalization of the 

RNA binding protein, TDP-43(Neumann et al., 2006). It is thought that the mislocalization of 

TDP-43 leads to both a nuclear loss-of-function as well as a cytoplasmic toxic gain-of-

function. However, the exact mechanisms underpinning TDP-43 mediated neurodegeneration 

have not yet been fully elucidated. Considering the large number of genes that have been 

implicated in ALS to date, it seems likely that TDP-43 pathology may arise through multiple 

pathways. Recent evidence shows that ataxin-2 drives localization of TDP-43 to cytoplasmic 

stress granules; this process, because of the subsequent incapacity to disassemble these stress 

granules, has been proposed as the first stepping stone towards the formation of pathological 

aggregates (Ramaswami et al., 2013; Becker et al., 2017). Given that ataxin-1 has similarities 

with ataxin-2, we initially considered that similar mechanisms would be involved. 

Ataxin-2 is, however, a cytoplasmic stress granule protein known to interact with 

TDP-43 (Elden et al., 2010), whereas this is not the case for ataxin-1. We, therefore, explored 

other disease mechanisms for ataxin-1 in ALS and started by performing simple 

overexpression studies of wildtype/normal-length ataxin-1 in HeLa cells. Overexpression of 

ataxin-1 did not alter endogenous TDP-43 expression (Fig. 6A-B) and resulted in the 

formation of nuclear and cytoplasmic ataxin-1 inclusion bodies, negative for TDP-43 (Fig. 

6C, top panel). We also observed that some cells overexpressing ataxin-1 showed 

cytoplasmic mislocalization of TDP-43 (Figure 6C, bottom panel). Interestingly, this TDP-43 

mislocalization significantly correlated with the presence of the cytoplasmic ataxin-1 

inclusion bodies (Fig. 6D). 

A possible mechanism for mislocalization of TDP-43, recently implicated in ALS 

pathogenesis, is that of misregulation of nucleocytoplasmic transport, making TDP-43 unable 

to (re)enter the nucleus and as a result become trapped in the cytoplasm (Woerner et al., 

2016). We hypothesized that ataxin-1 cytoplasmic accumulation could perturb the nuclear 
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import system and subsequently investigated importin-2 (KPNA2; karyopherin subunit 

alpha 2), which is involved in importing TDP-43 into the nucleus (Nishimura et al., 2010). 

Similar to TDP-43, we indeed found significant mislocalization of endogenous KPNA2 in 

HeLa cells containing ataxin-1 inclusion bodies (Fig. 6E-F). 

Co-expression of human TDP-43 with Ataxin-1 aggravates the phenotype in 

Drosophila 

Considering the modest effect of intermediate ATXN1 expansions in our genetic analysis, we 

do not presume that they have a directly pathogenic effect, but rather that they are a 

contributing factor in the multi-step process towards developing the disease. Based on this 

hypothesis, we postulate that expanded ATXN1 CAG repeats would aggravate the phenotype 

in an in vivo model of TDP-43 pathology. We, therefore, turned to Drosophila, a suitable 

model organism for genetic experiments, the fly eye being widely used  to evaluate 

neurodegeneration (Fig. 7A) (Freibaum et al., 2015; Zhang et al., 2015; Boeynaems et al., 

2016). Expression of the human TDP-43 gene in the Drosophila eye using GMR-GAL4 

results in a “rough eye” phenotype (Choksi et al., 2014). This rough eye phenotype is mainly 

characterized by a progressive, age-dependent degeneration of the structure which ultimately 

results in depigmentation by retinal degeneration. To increase the chance of an observable 

effect, we tested with ATXN1 containing either an exaggerated normal (2Q) and expanded 

(82Q) polyQ repeat length. Co-expression of human TDP-43 with ataxin-1 polyQ constructs 

with a repeat length of 82 aggravated the phenotype, with the formation of necrotic spots 

(Fig. 7B), whereas expressing ataxin-1 2Q or 82Q alone did not result in an eye phenotype. 

Scoring the severity of the eye abnormalities via a graduated scoring table showed a 

significant increase in the score in TDP-43-expressing flies that jointly expressed the 82Q 
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repeat, indicating a synergistic effect of ataxin-1 on TDP-43 toxicity in Drosophila (P = 

2.65x10-4); (Fig. 7C).

ATXN1 polyQ also aggravates the phenotype in a Drosophila model for C9orf72 

The co-occurrence of variants in multiple ALS genes within a single case is observed 

frequently (van Blitterswijk et al., 2012; Bury et al., 2016). In particular, this co-occurrence 

of multiple variants has been reported for patients carrying repeat expansions in C9orf72 (van 

Blitterswijk et al., 2014a; van Blitterswijk et al., 2014b; Dekker et al., 2016), which to some 

degree might also explain the phenotypic heterogeneity associated with this gene (including 

ALS, frontotemporal dementia (FTD), parkinsonism and psychosis)(Cooper-Knock et al., 

2015). A previous study on ATXN1 in ALS reported the co-occurrence of ATXN1 and 

C9orf72 expansions (Lattante et al., 2017). In our cohort, we identified a total of 23 patients 

carrying both expansions (6.4% of all C9orf72-positive patients also had an ATXN1 

expansion 33 CAG/CAT) and also came across a familial ALS pedigree in which two ALS-

affected first degree relatives carried both repeat expansions (Supplementary Fig. 2). We, 

therefore, explored whether co-expression of ATXN1 polyQ constructs in a Drosophila model 

for C9orf72 (expressing toxic glycine-arginine (GR36) dipeptide repeats) would aggravate 

the rough eye phenotype (Mizielinska et al., 2014). Indeed, these flies show a strong eye 

phenotype, characterized by eye depigmentation and necrotic spots (Fig. 7B). When ATXN1 

82Q, but not 2Q, was co-expressed in the eye, we observed a significant enrichment of the 

severely affected eyes (P < 2.0 x 10-16) (Fig. 7C). Almost 50% of the scored flies showed a 

harsh degenerated eye with numerous necrotic spots, indicating that ataxin-1 polyglutamine 

expansions also aggravate the GR-mediated neurodegeneration. These findings suggest an 

interaction of expanded ataxin-1 polyQ with pathological events in the disease. 
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Discussion

In this study we demonstrate an association between intermediate polyglutamine expansions 

in ATXN1 and risk of ALS. We observed similar allele frequencies and direction of effect 

across international cohorts and the increase in sample size resulted in stronger statistical 

evidence compared to previous reports, indicating a robust association. 

Using a generalized linear model with correction for country of origin and method of 

genotyping on the pooled data of 7,066 ALS patients and 4,634 controls, we found a p-value 

of 3.33 x 10-7. Empirical significance thresholds have been set for studies analyzing common 

genetic polymorphisms across the genome, such as genome-wide significance (P = 5.0 x 10-8) 

for genome-wide studies and exome-wide significance (P = 5.0 x 10-7) for studies that only 

focus on coding single nucleotide variants. However, no such thresholds have been set for 

genetic studies looking at repeat expansions on a genome/exome-wide level. We, therefore, 

considered 3 different cut-off values for significance; (1) Bonferroni correction for the 

number of previously reported polymorphic polyQ stretches of 6 and longer in the genome (P 

= 0.05 / 85 = 5.9x10-4) (Kozlowski et al., 2010), (2) correcting for the total number of genes 

in the genome containing a homo-amino acid stretch (P = 0.05 / 878 = P = 5.6x10-5) 

(Kozlowski et al., 2010), or (3) simply applying the level for exome-wide significance, as 

polyQ repeats are a coding form of genetic variation. A valid argument can be made for all 3 

thresholds and as more association studies on structural variation on a genome-wide level 

become available, it seems likely that empirical significance thresholds will be determined. 

For now, our findings are significant regardless of which threshold is applied.

It is still unclear as to how ATXN1 polyQ expansions could have a contributing effect 

on ALS development. We sought to provide the first steps by performing functional 

experiments investigating the effect of ATXN1 polyQ on the cellular processing of the nuclear 

RNA binding protein TDP-43, the pathological hallmark of ALS. Ataxin-2 plays an 
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important role in stress granule formation and in ALS these stress granules fail to 

disassemble, hereby forming the precursors of TDP-43 aggregates(Elden et al., 2010; Hart et 

al., 2012). As ATXN1 is largely homologous to ATXN2 and both contain an expanded polyQ 

stretch, this was our initial hypothesis. There is, however, no literature implicating ATXN1 in 

stress granule formation and in our in vitro model, we did not observe co-localization with 

TDP-43.  We did, however, observe a cytoplasmic mislocalization that seemed to be 

dependent on the disruption of ataxin-1. Since mislocalization was observed in both 

expanded as well as wild-type (Q27) ATXN1 HeLa cell models, disruption is possibly due to 

overexpression itself (Supplementary Fig. 3); this is similar to observations in ATXN2, 

where the effects of wild-type overexpression on TDP-43 was an important first step for 

further investigation (Elden et al., 2010). Although a HeLa cell overexpression model is far 

from representative for ALS,  the current consensus that both a nuclear loss- and cytoplasmic 

gain-of-function of TDP-43 play a key role in ALS pathogenesis led us to shift our focus to 

nucleocytoplasmic transport, another mechanism that has recently been implicated in ALS 

(Neumann et al., 2006; Ling et al., 2013). In-vitro studies have shown that disruption of the 

classical nuclear import pathway (which includes KPNA2) in neurones leads to the 

cytoplasmic accumulation of TDP-43, and also in post-mortem studies of ALS and FTD 

cases, KPNA2 levels were found to be decreased in both brain and spinal cord (Nishimura et 

al., 2010). Similarly, our in vitro results show that overexpression of normal-length ataxin-1 

can cause mislocalization of TDP-43 and KPNA2. This suggests that pathological ataxin-1 

effects could be mediated via perturbed nucleocytoplasmic transport. 

Given the multifactorial aetiology of ALS, the modest genetic effect and a possible 

pathological effect through TDP-43, we lastly explored whether ATXN1 polyQ would 

aggravate the phenotype in an in-vivo model of TDP-43 pathology. For this we used existing 

Drosophila models, that indeed show an aggravated phenotype when expanded ATXN1 is 
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co-expressed with human TDP-43. Since there is only a relatively small difference in the size 

of the polyQ tract between normal and intermediate expansions, we deliberately chose two 

extreme values (Q2 and Q82) to maximize the possible phenotypic effect of ATXN1 polyQ 

on TDP-43 pathology. Despite this exaggeration, the absence of a necrotic eye phenotype in 

ATXN1 Q82 alone suggests a neurotoxic effect via TDP-43 and since co-expression of 

ATXN1.82Q, but not ATXN1.2Q, dramatically enhanced the degenerative eye phenotype, 

this suggest that TDP-43 or GR36 overexpression-induced toxicity by ATXN1 occurs in a 

repeat-length dependent manner.

As the co-occurrence of C9orf72 and ATXN1 expansions was observed in multiple 

ALS patients, we performed a similar Drosophila experiment in which we co-expressed 

ATXN1 polyQ with GR36 (toxic dipeptide repeat associated with C9orf72) and again found 

synergistic toxic effect in these flies. There is high phenotypic variability amongst individuals 

carrying repeat expansions in C9orf72, which includes ALS, FTD, parkinsonism and 

psychosis (Cooper-Knock et al., 2015). It has been proposed that additional genetic factors 

influence the C9orf72-phenotype. For instance, there is evidence suggesting that SNPs in 

TMEM106b protect against dementia (Nicholson and Rademakers, 2016), whereas other 

variants in other genes may give rise to ALS (van Blitterswijk et al., 2014a; van Blitterswijk 

et al., 2014b; Dekker et al., 2016). Our data suggest that expanded ATXN1 polyQ alleles 

influence the phenotype associated with C9orf72.

In conclusion, we demonstrate a robust genetic association between ATXN1 repeat 

expansions with risk of ALS and provide evidence suggesting that this contributes to ALS 

pathophysiology through perturbed nucleocytoplasmic transport. In line with the multistep 

and oligogenic hypothesis for ALS, we show ATXN1 polyQ aggravates the phenotype in 

multiple transgenic fly models (hTDP-43 and GR36). As the ATXN1 polyQ expansion is 

likely to result in a gain of function, silencing the expanded allele and perhaps thereby 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
c
o
m

m
s
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/b

ra
in

c
o
m

m
s
/fc

a
a
0
6
4
/5

8
4
0
4
7
3
 b

y
 g

u
e
s
t o

n
 0

9
 J

u
n
e
 2

0
2
0



(partially) restoring nucleocytoplasmic transport could prove to be an interesting therapeutic 

approach.
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Supplementary Fig. 1. Uncropped Western blot of TDP-43 levels and loading control 
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Supplementary Fig. 3. TDP-43 mislocalization in HeLa ATXN1 overexpression models
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Figure legends

Figure 1. Pedigree with co-occurrence of SCA1 and ALS. The index patient (arrow) was 

diagnosed with ALS and reported a positive family history for spinocerebellar ataxia type 1 

(SCA1) in four other family members. No DNA samples from family members diagnosed 

with SCA1 were available for analysis.

Figure 2. Distribution of ATXN1 CAG/CAT repeat length. Proportion of total alleles 

grouped per ATXN1 repeat length determined via PCR-analysis in a cohort of 2,672 

individuals affected with ALS (grey) and 2,416 geographically matched controls (black) from 

four different cohorts (Belgium, France, Ireland and The Netherlands).

Figure 3. ATXN1 polyglutamine repeat expansion meta-analysis. Forest plot for the 

fixed-effect Mantel-Henzel meta-analysis of the effect of expanded (33) ATXN1 CAG/CAT 

repeats on ALS risk in three different datasets grouped per country of origin: Previous 

reports, PCR genotyped cohort and whole genome sequencing (WGS) genotyped cohort. 

Additionally, individual level data of all three datasets were combined in a single logistic 

regression analysis (Joint analysis), which was corrected for country of origin and method of 

genotyping. Weights depending on number of participants. CI, confidence interval. 

*Conforti et al. used a different cut-off for expanded/non-expanded status (32 CAG/CAT 

repeats). However, since the most frequent alleles in their data [28/29] seem to also have 

shifted one repeat unit compared to the Italian population in Lattante et al. and our data 

[29/30], we did not alter the expansion status. 
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Figure 4. Presence and number of CAT interruptions in ATXN1 CAG repeat expansion. 

(A and B) Plots show the results after genotyping 1418 repeat alleles (849 ALS; 569 Control) 

from 150bp WGS reads that span the full repeat. (A) Number of CAT interruptions per repeat 

allele (B) Correlation between the total repeat size, including both CAG and CAT, and the 

longest stretch of uninterrupted CAG per allele for both ALS affected (blue) and unaffected 

(orange). CAT interruptions usually and exclusively appear after the first 12 to 17 CAG 

repeats, resulting in a significant correlation between the total and uninterrupted CAG repeat 

size (Kendall’s tau cor., p < 2.2e-16 for both ALS and controls,) and therefore a similar 

distribution (margin panels; prop.tot = proportion of total alleles). There were two exceptions 

(red border): one ALS affected allele had no interruptions, probably because of its short 

length (13), and one unaffected sample seemed to carry an uninterrupted stretch of 30 CAG.

Figure 5. Effect of ATXN1 repeat expansion on survival and age at onset in ALS. (A and 

B) Plots of time-dependent probabilities in 1,890 ALS patients with either ATXN1 normal 

(<33, orange) or expanded (  33, blue) CAG/CAT repeat expansion. (A) Survival after onset 

of disease in months, corrected for: sex, age at onset, bulbar site of onset and presence of 

C9ORF72 expansion. (B) Age at onset of the disease in years corrected for: sex, site of onset 

and the presence of a C9orf72 repeat expansion. No significant effects were found.

Figure 6. HeLA cells were transfected with mCherry-tagged ataxin-1 containing 27 

polyglutamine repeats (mCherry-Atx227Q) or control vector (mCherry). (A) TDP-43 

protein levels are not altered in ataxin-1 expressing cells (Uncropped blot image in 

Supplementary Fig. 1). (B) Quantification of TDP-43 levels normalized to loading control 

GAPDH (Glyceraldehyde 3-phosphate dehydrogenase). Unpaired t-test, two-sided, p-value: 

0.1312 (C) The presence of cytoplasmic inclusion bodies correlates with TDP-43 
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mislocalization in ataxin-1-expressing cells. TDP-43 does not accumulate in nuclear or 

cytoplasmic ataxin-1 inclusion bodies (IB), but does mislocalize to the cytoplasm in cells 

with inclusion bodies. (D) Quantification of TDP-43 mislocalization in controls cells 

(mCherry) and cells without (-IBcyto) or with cytoplasmic ataxin-1 inclusion bodies (+IBcyto). 

(E) Cytoplasmic inclusion bodies also correlate with GFP-tagged KNPA2 mislocalization to 

the cytoplasm (F) Quantification of KPNA2 mislocalization. (D,F) 1-way ANOVA, **** p-

value < 0.0001.

Figure 7. Ataxin-1 polyQ modifies eye phenotypes in Drosophila. (A) Scheme indicating 

assessment of genetic modifiers. (B) Effect of eye phenotype after co-expression of eGFP, 

2Q ataxin-1 and 82Q ataxin-1 in wildtype (top), TDP-43(middle) and GR36 (bottom)-

expressing flies. (C) Fraction of flies per necrotic eye score rank (darker shading equals 

higher score). Right panel: Flies overexpressing ATXN1.82Q only show a clear degenerative 

phenotype characterized by a moderate rough eye phenotype, but only very small necrotic 

spots. Middle panel: Flies co-expressing TDP-43 and ATXN1 polyQ with a repeat length of 

82 with a severe eye phenotype are significantly enriched compared to flies expressing TDP-

43 and ATXN1 with a polyQ repeat length of 2 (P = 2.65x10-4); there was no significant 

difference with eGFP and 2 polyQ. Left panel: Flies co-expressing GR(36) and ATXN1 

polyQ with a repeat length of 82 with a severe eye phenotype are significantly enriched 

compared to flies expressing GR(36) and ATXN1 with a polyQ repeat length of 2 (P < 2.0 x 

10-16); there was no significant difference with eGFP and 2 polyQ. Statistical analysis using 

linear by linear association test, n > 50 per genotype.
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Abbreviated summary: 

Repeat expansions are being identified as part of the complex genetic architecture of 

amyotrophic lateral sclerosis. This study shows a significant association between 

intermediate ATXN1 repeat expansions and amyotrophic lateral sclerosis, possibly via 

mislocalization of TDP-43, further emphasizing the role of polyglutamine expansions in the 

pathophysiology of amyotrophic lateral sclerosis.
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