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Abstract 

Stationary density functions statistically characterize the stabilized behavior of dynamical 

systems. Instead of temporal sequences of data, stationary densities are observed to determine 

the unknown transformations, which is called the inverse Frobenius-Perron problem. This 

paper proposes a new approach to determining the unique map from stationary densities 

generated by a one-dimensional discrete-time dynamical system driven by an external control 

input, given the input density functions that are linearly independent. A numerical simulation 

example is used to validate the effectiveness of the developed approach.  

Keywords: Nonlinear systems; Chaotic maps; Asymptotic stability; Stationary densities; 

Inverse Frobenius-Perron Problem  
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Chaotic behavior is prevalent in many real-world dynamical systems including physical, 

biological, chemical and economical systems that can be represented by deterministic 

equations [1-3]. It is common knowledge that even simple one-dimensional iterated maps can 

model such complicated dynamical behavior [4]. The limiting statistical behavior is statistically 

described by the stationary density function, which is obtained by observing the long-term 

outcomes of the system. There are many practical situations where the underlying system is 

unknown and only the stationary density of the system is observable [3, 5-10]. To model and 

analyze the dynamical system raises a challenging problem to determine the unknown 

transformation of the dynamical system from the given stationary density, which is the well-

known inverse Frobenius-Perron problem [11]. Given the nonsingular transformation, the 

evolution of an initial density function under the action of the deterministic transformation is 

described by the Frobenius-Perron operator associated with the transformation, whose fixed 

point is the stationary density of the transformation [12]. 

A great many attempts have been made to solve the inverse Frobenius-Perron problem, 

given the knowledge of stationary densities. In general, these solutions to the inverse problem 

rely on the prescribed stationary densities/statistical properties and incorporate a priori 

knowledge of the unknown transformation. These include an entirely graph-theoretic method 

introduced in [13] to construct piecewise linear transformations that have piecewise constant 

stationary densities of relative minima value zero; a more generalized approach given in [14] 

to deriving an explicit relationship between stationary density functions and a special class of 

piecewise linear transformations over a partition of interest, and furthermore a matrix-based 

solution to construct 3-band transformations that preserves a given piecewise constant 

stationary density. Using this matrix-based algorithm, a recursive Markov state disaggregation 

scheme was proposed in [15] to construct multiple semi-Markov chaotic maps with stationary 

densities.  The inverse problem was investigated in [4] for a class of symmetric maps that have 

stationary beta density functions and a unique solution can be obtained under the symmetry 

constraints of the unknown maps. This method was extended to the class of continuous 

unimodal maps for which each branch of the map covers the complete unit interval and the 

stationary density function is a two-parametric asymmetric beta density function in [16]. Given 

arbitrary stationary densities, but specified forms of maps to be constructed, further approaches 

were developed for constructing maps including unimodal transformations[17]; two types of 

one-dimensional symmetric maps [18]; complete chaotic maps with closed functional forms 

[19]; and multiple segments [20, 21]. In [22] and [23] additional statistical properties of 
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correlation functions were used to construct one-dimensional maps. In [24, 25] the inverse 

problem was studied as a problem of determining a perturbation applied to the original chaotic 

map to obtain a desired stationary density function. Based on positive matrix theory a method 

of synthesizing chaotic maps with prescribed piecewise constant stationary densities and 

mixing properties was devised in [7], and was applied to constructing synchronized 

communication networks [5, 26], and generating images through synthesizing higher-

dimensional maps with their stationary densities [27]. In [6] to characterize the patterns of 

activity in olfactory bulbs an optimization algorithm was introduced to synthesize the Markov 

process using probability distributions of neural signal interspike intervals that represent an 

odor. 

Since different dynamical systems, possessing totally different transient dynamics, may 

display the same asymptotic time behavior characterized by stationary densities, the uniqueness 

of the solutions to the inverse problem using stationary densities cannot be guaranteed, that is, 

there may exist multiple transformations inferred from the same stationary density. As a result, 

in order to attain a unique result, additional constraints or assumptions, including statistical 

properties and special forms of the transformations are required. However, in many practical 

situations it is difficult to have such knowledge pertaining to the unknown transformations, and 

only the stationary densities of the systems can be observed. In [28] not only stationary density 

but also a temporal sequence of densities generated by the underlying system are used to 

estimate the unique transformation, and in [29, 30] chaotic maps are determined from 

sequences of generated densities, which are both under the assumption that the evolution of an 

arbitrary density function is observable. This is, however, not always the case in practice, 

particularly as they require selecting initial conditions to generate densities [15].  

In this context, this paper proposes a new method of inferring one-dimensional dynamical 

systems using stationary densities, which are generated and experimentally observed by 

applying an external control input of different density functions. To the best of our knowledge, 

this solution is developed for the first time to determine the unique maps given only stationary 

densities. 

One motivation of developing the method was to infer the chaotic map model that describes 

the dynamic evolution of heterogeneous stem cell populations using observed equilibrium 

distributions. These stationary densities were generated by applying different external stimuli 

to stem cells cultures. The identification facilitates our understanding of the molecular 
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mechanisms underlying the behavior of divergent cell fates. This method also forms a 

theoretical basis for designing the control strategy to manipulate the differentiation of stem 

cells into desired types. 

The paper is organized as follows: Section 2 introduces the inverse problem for dynamical 

systems to be addressed in this paper, and the formulation of stationary density functions is 

provided in Section 3. Section 4 elucidates a methodology for inferring a chaotic map from 

stationary density functions arising from linearly independent input density functions. Section 

5 presents a numerical simulation example to validate the developed algorithm. Conclusions 

are given in Section 6. 

 

2. Dynamical systems with external input perturbations 

Consider a one-dimensional discrete-time dynamical system in the presence of an external 

input perturbation as follows 

 )   (mod       )(1 bxSx nnn  , (1) 

where :S R R , [0, ]R b  is a measurable and nonsingular transformation, that is  

B ))(( 1
AS  for any BA  and 0))(( 1 

AS  for all BA  with 0)( A , where μ 

denotes a measure on (R, B ) and B  denotes a Borel  -algebra of subsets in R; Rn   

denotes the control input, and are independent random variables, each distributed with the same 

probability density function, specified as 
f ( , , )D R  B , 1{ ( , , ) :D f L R   B

}1,0
1
 ff .  

Let n
f D  be the probability density function of nx , and f  the stationary density function 

of the artificially perturbed dynamical system with a control input density function 
f . To 

show the stationary density is observable, that is, the ultimate limit of n
f  as n  is f , the 

existence of f  is analyzed in the following section. It is assumed here that the map S which 

we aim to reconstruct is nonsingular, and that only the stationary densities *{ }f  can be 

observed and estimated with step functions over R, after sufficient successive iterations of the 

process. 
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The identification problem addressed in this paper is to determine the transformation S from 

the stationary densities K

k

k
f 1}{   generated from the dynamical system in response to the given 

different input density functions K

kkf 1}{ 
 .  

 

3. Formulation of stationary densities 

To make use of stationary densities to infer the unknown transformation S, the underlying 

relationship between S and the stationary density f  is derived firstly and uniqueness of 

stationary density is subsequently proven.  

The perturbed dynamical system (1) is rewritten as follows 

 1

( ) , if ( ) ;

( ) , if ( ) 2 ,
n n n n

n

n n n n

S x S x b
x

S x b b S x b

 
 

  
      

 (2) 

which is illustrated in Fig. 1. Since ( ) 0
n n

S x   , this is equivalent to  

 ))(()( ]2,(1 nnbbnnn xSbxSx   , (3) 

where ( )x  is the indicator function for a set   defined by  

 
1, ;

( )
0, otherwise.

x
x


 


 (4) 

 
Fig. 1 Illustration of the perturbed dynamical system (heavy line) represented by (2), where a one-

dimensional map S(x) (thin line) with an external input perturbation (dotted line) with constant 

value R
  over R.  
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The probability of the generated new state 1n
x   being in an arbitrary Borel set B R  is 

given by 

 1 1Prob{ } ( )n n
B

x B f x dx    . (5) 

Let 
( ,2 ]( ) ( ( ) )b b nx S y b S y      , then ( ) ( ( ) )

R
x S y b S y x     . Given x B , 

suppose B  , B R   , for y R . Since ( )
n

S x  and n
  are independent, the joint density of 

( , )
n n

x   is 
nf f

 . 1Prob{ }
n

x B   can also be written as 

 1Prob{ } ( ) ( )n n
B R

x B f y f dyd
   

    . (6) 

Further, it is obtained that 

 1Prob{ } ( ) ( ( ) ( ( ) ))n n R
B R

x B f y f x S y b S y x dydx
        . (7) 

Let 1 nn ffP , n
f D , where 11: LLP   is the operator that transforms the probability 

density function n
f  into 1n

f   under the operation of S and  . From (5) and (7), it follows that  

 ( ) ( ) ( ( ) ( ( ) ))n n R
R

Pf x f y f x S y b S y x dy
     , (8) 

which describes the evolution of densities generated by the dynamical system with an input 

perturbation. Let ( , ) ( ( ) ( ( ) ))RK x y f x S y b S y x
     . Apparently for every x R  and 

y R , 0),( yxK , and by changing variables ( ) ( ( ) )
R

z x S y b S y x    , for every y R , 

0 x b   then 0 z b  , we have 

 ( , ) ( ) 1
R R

K x y dx f z dz
   . (9) 

K is, therefore, a stochastic kernel. We further have  

 

( ) ( ) ( , )

( ) ( , )

( ) .

R R R

R R

R

Pf x dx f y K x y dydx

f y dy K x y dx

f y dy







  
 


 (10) 

Hence, P  is a Markov operator by the definition below [11]. 
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Definition 1. Any linear operator 
1 1:P L L  satisfying that a) 0fP , for 0f , f D ; 

and b) 
11

Pf f , for 0f , f D , is called a Markov operator. 

 For a Markov operator P , if the sequence }{ n
P  is asymptotic stable, there exists a unique 

stationary density for P . To prove the existence and also the uniqueness of f , the following 

result is introduced firstly [11].  

Theorem 1. Let ( , , )R B  be a measure space, : R R R k a stochastic kernel, and P  the 

corresponding Markov operator. Denote the kernel corresponding to 
n

P  by 
n
k . If, for some 

m, 

 inf ( , ) 0m

R y
x y dx  k , 

(11) 

then }{ n
P  is asymptotically stable. 

The asymptotical stability of the sequence of densities generated by the perturbed chaotic 

systems is proven below. 

Theorem 2. Given any input density function 


f ),,( BRD , for arbitrary initial conditions, 

the densities generated by the perturbed dynamical system (1) are asymptotically stable, that 

is, the perturbed dynamical system  possesses a unique stationary density function 

corresponding to a given input density function. 

Proof.  Let 
11: LLP   be the transfer operator of probability density generated by the 

perturbed dynamical system (1). We have that ( , ) ( ( ) ( ( ) ))Rx y f x S y b S y x
    k . Let 

( , )z x y  ( )x S y  ( ( ) )
R

b S y x  . Since ( , ) 0x y k , and for every y R , ( , ) 0
R

x y dx  k , 

we then have inf ( , ) 0
R y

x y dx  k , this implies that (11) holds. Therefore, the generated 

densities }{ n
P  are asymptotic stable for a given input density function. This completes the 

proof.  

Remark 1. Theorem 2 implies the existence and uniqueness of stationary density functions for 

the input perturbed discrete-time dynamical systems (1), and that the transformation in the 

presence of input perturbation are statistically stable. Given the transformation and an input 

density function, the generated densities converge to a unique stationary density function f . 
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Thus *lim n

n
P f f


  for all ( , , )f D R  B . This implies that for arbitrary initial conditions, 

there exists a unique stationary density function that is observable after sufficient iterations. 

To estimate the stationary density function the induction of f  by the map S and input 

density function 
f  is further explored. A particular Markov operator, called the Frobenius-

Perron operator is introduced below, which will be used to infer S based on the formulation of 

operator P  corresponding to the perturbed dynamical system. 

Definition 2. For a nonsingular transformation :S R R , the unique Frobenius-Perron 

operator 
1 1:P L L  associated with S is given by  

 1 ( )
( ) ( )

S A

d
Pf x f y dy

dx


  , (12) 

where [ , ]A a x B . 

Let 1 2{ }
N

R ,R , ,R   be a partition of R into N intervals, and  )int()int( ji RR  if 

ji  , Nji  ,1 . Assuming that S is piecewise monotonic and expanding with respect to  , 

the associated Frobenius-Perron operator SP  is given by [12] 

 )(
))((

))((
)( )(

1
1

1

x
xSS

xSf
xfP

iRS

N

i i

in
nS 







 , (13) 

where iS  is the monotonic restriction of S on the interval iR . 

To explore the representation of P  in terms of Frobenius-Perron operator S
P , the Koopman 

operator is introduced here to rewrite (8). 

Definition 3. For a nonsingular transformation :S R R  and 1 1:f L L , the operator

1 1:U L L  defined by  

 ( ) ( ( ))Uf x f S x , (14) 

is called the Koopman operator corresponding to S. 

For every 1 1:f L L , 1 1:g L L , the following equality holds 
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 , ,SP f g f Ug , (15) 

where  ,   represents the scalar product, i.e. , ( ) ( )
R

f g f x g x dx   [11], so that U is adjoint 

to the Frobenius-Perron operator S
P . Since S is nonsingular, the Frobenius-Perron and 

Koopman operators corresponding to S both exist. Let ( ) ( ( ))x RF y f x y b y x
     . Then 

(8) is rewritten as  

 ( ) ( ) ( ( ))n n x
R

Pf x f y F S y dy  .  (16) 

From Definition 3, P  may be given in terms of the corresponding Koopman operator U, 

( ) ,n n xPf x f UF . It follows from (15) that ( ) ,n S n xPf x P f F . Thus we have 

 ( ) ( ( )) ( )n R S n
R

Pf x f x y b y x P f y dy
      . (17) 

which demonstrates a straightforward relationship between the transfer operator P   

corresponding to the perturbed system (1) and the Frobenius-Perron operator SP  associated 

with S in terms of input density function 
f .  

Remark 2. As n , 
nPf  converges to the stationary density function f , and the 

corresponding perturbation free Frobenius-Perron operator S n
P f  associated with S is 

*SP f . 

(17) shows an elegant bridge between P  and the Frobenius-Perron operator S
P , which forms 

a basis for exploring the pathway to infer S through 
*SP f  using the observed f . The problem 

of inferring S is thus predominantly reduced to that of identifying the Frobenius-Perron 

operator S
P  from the fixed points of P , i.e. the stationary densities. 

Here we use a special class of nonlinear transformations called piecewise linear semi-

Markov transformations to estimate unknown maps. Let S be a piecewise linear expanding 

semi-Markov transformation over the N-interval partition 1 2{ , , , }
N

R R R . 

Definition 4. A transformation :S R R  is said to be semi-Markov with respect to the 

partition   (or  -semi-Markov) if there exist disjoint intervals 
)(i

jQ  so that 
)()(

1
i

k
ip

ki QR  , 

1, ,i N , the restriction of S to 
)(i

kQ , denoted )(i
k

Q
S , is monotonic and )( )(i

kQS  [14].  
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In other words the nonlinear transformation satisfies that each restriction 
iR

S is a 

homeomorphism from iR  to a union of intervals of  , that is 
( ) ( )

( )
( , )

1 1
( )

p i p i
i

r i k k
k k

R S Q
 
   , where 

( )
( , ) ( )i

r i k kR S Q  , ( ) ( ) ( )
1[ , ]i i i

k k kQ q q , 1, ,i N , 1, , ( )k p i  and )(ip  denotes the 

number of disjoint subintervals ( )i
k iQ R  [29]. For a piecewise linear semi-Markov map S with 

respect to  , its Frobenius-Perron operator S
P  can be represented by a finite rank non-

negative square matrix NjijimM  ,1, )( , where 

 
( )

1 ( )

,

| ( ) | , if ( ) ;

0, otherwise.

i
j

i

k jQ

i j

S S Q R
m

  


 (18) 

Give a piecewise constant density function n
f =



N

i

R
n
i xw

i

1

)(  defined on  , the new density 

function S n
P f  generated by S is also piecewise constant on  , which is given by S n

P f =

1

1

( )
i

N
n

i R

i

v x


 , and the formula S n nP f f

Mv w holds for 1 2[ , , , ]nf n n n

Nw w ww  and S nP f v

1 1 1
1 2[ , , , ]n n n

Nv v v
   , which are the coefficient vectors of n

f and S n
P f , respectively. Since an 

arbitrary stationary density *f D  can be approximated by a piecewise constant function on 

  given by 

 
*

*
1

( ) ( )
i

N
N

i R

i

f x w x


 , (19) 

and the density function *S
P f  transformed from *f  under the action of S can also be 

approximated in the piecewise constant form by   

 
*

*
1

( ) ( )
j

N
N

S j R

j

P f x v x


 , (20) 

we then have 

 * *
N N

SP f f
Mv w , (21) 
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where * * * *
1 2[ , , , ]

Nf

Nw w ww  and * * * *
1 2[ , , , ]

N
SP f

Nv v vv  that are the coefficient vectors of 

piecewise constant approximations *
N

f  and *
N

SP f  of f
  and 

SP f
 , respectively. This is 

equivalent to  

 
*

* ,
1 1

( ) ( ) ( )
j

N N
N

S i i j R

j i

P f x w m x
 

 
   
  . (22) 

Since *lim
n

n
Pf Pf


 , * *Pf f , and *

N
f  converges to *f  as N  , that is ,

* *lim ( ) ( ) 0N

N
f x f x


     for x R , after integration of each side of (17) over an interval

RiR , it is obtained that 

 * *lim ( ) ( ) 0
i i

N

R RN
f x dx f x dx



      , (23) 

and  

 
*

*

lim [ ( ( )) ( )

        ( ( )) ( ) ] 0.

i

i j

R S
R RN

N

R S
R R

f x z b z x P f z dzdx

f x z b z x P f z dzdx










    

    

 
 

 (24) 

Substituting (20) into (24) gives  

 

*

*

1

lim { ( ( )) ( )

         [ ( ( )) ]} 0.

i

i j

R S
R RN

N

R j
R R

j

f x z b z x P f z dzdx

f x z b z x dz v dx













    

    

 

 
 (25) 

From (19), (23) and (25), it is then obtained  

 
* *

1 1

lim ( ) [ ( ( )) ] 0
i

i i j

N N

i R R j
R R RN

i j

w x dx f x z b z x dz v dx
 


 

 
      

 
    . (26) 

It follows that 

 
* *

1

1
lim [ ( ( )) ] 0,

( ) i j

N

i R j
R RN

ji

w f x z b z x dzdx v
R

 




 
      

 
    (27) 

for 1, ,i N , where )( iR  is the Lebesgue measure on iR .  

Let 
NjNijiqQ  1;1, )(  be a matrix defined by  
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   
i jR R

R

i

ji dzdxxzbzxf
R

q ))((
)(

1
, 




. (28) 

Then, substituting (21) into (27) gives 

 lim 0
N Nf f

N F

M Q 


  w w , (29) 

where F||||   denotes the Frobenius norm. Let H M Q  . Thus it can be seen that H is a matrix 

representation of the operator approximation 
NP  with respect to  . 

Remark 3. It can be seen that the matrix Q is calculated directly from input density function. 

The stationary density function is related to the transformation S and also the input density 

function 
f .  

Theorem 3. For a perturbed dynamical system (1), any two linearly independent input density 

functions denoted by 2
1{ }k kf


 , 

kf D
  , give rise to two linearly independent stationary density 

functions 2
* 1{ }k kf  . 

Proof. Let 
1 2,f f D
    be two input density functions. Suppose that 

1f
  and 

2f
  are linearly 

independent and that the corresponding stationary densities 1* 2*f f  such that 1* 2*
N Nf f

w w .  

From (29), we have  

 1* 2*

1 2lim 0,
N Nf f

N
w MQ w MQ


    

(30) 

where  
1 1~Q f

  and 
2 2~Q f

 .  

Let 1[ , , ]
N

v v v  and 1* 2*
N Nf f

v w M w M  . It follows that 1 2lim 0
N

vQ vQ


   . From (28) 

it can be found that each column of Q contains the same entry values that satisfies , 1, 1i j i jq q    

and  

 

,
1 1

1
( ( ))

( )

1
( ( ))

( )

1.

i j

j

N N

i j R
R R

i i i

R
R R

i

q f x z b z x dzdx
R

f x z b z x dzdx
R











 

 
    

 

   



   

   
(31) 
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Hence, the matrix k
Q  can be rewritten as  

 

1 1 2

2 1 3

3 2 1 4

1 2 1

k k k k

N N

k k k k

N

k k k k
k

k k k k

N N N

d d d d

d d d d

Q d d d d

d d d d



 

 
 
 
 
 
 
  

, (32) 

where 
,1i id q  for 1, ,i N  that satisfy 

1

1
N

i

i

d


  by (31). Thus, we have the equality as 

n , 

 

1 2 1 2 1 2
1 1 1 2 2 2

1 2 1 2 1 2
1 2 2 2 1 1 3 3

1 2 1 2 1 2
1 2 1 1 1 1

( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0.

N N N

N

N N N N N

v d d v d d v d d

v d d v d d v d d

v d d v d d v d d 

       
       


       

 (33) 

Since 
i jv v , i j  , it follows that 1 1

2id d  for 1, ,i N , hence 
1 2f f
  , which 

contradicts the assumption. Thus, for any two different input densities 
kf D
  , the 

corresponding generated stationary densities are different. This completes the proof. 

Remark 4. Theorem 3 suggests that, given a nonsingular transformation S, the generated 

stationary density function is uniquely determined by the input density function, that is, a 

unique stationary density may not be shared by the perturbed dynamical system with multiple 

different input density functions. 

Remark 5. Given the nonsingular transformation and an input density function, there exists a 

unique stationary density function, which is the fixed point of the corresponding operator P , 

so that 
* *f Pf , which can be expressed with respect to   in (29). Hence, 

N
f

w  can be 

viewed as the approximate left eigenvector of the eigenvalue 1 of H. f  can be estimated 

arbitrarily well by N
f , therefore we have that N

f  converge to f  as N , that is 

 
2lim ( ( ) ( )) 0N

RN
f x f x dx 

  . (34) 

The stationary density formulation result can be extended to dynamical systems with 

multiple external input perturbations. 
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Theorem 4. Let :S R R , and 
k R  , 1, ,k K  the i.i.d. input variables following the 

corresponding density functions 
k

f R
  , 1, ,k K . The dynamical system perturbed by K 

input variables  

 1
1 ( ) + +   (mod  )K

n n n nx S x b    , (35) 

has the stationary density function 
*
N

f  with respect to   given by 

 
1

lim 0
N N

K
f f

k
N

k F

w w M Q 




  . (36) 

Proof. Let 1
1 ( )n nY S x    (mod b). From (29) the matrix representation of the transfer operator 

approximation 
1,NP  corresponding to 1Y  is given by 1 1H M Q  . Let 1

1 , 1 ,( )i j i j NH h   , then we 

have 

  

1
,1

1
, 11

, 1
, 1

1
, 1

i j

i j

i j

i j N

i N j

m d

m d
h

m d

m d





   
  
  
  

   
  
  
  
     

. (37) 

The sum of each row is given by 

 

11 1 1
,1 1 2

1

,1

11 1 1
, ,21 1 1

1, 1 1 1
1 , 1 1 2

,

11 1 1
, 2 3 1

1

N

ji N
j

i N

N
ji j iN N

ji j

j i j N N N

i N N

i N j

j

dm d d d

m

dm md d d
h

m d d d

m

m dd d d






   



         
                                             

 







.







 
(38) 

It follows that 1 1
, , ,

1 1 1 1

1
N N N N

i j i j j i j

j j j j

h m d m
   

 
   

 
    , which suggests 1H  is a stochastic matrix. 

Since 1
, 0i jh  ,  1H  can be viewed as a Frobenius-Perron matrix corresponding to 1Y . 

Then (35) is rewritten as 
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  1 2
1 1( ( ), ) + +   (mod   )K

n n n n nx Y S x b     . (39) 

Let 1 2
2 1( ( ), )n n nY Y S x     (mod b). Likewise, the transfer operator approximation 

2,NP  

corresponding to 2Y  can be represented by a matrix 2
2 , 1 ,( )i j i j NH h    given by 2 1 2H H Q  . It 

can be further given that 

 

22 2 2
1 2

11 1
,1 ,1

21 12 2 2
,2 ,22 1 1

1, 2 2 2
1 1 2

1 1
, ,

22 2 2
2 3 1

1

N

jN
j

i i N

N
ji iN N

ji j

j N N N

i N i N N

j

j

dd d d

h h

dh hd d d
h

d d d

h h

dd d d






  



 
     
                                                     

 







1 2 1
, ,

1 1 1

1.
N N N

i j j i j

j j j

h d h
  



 
   

 
  

 
(40) 

Hence, 2H  is also a stochastic matrix and can be viewed as the Frobenius-Perron matrix 

induced by 2Y .  

By analogy, (35) may be written as 1 1
1 1( ( ), , , )K K

n K n n n nx Y S x   
   (mod  )b =

1( ( ), , , )K

K n n nY S x   , and the induced matrix is then given by 

 

1

2 1
1

,

K K K

K

K K K k

k

H H Q

H Q Q M Q



 


 

    
 (41) 

where K
Q  denotes the matrix k

Q (32) associated with the input variable K

n . It can be seen 

that K
H  is, therefore, a stochastic matrix and has 1 as the eigenvalue of maximum modulus 

and the associated eigenvector that is the estimated by the stationary density 
*
N

f  over  . Thus, 

(36) is obtained.  

 

4. An approach to estimating the unique transformation of the underlying system from 

stationary densities 

From Remark 4, a discrete-time dynamical system driven by an external control input can 

have different stationary densities corresponding to different input densities. The objective of 
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the developed approach is to infer a piecewise linear semi-Markov map approximation to the 

unknown map S that is assumed to be general nonlinear continuous using multiple different 

stationary densities observed experimentally. From (29) the problem is reduced to firstly 

determining the Frobenius-Perron matrix M associated with the piecewise linear semi-Markov 

map approximation and then constructing the map. A nonsingular transformation S having 

infinitely many pieces of monotonicity can be approximated by a sequence of piecewise linear 

functions 2}{ NNS  [31], and it follows from (34) that given the input density function, the 

stationary densities of the perturbed dynamical system can be approximated arbitrarily well by 

stationary densities of the perturbed finite approximations 2}{ NNS . Therefore, the Frobenius-

Perron operator associated with S can be approximated arbitrarily well using the matrices 

2}{ NNM  which can be estimated from the observed stationary densities. 

The algorithm is summarized as follows: 

Step 1: Specify K linearly independent input density functions K

kkf 1}{ 
  to yield K stationary 

densities K

k

N

kf 1* }{  ; 

Step 2: Compute the matrix kQ  for each 
kf , and estimate the coefficient vectors 

*

1 2[ , , , ]
N

S kP f k k k

Nv v v v  of N

S kP f  , for 1, ,k K ; 

Step 3: Determine the indices of positive entries of the Frobenius-Perron matrix M and identify 

the Frobenius-Perron matrix associated with the piecewise linear semi-Markov map Ŝ  that 

approximates S. 

Step 4: Construct the piecewise linear nonlinear map Ŝ  corresponding to the identified 

Frobenius-Perron matrix M and smooth Ŝ  to obtain the nonlinear continuous approximate map 

S
~

. 

Details of these steps are introduced below. 

Step 1: Sample K linearly independent input densities K
kkf 1}{ 

  to generate K sets of input 

data  1}{  i

k

i

k , 1, ,k K  respectively. Let 
1

0
0 }{  jjxX  be a set of initial conditions and 


1

** }{  i

k

i

k
xX  a set of final states computed by applying sufficient times the iterations (1) using 

the initial conditions 0X  and the corresponding input data set 
k . The stationary densities 



17 
 

K

kkf 1*}{   are estimated with piecewise constant density functions K

k

N

kf 1* }{   over the partition   

given by 

 



N

i

R

k

i

N

k xwxf
i

1

*
* )()(  , 







 1

** )(
j

k

jR

k

i x
b

N
w

i
, (42) 

which form the following matrix 

 

1*

2*

*

1* 1* 1*
1 2

2* 2* 2*
1 2

* * *
1 2

N

N

K
N

f

N

f
N

K K K
f

N

w w w w

w w ww
W

w w ww

   
   
       
   
     

. (43) 

Remark 6. In practice it is typically required that K N so that more stationary densities are 

observed than the order of the Frobenius-Perron matrix to be determined. This ensures that 

sufficient dynamical behavior in response to different density functions of the control input, 

exhibiting the asymptotic dynamics of the perturbed system, is observed for referring the 

unknown map with satisfactory performance.  

Step 2. The matrix k
Q  induced by each input density 

kf  is given by , 1 ,( )k

i j i j Nq   , where  

   
i jR R

Rk

i

k

ji dzdxxzbzxf
R

q ))((
)(

1
, 




. (44) 

Given the matrix W, to determine the Frobenius-Perron matrix M, from (29) the coefficient 

vectors * * * *
1 2[ , , , ]

N
S kP f k k k

Nv v v v  are obtained by solving the following constrained optimization 

problem 

 

1*

2*

*

1

2min

S N

S N

K
S N

P f

P f

P f
K

F

v Q

Qv
W

Qv

                    

0 0

0 0

0 0

, (45) 

subject to bNv
N

i

k

i 
1

*
, and bNv

k

i  0  for Ni ,,1 , and Kk ,,1 . 

Step 3. For a continuous nonlinear map, it is required that the positive entries in each row of 

M are contiguous. However, it is generally difficult to guarantee the resulting matrix satisfies 
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this condition. Hence, a trial Frobenius-Perron matrix , 1 ,
ˆ ˆ( )i j i j NM m    is obtained to determine 

the indices of contiguous positive entries in each row, and then this will be used to refine the 

matrix. Specifically, this is carried out in two steps. Firstly, given 
*k

S NP f
v  from Step 2, 

NN
jijimM

;
1;1, )ˆ(ˆ
  is obtained by solving the constrained optimization problem below 

 

1*

2*

*

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

ˆ ˆ ˆ
ˆ ˆ ˆ

min

ˆ ˆ ˆ

N
S

N
S

N
S K

P f

N

P f
N

P f N N N N

F

v m m m

m m mv
W

m m m
v

                   

, (46) 

subject to 1}{0 1,,  
N

jijim , and 1ˆ
1

, 


N

j

jim , for Ni ,,1 . 

Let },,1,{ i
e

i
s

i
s

i rrr r  be the set of column indices of the consecutive positive entries in 

i-th row and include the index of the maximum value in i-th row of M̂ , that is, ii

mr r

satisfying 
N

jjiri
mm i

m
1,,

}ˆmax{ˆ  . The approximated piecewise linear  -semi-Markov map 

associated with a refined Frobenius-Perron matrix M should satisfy that  )( )(
),(

i
kkir QSR , 

where ),(

)(

1
kir

ip

k
R


  is a connected interval and the image of the interval iR , 1, ,i N , 

( ) 1i i

e Sp i r r    and i
kir r),(  are the column indices of the positive entries on the i-th row 

of M satisfying ( , 1) ( , ) 1r i k r i k    for 1, ,i N , 1, , ( ) 1k p i  .[30] 

Subsequently, a refined Frobenius-Perron matrix M is obtained by solving the following 

optimization problem 

 

1*

2*

*

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

min

N
S

N
S

N
S K

P f

N

P f
N

P f N N N N

F

v m m m

m m mv
W

m m m
v

                   

, (47) 
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subject to 1
)(

1
1)1,(, 




ip

k

kirim  and 
, ( , )0 1i r i km  , for 1, ,i N , and 

, 0i jm  , if ),( kirj  , 

for )(,,1 ipk  . 

In the following, the uniqueness of the solution to the proposed approach is proved given 

linearly independent input densities. 

Theorem 5. For a perturbed dynamical system (1), given K linearly independent input density 

functions, the solution to the inverse problem of reconstructing the map S is unique. 

Proof. Let  

 

1

2

K

Q

Q

Q

 
  
 
  

Q , (48) 

1C  QQ , and 2C W W . To make sure the identification result is unique, we need to have 

that the matrices 1C  and 2C  are invertible. 1C  is written as 

  
1 1 1 1 2 1

2 2 1 2 2 2

1 1 2

1 2

K

K

K

K K K K K

Q Q Q Q Q Q Q

Q Q Q Q Q Q Q
C Q Q Q

Q Q Q Q Q Q Q

      
          
   
         

. (49) 

For K linearly independent input density functions, and from (32) 1
1

( )
det( ) 0

2

k N

k N

d
Q   . Hence, 

the matrix k
Q  is invertible. Since rank( ) rank( )

k k k
Q Q Q , k k

Q Q  is also invertible. Let 

,i j i jQQ  , thus 
,det( ) 0k k  . The matrix 1C  can be further decomposed as 

 

1
1

1,1 1,2 1,

2,1 2,2 2, 2,1

1

,1 ,2 , ,1 ,2

K

K

K K K K K K

C

C

     
           
   
          

0 0 0

0 0

0

 

 

 

(50) 
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2 3
1 1

1,11,2 1,

2,22,

,

K

K

K K

C C

    
       
  
      

0 00

0 00 0

0 00 0 0

. 

We can find that 1 2
1 1det( ) det( ) 0C C  , and that 

3
1 ,

1

det( ) det( )
K

k k

k

C


  . It follows that 

3
1det( ) 0C  . Then we have that 1 2 3

1 1 1 1det( ) det( ) det( ) det( ) 0C C C C    . Therefore 1C  is 

nonsingular.  

It can be further obtained that 
* 2

2 1
11

1
det( ) ( ) 0

2

N K
k

iN
ki

C w


  . Hence 2C  is also 

nonsingular. This completes the proof.  

Remark 7. It is easy to see that for K N , 1C  is composed of N matrices k
Q , for 1, ,k N . 

Since columns of each k
Q  and 

1{ }N

k kf


 are linearly independent, the whole rows of 1C  are 

linearly independent. Also the matrix W is a full rank matrix. Thereby, the reconstruction result 

is guaranteed to be the unique transformation of the underlying system. 

Remark 8. In contrast to perturbation free and stochastic noise perturbed dynamical systems 

whose stationary density function are fixed and dependent on the transformations, the input 

driven systems can generate different stationary densities given different input density 

functions. This establishes the feasibility of observing multiple stationary densities to 

characterise the various asymptotic dynamics resulting from a set of given different input 

density functions.   

Step 4. The piecewise linear semi-Markov map Ŝ  is constructed over   based on the 

identified Frobenius-Perron matrix M. For a continuous transformation S, the monotonicity of 

each branch )(i
k

Q
S  needs to be determined firstly. Let ],[ ))(,(1)1,( ipiriri aaR   be the image of 

the interval iR  by the semi-Markov transformation Ŝ  associated with the identified Frobenius-

Perron matrix M, 1)1,( ira  the start point of 
)1,(irR  mapped from the subinterval )(

1
i

Q , and 

( , ( ))r i p ia  the end point of  
))(,( ipirR , the image of the subinterval ( )

( )
i

p iQ . Let i
c  be the midpoint of 

the image iR , that is, ( ,1) 1 ( , ( ))( ) 2i r i r i p ic a a  . Let )(il  be a sign representing the monotonicity 
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associated with 
( )

( )
1

ˆ{ ( ) }
i

k

p i

k
Q

S x  , which is defined by ( ) 1l i    if 1 0
i i

c c   , ( ) 1l i   if 

1  0
i i

c c   , and ( ) ( 1)l i l i  , if 1i i
c c  , for Ni ,,2 , and )2()1( ll  . The piecewise linear 

semi-Markov transformation Ŝ  on each subinterval ( )i
jQ  is then constructed by 
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
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jirii
ji

Q
i

j

 (51) 

00 a , for 0, jim , Ni ,,1 , Nj ,,1 , 1)(,,1  ipk  . By fitting a polynomial 

smoothing spline, a smooth nonlinear map is then obtained. [30] 

Remark 9. The method can be readily generalized to unbounded dynamical systems, for which 

the state space R has infinite length. In this case, it can be assumed that the state value never 

approaches the boundary, which is infinity. 

 

5. Numerical simulation 

The proposed algorithm is demonstrated to identify the following perturbed chaotic map 

 )1(mod)(1 nnn xSx  , (52) 

where )1(4)( nnn xxxS  , ]1,0[nx , ]1,0[n .  

To infer a piecewise linear semi-Markov transformation Ŝ  over a given uniform partition 

  of 30N   intervals that approximates the unknown transformation S, the input density 

functions are set to be Gaussian distribution functions 2: ~ ( , )k

k kf u
  N  truncated to [0,1], 

where 0729.00071.0  kuk , 120,,1k , examples of which are shown in Fig. 2 . Input data 

given by  1}{  i

i

kk

k

n
, 

3105 , is generated by sampling 
kf  for 120,,1k . Each 

of the stationary density functions N

kf   resulting from the corresponding 
kf  is estimated over 

  from the final states of the perturbation process 
1

** }{  i

k

i

k
xX  with initial conditions 


1

00 }{  iixX  that are sampled from a density function )()( ]1,0[0 xxf   after 3102  

iterations, and are shown in Fig. 3. 
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Fig. 2 Examples of input density functions 
kf . 

 

 

Fig. 3 Examples of stationary densities observed using the original map and used to identify the 
unknown map (black lines), and generated using the identified map (grey lines). 
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By solving the constrained linear optimization (45), (46) and (47) using lsqlin function in 

Matlab to estimate the matrix M, the constructed piecewise linear semi-Markov approximation 

Ŝ  is shown in Fig. 4. The smoothed result with parameter 0.99 is given in Fig. 5. 

Fig. 4 The identified piecewise linear semi-
Markov approximate Ŝ over the defined uniform 
partition R. 

Fig. 5 The identified continuous nonlinear map 
S
~  by smoothing the inferred piecewise linear 

semi-Markov map Ŝ, compared with the original 
map S. 

 

Fig. 6 shows the relative percentage error between the identified and original maps which is 

calculated by  

 (%)
)(

)(
~

)(
100)(

xS

xSxS
xS


 , (53) 

on the uniformly spaced points. It can be seen the approximation error is low, since the errors 

on 93% of points are less than 5%. As shown in Fig. 3 the predicted stationary densities using 

identified map S
~

 for each input density function are very close to that generated by the original 

map. The error between the stationary density functions generated using the identified and 

original maps, measured by the root mean squared error (RMSE) between the coefficient 

vectors 
N

kfw   and 
N

kfw 
ˆ

 is given by 

 



N

i

k

i

k

i ww
N

k
1

2** )ˆ(
1

)RMSE( , (54) 

and is shown in Fig. 7. 



24 
 

  
Fig. 6 The relative percentage error δS between 
the smoothed continuous map S

~  and the original 
map S. 

Fig. 7 The root mean squared error between the 
stationary densities generated using identified and 
original maps after 2×103 iterations for each given 
input density functions. 

 

Since it is hard to estimate the stochastic noise in practical situations, the proposed algorithm 

is applied in the presence of additive noise of multiple levels. Assuming the stochastic system 

to be 1 ( )
n n n n

x S x       (mod b), where n
  is a white Gaussian noise term, the mean 

relative percentage error S  for some increasing noise levels is given in Table 1. It can be seen 

that the error can remain low even as the noise level dramatically increases, which suggests 

that the algorithm is still well applicable to stochastic chaotic systems with finite noise levels. 

Table 1 The mean relative percentage error for four different Gaussian noise levels. 

2 2
x    0 0.0978 0.5431 1.1231 

S (%) 2.40 3.63 8.96 35.41 

 

6. Conclusions 

This paper presents a new scheme of reconstructing an unknown one-dimensional chaotic 

map using the stationary densities generated by applying an additive control input with linearly 

independent density functions. It is proven that there exists a unique stationary density function 

for such a perturbed chaotic map, corresponding to a given the input density function. The 

derived relationship between the stationary density and the input density function suggests the 

dependence of a stationary density on the input density function. Thus, the stationary density 

can be estimated with the given transformation and input density function, and for an unknown 
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chaotic system the generated stationary density function varies with different input density 

functions. Under the assumption that only stationary densities can be observed, compared with 

the existing solutions to the inverse Frobenius-Perron problem, this method can be used to infer 

the unique chaotic map of the underlying system.  

This paper addressed the challenge of inferring the chaotic map from stationary densities, 

and also provided a novel heuristic perspective for controlling the dynamics of chaotic systems. 

From Remark 5, the stationary density function of such perturbed chaotic maps can be 

estimated by the eigenvector of the matrix representation of the transfer operator that describes 

the evolution of densities. The control strategy is to determine the input density function so as 

to drive the chaotic system to attain a desired stationary density function that characterizes the 

new asymptotic dynamics. Thus, as long as the input density function is specified, the 

dynamical behavior exhibited by the perturbed system will stabilize at the target one. The main 

challenge of solving this problem is to estimate the input density function given the target 

stationary density function and the transformation. From the point of view of applicability to 

characterizing the dynamic evolution of heterogeneous cell populations and altering cell fates 

upon differentiation, the introduced identification method forms a theoretical basis for inferring 

the dynamical model and designing the control strategy to manipulate the differentiation of 

stem cells into desired types. 
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