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Abstract—This paper presents a novel non-parametric back-

propagation Bayesian compressive sensing (BBCS) classification

approach. While the state-of-the-art parametric classifiers such

as logistic regression require model training and can result in

inadequate models, the developed approach does not require

model training. It is combined with a column-based subspace

sampling process and it can deal efficiently with uncertainties and

highly computational tasks. Validation on a publicly available

vehicle logo dataset shows that the proposed classifier can

achieve up to 98% recognition accuracy as compared with the

state-of-the-art non-parametric classifiers. Compared with the

generic Bayesian compressive sensing classification, the proposed

approach decreases the mean number of misclassifications by

87% and with 68% reduction of the computational time. The

robustness of the BBCS approach is demonstrated over scene

recognition tasks, and its outperformance over the AlexNet

convolutional neural networks algorithm is demonstrated in noisy

conditions. The proposed BBCS approach is generic and can be

used in different areas, for example, it has shown robustness over

the CIFAR-10 dataset.

I. INTRODUCTION

A number of parametric classifiers such as the linear Sup-

port Vector Machine (SVM) [1–4] and Logistic Regression

(LR) [5] have been developed for Vehicle Logo Recognition

(VLR) and Traffic Scene Recognition (TSR). Deep learning

models such as Convolutional Neural Networks (CNN) and

capsule networks have been applied to VLR [6, 7]. These

parametric classifiers assume a functional distribution of the

data [8]. The relationship between the label and the input data

is modeled using a fixed number of parameters. An advantage

of parametric classifiers is that once the number of parameters

are determined, it would not change later as non-parametric

methods do. However, in practice, parametric classifiers could

result in an inadequately trained model due to inappropriate

assumptions of prior distributions, leading to inappropriate

predictions in the testing phase [8, 9].

On the contrary, non-parametric classifiers do not make

assumptions about the distribution representing the data [8].

They do not have a model with a fixed number of parameters.

Instead, the number of parameters increases with the size of

the training dataset [10]. This in turn increases the computa-

tional complexity.

The K-Nearest Neighbor (KNN) approach is a commonly

used non-parametric approach which is often used for classifi-

cation [11, 12]. However, the KNN approach is not robust to

outliers and to data with high dimensionality. This is because

the shortest distance is not necessarily the best match to the

testing data, especially when the number of training data are

limited [8, 13]. Besides, the KNN approach has been shown

to be vulnerable to noise effects [5].

A non-parametric classification approach based on sparse

representation proposed by Wright et al. [14] has proven to

be more accurate than the linear SVM and the KNN classifier

for face recognition. The Sparse Representation Classifier

(SRC) [14] assumes that the testing data can be represented as

a linear combination of the training dataset. A weight vector

is generated with each element representing a corresponding

coefficient in the linear combination. By splitting the weights

according to their associated classes (with the remaining set

to be zero valued), the weights in the correct class should

reconstruct the original data with a minimum error. However,

the high computational costs of the SRC can be a problem.

In addition, the SRC works only when the system is under-

determined [15]. In practice, this criterion cannot be met when

there is a lack of training data.

Recently the Bayesian Compressive Sensing (BCS) [16]

approach has been efficiently applied to synthetic aperture

radar target classification [17], image reconstruction [18, 19]

and phonetic classification [20]. The Bayesian approach could

potentially provides an alternative to the l1-norm minimization

for optimizing the linear combination coefficients required for

the classification framework. Similarly to Zhou et al. [21],

by comparing the magnitudes of the coefficients, the testing

data can then be classified by assigning it to the class whose

coefficients have the highest l2-norm magnitude.

The methods proposed in [22, 23] map the data into

a reduced dimensional space, as the Principle Component

Analysis (PCA). However, these new latent spaces are different



from the original space and make the original data difficult

to interpret. To combat this issue a column-based subspace

sampling data representation can be used [24–26]. In this case

it is still possible to work in the original space, just with fewer

data points.

In order to cope with various sources of uncertainties that

many of the existing classification algorithms face, this paper

proposes a new solution that provides robustness to insufficient

training data and to noises. The key contributions of this work

can be summarized as follows:

I) A new Backpropagation Bayesian Compressive Sensing

(BBCS) classifier is developed which represents efficiently the

data and solves the classification problem as an optimization

problem. The Euclidean distance between the constructed

testing data and the original testing data is minimized. This

process increases the recognition accuracy.

The BBCS incorporates a data reduction process that further

decreases the computational costs. The column-based subspace

sampling representation selects informative data points from

the dataset. Compared with the PCA which transforms the

original data into a new latent space, the column-based sub-

space sampling method chooses the best data directly from

the original space. This process significantly decreases the

computational costs and facilitates the interpretation in this

reduced dimensional space.

II) The developed BBCS approach is validated and eval-

uated over noisy data and compared with state-of-the-art

non-parametric classifiers: the KNN algorithm, the SRC and

the BCS algorithm. The BBCS is more robust than KNN

classifier. Compared with the BCS, the proposed approach

decreases the mean number of misclassifications by 87% and

by reducing the computational cost compared with the SRC

algorithm.

The rest of this paper is organized as follows. Section II

introduces the general sparse representation classification

framework. Section III.A presents the BCS approach. Section

III.B introduces the developed backpropagation BCS classifier

approach and the derivation of the theoretical relationships.

Section III.C introduces the column-based subspace sampling

method. Section IV presents performance validation of the

BBCS and discussions of the results. Section V summarizes

the results. The Appendix contains the full derivation of the

marginal likelihood function and its maximization.

II. CLASSIFICATION FRAMEWORK BASED ON SPARSE

REPRESENTATION

The SRC, BCS classifier and BBCS classifier assume that

the testing data x
∗ ∈ RM×1 can be represented as a linear

combination of the training samples X ∈ RM×N where M is

the length of the vector data and N gives the number of entries

in the training dataset. When applying to images, each image is

represented by an image feature vector rather than by pixels

of the raw image. Therefore, M refers to the length of the

feature vector representing the image. Feature-based methods

such as the Scale Invariant Feature Transform (SIFT) [27] and

CNN [28] can represent an image using a vector rather than

a matrix representation.

A testing image denoted by image feature x
∗ is represented

with the linear model:

x
∗ = Xw + z, (1)

where w ∈ RN×1 is a weight vector controlling the contribu-

tion of each image feature in the training dataset to the linear

combination representing the testing image feature, z ∈ RM×1

is a bounded noise term with ||z||2 6 ǫ, || · ||2 is the l2-norm

and ǫ is a small positive constant. The solution to (1), w, is

obtained by minimizing the l2-norm:

ŵ = argmin
w

(||w||2), s.t ||x∗ −Xw||2 6 ǫ, (2)

where ŵ ∈ RN×1 is the estimated weight vector. However,

when N > M , equation (1) corresponds an under-determined

system and there is no unique solution by using conventional

methods [14, 29].

The SRC classification method [14] assumes that a testing

image feature can be sufficiently represented by a dictionary

for its corresponding class. Therefore, the solution is naturally

sparse as coefficients for unrelated classes are zero valued. For

instance, if there are 20 classes, only approximately 5% of the

coefficients in ŵ will have non-zero values [14]. In fact, the

sparser the recovered w is, the easier it is to accurately classify

the testing image feature x
∗ [14]. This motivates the use of

the l0-norm to find the sparest solution for w in equation (1).

However, l0-norm minimization is an NP hard problem.

Instead, an l1-norm minimization is typically used as an

approximation [15, 30, 31], giving:

ŵ = argmin
w

(||w||1), s.t ||x∗ −Xw||2 6 ǫ. (3)

The solution to the l1-minimization in equation (3) can

be found by linear programming methods such as the

basis pursuit [32] or the orthogonal matching pursuit [33]

methods. The solution to equation (1) gives the optimal w

for classification purposes in the SRC [14].

III. BAYESIAN COMPRESSIVE SENSING

The BCS method [16] provides an alternative to the l1-norm

minimization method by incorporating prior knowledge within

the Bayesian framework. Since the testing image feature can

be represented as a linear combination (1) of the training

images, the relative importance of each training image feature

is controlled by the weight vector w. The vector w can be



separated into wv and we, where wv contains the significant

weights and we the remaining negligible weights. Hence,

w = wv +we and equation (1) can be written as:

x
∗ = Xwv +Xwe + z. (4)

Both Xwe and z can be approximated as zero-mean Gaussian

noises [16], allowing equation (4) to be written as:

x
∗ = Xwv + n, (5)

where n = Xwe + z. The variance of n is then given by

Σn = σ2
IM , where IM is an identity matrix of size M × M.

Note that each entry in n has the same variance σ2 and hence

the likelihood function can be given by:

p(x∗|w, σ2) = (2πσ2)−
M

2 exp

{

−
||x∗ −Xw||22

2σ2

}

, (6)

rather than in the standard multivariate form which includes

the covariance matrix Σn. In (6) and in the following equations

the subscript v of w is dropped for conciseness.

The elements of w are assumed to have a zero mean

Gaussian distribution. This is given by:

p(w|α) =

N
∏

i=1

N(wi|0, α
−1
i )

=

N
∏

i=1

(2πα−1
i )−

1

2 exp

{

−
1

2
αiw

2
i

}

= (2π)−
N

2 |A|
1

2 exp

{

−
1

2
w

T
Aw

}

, (7)

where A = diag(α1, α2, · · · , αN ) and α =

[α1, α2, · · · , αN ]T, αi is a precision value and | · | denotes

the determinant. Furthermore, Gamma hierarchical priors are

considered over αi and σ2:

p(α) =

N
∏

i=1

Gamma(αi|a, b), (8)

p(σ2) = Gamma(σ2|c, d), (9)

where a, b, c and d are shape and scale parameters.

The overall prior over w can be evaluated by marginalizing

over the hyperparameters α:

p(w|a, b) =

N
∏

i=1

∫ ∞

0

N(wi|0, α
−1
i )Gamma(αi|a, b)dαi.

(10)

Since the prior of w is assumed to be a zero-mean Gaussian

distribution which conjugates to a Gamma prior, the probabil-

ity density p(w|a, b) corresponds to a Student’s t-distribution

[34]. This achieves sparsity as the Student’s t-distribution can

be strongly peaked at wi = 0 with appropriate choices of a

and b [16, 34].

Combining the likelihood function and the prior given by

equations (6) and (7), respectively, the posterior distribution

of the weights can be found from:

p(w|x∗,α, σ2) =
p(x∗|w, σ2)p(w|α)

p(x∗|α, σ2)
. (11)

As the likelihood function and prior are both Gaussian, the

posterior distribution over w is also a Gaussian distribution:

p(w|x∗,α, σ2) = N(w|µ,Σ),

= (2π)−N/2|Σ|−1/2exp

{

−
1

2
(w − µ)TΣ−1(w − µ)

}

,

(12)

where the mean vector and covariance matrix are given re-

spectively by:

µ = σ−2
ΣX

T
x
∗ (13)

and

Σ = (A+ σ−2
X

T
X)−1. (14)

Notice that µ and Σ are dependent on σ2 and α. Therefore,

the goal is to find the posterior probability density function

over all the unknown parameters given the training image

features and the testing image feature. This means finding

the values for w, α and σ2 which maximize the following

posterior probability density function:

p(w,α, σ2|x∗) = p(w|x∗,α, σ2)p(α, σ2|x∗). (15)

Finding the optimal w, α and σ2 involves two steps. Firstly,

for the current values of µ and Σ, the values of α and σ2

are calculated to maximize p(α, σ2|x∗). Then these values

are substituted to re-evaluate µ and Σ. This process is then

repeated until a convergence criterion is met. In the first step

µ and Σ are fixed then maximizing equation (15) is equivalent

to maximizing:

p(α, σ2|x∗) =
p(x∗|α, σ2)p(α)p(σ2)

p(x∗)
, (16)

where the denominator is independent of α and σ2. Therefore,

only p(x∗|α, σ2)p(α)p(σ2) has to be maximized. Further-

more, by selecting a, b, c and d to be small positive values

there are flat, uninformative priors over α and σ2 [34]. Max-

imizing equation (16) is approximately equal to maximizing

the marginal likelihood:

p(x∗|α, σ2) =

∫

p(x∗|w, σ2)p(w|α)dw, (17)

with p(x∗|w, σ2) and p(w|α) being given in equations (6) and

(7), respectively. The full derivation of the marginal likelihood

function is given in Appendix A.



Equation (17) is a convolution of two zero-mean Gaussians

and the logarithm of the result gives:

L(α, σ2) = ln
(

p(x∗|α, σ2)
)

= ln (N(x∗|0,C))

= −
1

2

(

Mln(2π) + ln|C|+ x
∗T

C
−1

x
∗
)

, (18)

where the M ×M matrix C is given by:

C = σ2
IM +XA

−1
X

T. (19)

A type-II maximum likelihood approximation is used to

estimate α and σ2 [34], which gives:

αnew
i =

1− αiΣii

µ2
i

, (20)

(σnew)2 =
||x∗ −Xµ||22

M −
∑N

i (1− αiΣii)
, (21)

where Σii is the i-th diagonal element of Σ in equation (14).

The parameters α and σ2 are functions of µ and Σ, while µ

and Σ are functions of α and σ2. This leads to an iterative

algorithm to update each variable until a convergence criterion

has been met. The derivation of the update equations in (20)

and (21) is provided in Appendix B.

IV. THE PROPOSED BACKPROPAGATION BAYESIAN

COMPRESSIVE SENSING CLASSIFIER AND COLUMN-BASED

SUBSPACE SAMPLING

A. Backpropagation Bayesian Compressive Sensing Classifier

Given that the training images in X belong to K classes,

where the class label i ∈ {1, 2, · · · ,K}, the training image

features can be separated according to their labels. This

gives X = [X1,X2, · · · ,Xi, · · · ,XK ], where X
i contains

all of the training image features belonging to the ith class.

Suppose that there are ni samples in the ith class, then all

of the training image features in the ith class are given by

X
i = [xi

1,x
i
2, · · · ,x

i
ni
]. Notice, this process only separates

the training image features by their labels, the total number of

training image features does not change. Hence,
∑K

i ni = N .

Therefore the original testing image feature can be recon-

structed by using the estimated weight vector ŵ:

x̃
∗ = [X1,X2, · · · ,XK ]





ŵ
1

ŵ
2

...
ŵ

K



 , (22)

where x̃
∗ is an estimate of the original image feature x

∗ and

ŵ = [[ŵ1]T, [ŵ2]T, · · · , [ŵK ]T]T. Based on the assumption

that the testing image feature is a linear combination of a few

image features from its corresponding class, non-zero valued

elements in ŵ should be only in ŵ
i if the testing image feature

belongs to the class i. The BCS approach [17, 20] assigns the

testing image feature to the class i if it has the highest norm-2

magnitude of ŵi.

However, when there are training image features with no or

a very small number of points of interest, most of the resulting

feature vectors are zero valued. This would allow large weight

values in ŵ without detrimentally affecting the likelihood

value when evaluating equation (6). These inappropriately

large weight values can lead to a data being misclassified

when using the l2-norm of the weights as a classification

mechanism. To overcome this problem this work proposes a

classification approach based on a backpropagation process

as described below. Note that the backpropagation here is a

reconstruction process, in which the weights are propagated

back in order to reconstruct the input feature, this is different

with the backpropagation process as in neural network.

The proposed approach reconstructs the testing image fea-

ture by a BCS process in which the image features are

represented by equation (22). Similar to SRC, the weight

vector ŵ is separated into K vectors with each vector keeping

the value in its corresponding weight locations and setting the

remaining values to zero:




ŵ
1

ŵ
2

...
ŵ

K



 =





ŵ
1

0

...
0



+





0
ŵ

2

...
0



+ · · ·+





0
0

...
ŵ

K



 ,

ŵ = w̃
1 + w̃

2 + · · ·+ w̃
K , (23)

where w̃
i ∈ RN×1 and i ∈ {1, 2, · · · ,K}. Each w̃

i is used

to reconstruct the testing image feature x
i
cons as follows:

x
i
cons = Xw̃

i. (24)

The testing image feature x
∗ is assigned to a class cor-

responding to the most similar reconstructed image feature.

More specifically, if the testing image feature recovered by

w̃
i has the highest similarity with the original testing image

feature x
∗, then this testing image feature can be classified into

the ith class. In order to compute the similarity between the

image feature recovered by w̃
i and the original image feature

x
∗, an error term is defined for each class:

Err(i) = ||x∗ − x
i
cons||2. (25)

Then the testing image feature can be classified into the

class which gives the minimum error. SRC, BCS and BBCS

classifiers all need a dictionary composed by training data,

hence they are naturally in-efficient for large datasets.

B. Column-based Subspace Sampling

Estimating the coefficients in equation (5) for BBCS can be

time consuming when X is high dimensional. PCA can solve

this problem by mapping the data into a lower dimensional

data space. However, as the space has been altered, each

entry can be difficult to interpret. The column-based subspace



sampling method can avoid these problems [24]. It selects the

“best” subset of h columns from X, where h < N .

Let Xk represent the “best” rank-k approximation to X by

singular value decomposition. The output matrix D ∈ RM×h

consists of h columns from X such that the inequality in

equation (26) is valid for a probability at least 1− δ.

||X−DD
+
X||F 6 (1 + ρ)||X−Xk||F , (26)

where || · ||F is the Frobenius norm, D+ is a Moore-Penrose

generalized inverse of D, ρ is an error parameter and δ is the

failure probability.

Define a score for each column in “X” in the following

form:

πj =
1

k

k
∑

ξ=1

(vξ
j )

2, (27)

where v
ξ
j (j=1,2,...,N) is the jth coordinate of v

ξ and v
ξ ∈

RN×1 (ξ = 1, 2, · · · , k) is the top right k singular vectors of

X. A random sampling process is applied on X and the jth

column of X is adopted with probability min{1, hπj}, where

h = O(klogk/ρ2). All the adopted columns then generate the

target matrix D, with h examples to represent the original

dataset. The detailed proof is given in [24, 26].

V. PERFORMANCE EVALUATION FOR VEHICLE LOGO

RECOGNITION

The proposed BBCS can be used a generic classifier. In

this paper, we implemented for Vehicle Logo Recognition

(VLR) and Traffic Scene Recognition (TSR). Recognizing

vehicle logos and traffic scenes is of paramount importance

for intelligent transportation systems, especially for traffic

monitoring and management. The vehicle logo is one of

its most distinguishable vehicle features [11] and as part

of systems it can facilitate detecting fraudulent plates even

when the observed logo is not available in the police security

database [35]. As a result, this could give robust vehicle iden-

tification also in commercial investigations [1] and documents

retrieval systems [36]. VLR is also linked with TSR which

plays a crucial role in self-driving cars, traffic safety [37] and

surveillance [38].

In this section the open VLR dataset provided by Huang

et al. [6] is used to evaluate the proposed classification

approach. It has 10 categories and each category contains 1000

training images and 150 testing images. All images have a

size of 70×70 pixels. Figure 1 shows an example of the 10

vehicle categories by randomly choosing one image from each

category in the training dataset.

The local descriptor Scale Invariant Feature Transform

(SIFT) [27] and the bag of words [39] model are applied in

order to represent images before the classification. All SIFT

interest points are clustered in order to generate a dictionary

Fig. 1: Vehicle logo dataset.

with M words. In the representation stage, interest points from

an image are replaced by their nearest words in the dictionary.

This allows each image to be represented as a feature vector

of length M , where M is the number of centroids in the

clustering process in the bag of words model. The value

in each entry of the vector is the normalized frequency of

each word which appeared in an image. Increasing M gives

more detailed information about the feature but increases the

computation costs. Further details about representation models

can be found in [40, 41].

The performance evaluation is conducted in MATLAB on

a computer with the following specification: Intel CPU I5-

4590 (3.4Ghz) and 8GB of RAM. The open source library

VLFeat [42] is applied for extracting the SIFT features.

A comparison is made with the SRC (implemented using

CVX [43, 44]), BCS classifier and KNN classifier. In our

experiment, K=1 achieves the best result for clear images.

Different K values influence the result when images are noisy,

while the prior knowledge of images is unknown. Therefore,

as it is commonly done in the literature, [14, 25], here a

value of K = 1 is selected for all considered examples. The

performance of each method is evaluated in terms of accuracy

(percentage of correctly classified images), the total number

of misclassified images and the computation time (to indicate

the relative computational complexities).

A. Classification comparisons for Vehicle Logo Recognition

This subsection compares the performances of the classifi-

cation methods when applied to the images that are provided

in the dataset [6]. The simulation is repeated 30 times, the

average accuracy is found and given with the corresponding

standard deviation. The computation time and number of

misclassified images are also given as the mean results for

all the simulation runs.

Table I shows that the BBCS classifier achieves the highest

accuracy of 98.91%. Table I also indicates that the BCS classi-

fier is less accurate than the SRC and BBCS classifier. For ex-

ample, when M=300, the BCS classifier incorrectly classifies

138 images, while this is reduced to 17 images for the BBCS



TABLE I: Non-parametric classifiers comparison using SIFT

descriptors with M=100, 200, 300, 400, 500.

Classifiers KNN SRC BCS BBCS

M=100 (Accuracy%) 98.29± 0.36 98.30 ± 0.44 92.17± 0.77 98.24± 0.32
Misclassified images 25.65 25.50 117.45 26.40
Time (s) 0.97 6357 868 868

M=200 (Accuracy%) 98.72± 0.24 98.73 ± 0.25 91.36± 0.54 98.60± 0.28
Misclassified images 19.20 19.05 129.60 21
Time (s) 1.84 7804 2358 2358

M=300 (Accuracy%) 98.63± 0.27 98.78± 0.24 90.77± 0.75 98.86 ± 0.22
Misclassified images 20.55 18.30 138.45 17.10

Time (s) 2.70 8360 3120 3120

M=400 (Accuracy%) 98.67± 0.30 98.83± 0.23 90.37± 0.77 98.91 ± 0.24
Misclassified images 19.95 17.55 144.45 16.35

Time (s) 3.54 9116 3360 3360

M=500 (Accuracy%) 98.74± 0.23 98.86 ± 0.19 90.25± 0.95 98.84± 0.25
Misclassified images 18.90 17.10 146.25 17.40
Time (s) 4.17 9582 3497 3497

classifier. In this case, the number of misclassifications is

reduced by 88% without increasing the computational cost. For

all the values of M considered, there was a mean reduction in

the number of misclassified logos of 87% for BBCS classifier

as compared to the BCS classifier. The computation times in

Table I show that this improvement in classification accuracy

comes without an increase in computational complexity.

The SRC and BBCS classifier give very similar

classification accuracies. However, the BBCS classifier has

a significant advantage in terms of computational costs. For

the example when M=300, the proposed BBCS classifier

reduces the computational cost by 63% when compared with

the SRC whilst giving a slightly improved accuracy compared

with the SRC algorithm. When comparing the computation

times of the proposed BBCS classifier to the SRC, for all

values of M considered, there is a mean reduction in the

computation time of 68%. It only takes about two seconds

to recognize an image using the BBCS classifier (note, that

the times in Table I are for classifying all images in the

testing dataset). The computation times show that the KNN

classifier is quicker than the proposed BBCS classification

approach. However, later results will show that the KNN

classifier is more vulnerable to the effects of noise than the

BBCS approach.

According to these results the computation times for the

BCS and BBSCS are the same. However, the accuracy is

consistently lower for the BCS classifier as compared to the

BBCS classifier. The accuracy of the other two classifiers

considered in the comparison also outperforms the BCS based

method. As a result, the BCS based classifier will not be

considered further in this performance evaluation.

Figure 2 shows 20 images (from the original testing dataset)

that the KNN algorithm fails to satisfactorily classify. The

first row gives the images that are under consideration and

the second row gives the classification results from the KNN

classifier. For comparison the SRC and BBCS classification

results are shown in rows 3 and 4, respectively. The relative

performances of the three methods are also further summarized

in Table II. Here it can be seen that both methods outperform

the KNN algorithm in terms of classification accuracy. The

BBCS classifier gives the highest classification accuracy over-

all. Note that the 30 independent simulation runs are conducted

with the final selected class being the most frequent overall.

TABLE II: Accuracies obtained using challenging data.

Classifier KNN SRC BBCS

Accuracy 19.17% 43.83% 47%

B. Classification comparisons with noise

In practice, it is unlikely that the logos being classified will

be clearly visible. Hence, here different levels of Gaussian

white noise are added to the training images and testing images

in order to examine the performance of the classifiers. Due to

computational costs only M=300 will be considered in this

subsection and those that follow. This has been selected as a

compromise between accuracy and computational costs.

Figure 3 shows an example of a training image and the

effects of adding noise with increasing values of variance.

The intensity of all pixels in the image are normalized, giving

values between 0 and 1. A white Gaussian noise is then added

to each pixel which varies the pixel intensity, with the effects

of different variance levels being investigated. Normally an

image is considered highly contaminated if the variance of

the Gaussian noise is above 0.2. The noise variance level in

the training and testing images are denoted as σ2
train and σ2

test,

respectively.

Ten independent classification simulation runs are then

carried out using the noisy images and the mean accuracies

are shown in Figure 4. Although adding a small amount of

noise to the training images can initially offer an improvement

in terms of classification accuracy, there is a degradation in

performance when it is is increased further.

According to the authors’ experience, there are more SIFT

features that could be detected in slightly noisy images. This

results in a better image representation vector. It can be

explained by the fact that the use of the small amount of noise

preserves more edges than for clear images after the Gaussian

smoothing process used in the SIFT algorithm. However, an

increase of the noise level makes difficult to recover the image.

As the noise variance is increased, less and less SIFT features

can then be detected as the images are then severely damaged

by the noise.

Figure 4 shows that the KNN classifier is the most vul-

nerable to the effects of noise. It can be explained by the fact

that the KNN classifier only calculates the Euclidean distance,

while the other two allow for some error when modeling a

testing image feature as a linear combination of the training

image features. The performances of the BBCS classifier and



Fig. 2: The first row illustrates some challenge images, the second, third and fourth rows are the corresponding results classified

by KNN, SRC and BBCS, respectively.

Fig. 3: An example of a training image and the effect by adding

Gaussian white noise to image intensities with zero mean and

variance values 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 from left

to right respectively.

the SRC are similar, while the BBCS classifier tends to be

more accurate compared with the SRC when the training

images are heavily contaminated by noise. For instance, when

the noise variances are 0.25 in the training and testing images,

the BBCS classifier and the SRC achieve 75.87 % and 73.79%,

respectively. Furthermore, when the noise variances increase

to 0.3, the BBCS classifier and the SRC can achieve 70.05 %

and 67.82%, respectively.

C. Column-based subspace sampling

In this subsection, a reduced number of training images

are used to evaluate the situation where the size of the

dictionary is large. Table III shows the time and computational

cost comparisons for different classifiers. Using the column-

based subspace sampling method, the partial dictionary size

is decreased to 20% and 10% (denoted as p1 and p2, re-

spectively) when compared to the original dataset (denoted

as f ). The computational cost decreases about 6 times (p1)

and 11 times (p2), while the accuracy drops slightly. The

proposed BBCS approach requires an overall time 500 and

277 seconds, respectively, which is 0.3s and 0.18s per image.
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Fig. 4: Noise robustness comparisons for the KNN, SRC,

BBCS classifiers.

The experiments are performed over 1500 images. This could

still be applied to real-time applications. Even though the

computational cost of the proposed algorithm is still higher

than the cost of the KNN algorithm, it is more robust than

the KNN when applied to noisy images. Since 10% data

reduction does not decrease the accuracy significantly, the next



TABLE III: Comparisons between using the full and partial

dictionaries.

Classifiers KNN(f) SRC(f) BBCS(f)
Accuracy(%) 98.63± 0.27 98.78± 0.24 98.86 ± 0.22
Misclassified images 26.33 18.30 17.10

Time(s) 2.70 8360 3120

Classifiers KNN(p1) SRC(p1) BBCS(p1)
Accuracy(%) 97.32± 0.47 98.54 ± 0.31 98.24± 0.35
Misclassified images 40.20 21.83 26.83

Time(s) 0.25 1436 500

Classifiers KNN(p2) SRC(p2) BBCS(p2)
Accuracy(%) 96.75± 0.86 97.49 ± 0.61 96.94± 0.52
Misclassified images 40.20 21.83 26.83

Time(s) 0.13 1170 277
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Fig. 5: Noise robustness comparisons when there are 10%

training examples in each class using the column-based sub-

space sampling.

experiments are performed with 10% data reduction as a trade-

off between the computational cost and accuracy.

Figure 5 shows the result of different classifiers when the

dictionary size is decreased to 10% by the column-based

subspace sampling method. When comparing the accuracies

to those shown in Figure 4, the accuracy of each classification
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Fig. 6: Noise robustness comparisons when there are 1% train-

ing examples in each class using the column-based subspace

sampling.

method has been reduced when compared to Figure 5. More-

over, Figure 5 shows that the KNN classifier is vulnerable

to noise and the SRC is only marginally more accurate than

the BBCS classifier, despite having previously been shown to

be less computationally efficient. However, the computational

cost is dropped as the dictionary size has decreased by 10

times.

The size of the training dataset is further decreased to only

1% selected images for each class in each of the 10 indepen-

dent simulations, with the resulting classification accuracies

being shown in Figure 6. In this case, the accuracies of the

KNN classifier is not as high as the BBCS algorithm, espe-

cially when the noise levels increase. The SRC does not work

any more since M > N and the system is no longer under-

determined. Note, that the conventional compressive sensing

framework (as used in the SRC) is specifically designed for

systems which are under-determined [15]. This leads to a

random guess which can only achieve 10% accuracy as there

are 10 classes with equal number of logos in each class.



Highway Road Tunnel Exit

Settlement Overpass Booth Traffic

Fig. 7: Example of classes from the FM2 dataset.

VI. PERFORMANCE EVALUATION FOR SCENE

RECOGNITION

So far this section has considered the application of BBCS

for VLR. Traffic scene recognition is a very similar topic in

smart cities. Here the FM2 dataset [45] is considered. This

dataset contains 6237 images from eight classes: highway,

road, tunnel, tunnel exit, settlement, overpass, toll booth and

dense traffic. Seventy percent of the images are randomly

chosen for the training stage and the rest 30% of images are

for testing purposes. Figure 7 illustrates some examples of the

FM2 dataset. A pre-trained CNN framework (AlexNet [28])

is used for feature extraction. Instead of using the original

weights from the network which was trained on other images,

this work replaces the last fully connected layer to 200 neurons

and fine tunes the weights based on traffic scene images.

Hence, each image is represented by a vector of length 200.

Note that the focus is on the classification method rather than

on the image feature extraction.

The column-based subspace sampling representation is ap-

plied to each training group. Since each class has an imbal-

anced training data, the experiment set a maximum number of

200 to each class. When a class has more than 200 training im-

ages, the column-based subspace sampling method is applied

to this class. A comparison with a recently developed deep

learning approach, the CNN from [28] is performed, where

the weights are trained for classification. Note that in CNN the

classification is applied directly without using column-based

subspace sampling. Since the parameters are fixed based on

the whole training dataset, there is no need of retraining a

network using a much smaller dataset. However, the results

for KNN, BBCS and SRC are achieved on the new dataset

after the column based sub-sampling.

Table IV shows the result from each classifier. Zero-mean

Gaussian noises with different noise variance are applied on

these training images and testing images. Without adding

any noise, the CNN achieves the highest accuracy. However,

when increasing the noise, the CNN becomes fragile. Similar

research shows that when changing the intensity of even a

single pixel the classification result changes [46]. However,

using the extracted features from CNN and applying them to

other classifiers leads to better results. Increasing the noise

level, the proposed BBCS achieves the best results. This is

important as the real images are not always clear. Figure 8

illustrates how different noise levels influence an image.

TABLE IV: Classifiers accuracy comparisons using features

extracted by CNN based on FM2 dataset.

Noise variance CNN(%) KNN(%) SRC(%) BBCS(%)
0 87.70 84.41 87.00 86.31
0.01 57.01 73.21 79.73 79.89

0.1 10.59 56.04 57.59 64.39

0.2 7.43 52.03 42.51 54.33

VII. APPLICATION OF BBCS TO ALTERNATIVE DATASET

The proposed BBCS approach has the potential to be

applied to other areas, not only to VLR and TSR. In the

performance validation the CIFAR-10 dataset [47] is used.

This dataset consists of 50000 training images and 10000

testing images. Here, a CNN similar to [28] is trained on the

new dataset. The network contains 3 convolution layers with

48, 96 and 192 3-by-3 kernels. Each convoluational layer is

followed by a batch normalization layer and a max-pooling

layer. Two fully connected layers are followed with 512 and



Fig. 8: An example of an traffic scene image with different level of noises.

200 neurons, respectively. The ReLU non-linear function [28]

is applied to all neurons except the softmax being applied to

the neurons in the last layer. The last fully connected layers

is use as the feature. Hence, each image is represented by a

vector of length 200.

The column-based subspace sampling is applied to each

training group. This process picks 200 image feature vec-

tors from 5000 image feature vectors in each group (4%

of the original size). Hence, in order to avoid using all

image feature vectors, the dictionary X is formed by only

2000 representative image feature vectors. Both the CNN

and BBCS approaches train the weights for classification.

Similarly, in CNN the classification is applied directly without

using column-based subspace sampling.

TABLE V: Classifiers accuracy comparisons using features

extracted by CNN based on CIFAR-10 dataset.

Noise variance CNN(%) KNN(%) SRC(%) BBCS(%)
0 81.87 68.79 78.53 73.40
0.01 47.60 52.77 52.51 58.36

0.02 36.37 42.39 43.80 46.98

Fig. 9: An example of an image from CIFAR 10 with different

level of noises.

Table V gives the performance of each classifier. Zero-

mean Gaussian noises with different noise variance are added

on these training images and testing images. Note that here

the noise level is lower than the VLR dataset. The reason

for this is the images in CIFAR-10 are tiny color images.

A small color image can be easily contained by adding up

the noise effects from each channel. Figure 9 illustrates the

effect of the noise contamination. Similar to the TSR dataset,

the result shows that the CNN classifier is not robust to

noise. However, using the features extracted by the CNN and

applying it to other classifiers could achieve better accuracy.

This is important as clear images are not always guaranteed in

real applications. Table V also shows that SRC should achieve

good accuracy when the images are noise free, even if only

4% training images is applied. However, when the images are

noisy, the BBCS algorithm achieves the best accuracy. Again,

both BBCS and SRC perform better than the KNN algorithm.

VIII. CONCLUSION

This paper proposes a novel non-parametric classification

approach, namely the BBCS classifier. The novelty of the work

has two main components: i) the proposed back propagation

process, ii) the proposed column-based subspace sampling to

reduce the size of the dataset and associated computation

costs. The developed approach relies on the constructing of

the testing image feature using partial information from the

weights estimated by BCS. Note, that for each class there is a

corresponding reconstructed image feature. By comparing the

reconstructed image feature with the testing image feature,

the objects of interest are reconstructed and classified. The

proposed backpropagation process gives a significant reduction

of the misclassification error. For VLR, the number of misclas-

sified testing images reduces by 87% when compared with the

BCS classifier. Compared with the SRC, the BBCS algorithm

gives a similar recognition accuracy while decreasing the mean

computational cost by 68%. However, the SRC does not work

when the training dataset is small while the BBCS algorithm

shows accurate results in the same situation. Moreover, the

proposed classifier and column based subspace sampling have

been shown to be robust to the effects of heavy noise, unlike

the KNN classifier. The proposed approach is a general non-

parametric classifier and is also validated on TSR dataset and

on the CIFAR-10 image dataset.
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IX. APPENDIX

A. Marginal likelihood maximization

The following gives a detailed derivation for the marginal

likelihood in equation (17). By combining equations (6) and

(7), the marginal likelihood can be expanded to:

p(x∗|α, σ2)

=

∫

p(x∗|w, σ2) p(w|α)dw

= (2πσ2)−
M

2 (2π)−
N

2 |A|
1

2

×

∫

exp

{

−
1

2σ2
||x∗ −Xw||22 +w

T
Aw

}

dw. (28)

In order to simply equation (28), define:

Q =
1

2

{

1

σ2
||x∗ −Xw||22 +w

T
Aw

}

. (29)

Combining with equations (13) and (14), (29) can be given

as:

Q =
1

2

(

x
∗T
x
∗

σ2
− µ

T
Σ

−1
µ

)

+
1

2
(w − µ)TΣ−1(w − µ).

(30)

In order to simply equation (30), we set

T =
1

2

(

x
∗T
x
∗

σ2
− µ

T
Σ

−1
µ

)

, (31)

Therefore the integral part in the right hand side of equation

(28) is given by:
∫

exp{−Q}dw = (2π)
N

2 |Σ|
1

2 exp {−T} . (32)

Substituting (32) back in equation (28) gives:

p(x∗|α, σ2) = (2πσ2)−
M

2 |A|
1

2 |Σ|
1

2 exp{−T}. (33)

This can be further simplified by:

p(x∗|α, σ2)

= (2π)−
M

2

1

σM

1

|IN + σ−2A−1XTX|
1

2

exp{−T},

(34)

where IN = A
−1

A. Using the matrix determinants properties

[48] that |IN +D
T
B| = |IM +DB

T| with D ∈ RM×N and

B ∈ RM×N , the above equation can be updated to:

p(x∗|α, σ2)

= (2π)−
M

2

1

|σ2IM +XA−1XT|
1

2

exp{−T}. (35)

Recall the T is given in equation (31) and it can be

expressed as follows:

T = 1
2

(

x
∗T

[

σ−2
IM − σ−2

X(A+ σ−2
X

T
X)−1

X
Tσ−2

]

x
∗
)

.

(36)

According the Woodbury inversion identity [34]:

[σ−2
IM − σ−2

X(A+ σ−2
X

T
X)−1

X
Tσ−2]

= (σ2
IM +XA

−1
X

T)−1, (37)

equation (36) can be expressed as:

T =
1

2

(

x
∗T(σ2

IM +XA
−1

X
T)−1

x
∗
)

. (38)

Therefore, equation (35) can be given as:

p(x∗|α, σ2) =
1

√

(2π)M |C|
exp

{

−
1

2
x
∗T

C
−1

x
∗

}

, (39)

which links back to equation (18), with the M ×M matrix C

is given by:

C = σ2
IM +XA

−1
X

T. (40)

B. Evidence approximation

This subsection presents the derivation of the marginal log-

likelihood function and its maximization with respect to αi

and σ2. We can express T from equation (31) as follows:

T =
1

2σ2
||x∗ −Xµ)||22 +

1

2
µ
T
Aµ. (41)

Hence, taking the logarithm of the marginal likelihood given

in equation (33), the logarithm of the marginal likelihood can

be obtained in the following form:

L(α, σ2) = −
M

2
lnσ2 −

M

2
ln(2π) +

1

2

N
∑

i=1

lnαi

+
1

2
ln|Σ| −

1

2σ2
||x∗ −Xµ)||22 −

1

2
µ
T
Aµ. (42)

The procedure of maximizing equation (42) with respect to αi

and σ2 is known as the evidence approximation procedure.

Following the approach from [49], the derivative of ln|Σ|

with respect to αi is:

d

dαi
ln|Σ| =

d

dαi
− ln|Σ|−1 = −TraceΣ = −Σii, (43)

where Σii is the ith diagonal component of the posterior

covariance matrix Σ and Trace is the trace of a matrix.

Therefore, the derivative of L(α, σ2) from equation (42) with

respect to αi is:

dL(α, σ2)

dαi
=

1

2αi
−

1

2
Σii −

1

2
µ2
i . (44)

Setting the derivative to zero, gives equation (20).

In order to simplify the
dL(α,σ2)

dσ2 , set β = 1/σ2. Following

the approach from [50], the derivative of ln|Σ| with respect

to β is:

d

dβ
ln|Σ| =

d

dβ
− ln|Σ|−1

= −Trace(IN −ΣA)β−1 (45)



Therefore, the derivative of L(α, σ2) from equation (42) with

respect to β is:

dL(α, σ2)

dβ
=

M

2β
−
1

2
||x∗−Xµ)||22−

1

2
Trace(IN −ΣA)β−1.

(46)

Setting the derivative to zero gives equation (21).
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scene recognition with a limited descriptor length,” in Proc.

of CVPR Workshop on Visual Place Recognition in Changing

Environments, Boston, Massachusetts, USA, June 2015.

[5] R. Chen, M. Hawes, L. Mihaylova, J. Xiao, and W. Liu, “Ve-

hicle logo recognition by spatial-SIFT combined with logistic

regression,” in Proc. IEEE International Conf. on Information

Fusion, Heidelberg, Germany, July 2016, pp. 1228–1235.

[6] Y. Huang, R. Wu, Y. Sun, W. Wang, and X. Ding, “Vehicle logo

recognition system based on convolutional neural networks with

a pretraining strategy,” IEEE Trans. on Intelligent Transporta-

tion Systems, vol. 16, no. 4, pp. 1951–1960, 2015.

[7] R. Chen, M. A. Jalal, L. Mihaylova, and R. K. Moore, “Learning

capsules for vehicle logo recognition,” in Proceedings of the

21st International Conference on Information Fusion, July

2018, pp. 565–572.

[8] J. S. Sánchez, F. Pla, and F. J. Ferri, “On the use

of neighbourhood-based non-parametric classifiers,” Pattern

Recognition Letters, vol. 18, no. 11, pp. 1179–1186, 1997.

[9] C. M. Bishop, Pattern Recognition and Machine Learning.

New York, USA: Springer, 2006.

[10] K. P. Murphy, Machine Learning: A Probabilistic Perspective.

Cambridge, MA, USA: The MIT Press, 2012.

[11] A. P. Psyllos, C.-N. E. Anagnostopoulos, and E. Kayafas, “Ve-

hicle logo recognition using a SIFT-based enhanced matching

scheme,” IEEE Trans. on Intelligent Transportation Systems,

vol. 11, no. 2, pp. 322–328, 2010.

[12] H. Peng, X. Wang, H. Wang, and W. Yang, “Recognition of low-

resolution logos in vehicle images based on statistical random

sparse distribution,” IEEE Trans. on Intelligent Transportation

Systems, vol. 16, no. 2, pp. 681–691, 2015.

[13] A. Hinneburg, C. C. Aggarwal, and D. A. Keim, “What is the

nearest neighbor in high dimensional spaces?” in Proc. of the

International Conf. on Very Large Data Bases, San Francisco,

CA, USA, Sept. 2000, pp. 506–515.

[14] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma,

“Robust face recognition via sparse representation,” IEEE Trans.

on Pattern Analysis and Machine Intelligence, vol. 31, no. 2,

pp. 210–227, 2009.

[15] D. L. Donoho, “For most large underdetermined systems of lin-

ear equations the minimal l1-norm solution is also the sparsest

solution,” Communications on Pure and Applied Mathematics,

vol. 59, no. 6, pp. 797–829, 2006.

[16] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,”

IEEE Trans. on Signal Processing, vol. 56, no. 6, pp. 2346–

2356, 2008.

[17] X. Zhang, J. Qin, and G. Li, “SAR target classification using

Bayesian compressive sensing with scattering centers features,”

Progress In Electromagnetics Research, vol. 136, pp. 385–407,

2013.

[18] Y. Zhang, Y. Li, Z. Wang, Z. Song, R. Lin, J. Qian, and J. Yao,

“A fast image reconstruction method based on bayesian com-

pressed sensing for the undersampled AFM data with noise,”

Measurement Science and Technology, vol. 30, no. 2, p. 025402,

jan 2019.

[19] Y. Huang, J. Paisley, Q. Lin, X. Ding, X. Fu, and X. Zhang,

“Bayesian nonparametric dictionary learning for compressed

sensing mri,” IEEE Transactions on Image Processing, vol. 23,

no. 12, pp. 5007–5019, Dec 2014.

[20] T. N. Sainath, A. Carmi, D. Kanevsky, and B. Ramabhadran,

“Bayesian compressive sensing for phonetic classification,” in

Proc. of IEEE International Conf. on Acoustics Speech and

Signal Processing, Dallas, TX, USA, Mar 2010, pp. 4370–4373.

[21] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf,

“Learning with local and global consistency,” in Proc. of

Advances in Neural Information Processing Systems, Whistler,

British Columbia, Canada, Dec. 2003, pp. 321–328.

[22] M. Shi, T. Furon, and H. Jégou, “A group testing framework for

similarity search in high-dimensional spaces,” in Proc. of ACM

International Conf. on Multimedia, New York, NY, USA, Nov.

2014, pp. 407–416.

[23] A. Iscen, M. Rabbat, and T. Furon, “Efficient large-scale simi-

larity search using matrix factorization,” in Proc. of IEEE Conf.

on Computer Vision and Pattern Recognition, Las Vegas, NV,

USA, June 2016, pp. 2073–2081.

[24] M. W. Mahoney and P. Drineas, “CUR matrix decomposi-

tions for improved data analysis,” Proceedings of the National

Academy of Sciences, vol. 106, no. 3, pp. 697–702, 2009.

[25] E. Elhamifar, G. Sapiro, and R. Vidal, “See all by looking at

a few: Sparse modeling for finding representative objects,” in

Proc. of IEEE Conf. on Computer Vision and Pattern Recogni-

tion, Providence, RI, USA, June 2012, pp. 1600–1607.

[26] C. Boutsidis, M. W. Mahoney, and P. Drineas, “An improved

approximation algorithm for the column subset selection prob-

lem,” in Proc. of Annual ACM-SIAM Symposium on Discrete

Algorithms, New York, New York, Jan. 2009, pp. 968–977.

[27] D. G. Lowe, “Distinctive image features from scale-invariant

keypoints,” International Journal of Computer Vision, vol. 60,

no. 2, pp. 91–110, 2004.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,” in Proc.

of 25th International Conf. on Neural Information Processing

Systems, Lake Tahoe, Nevada, USA, Dec. 2012, pp. 1097–1105.

[29] S. A. Tesfamicael and F. Barzideh, “Bayesian inference and

compressed sensing,” Bayesian Inference, IntechOpen, 2017,

Nov 2017.

[30] E. Amaldi and V. Kann, “On the approximability of minimizing

nonzero variables or unsatisfied relations in linear systems,”

Theoretical Computer Science, vol. 209, no. 1, pp. 237–260,



1998.

[31] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty

principles: Exact signal reconstruction from highly incomplete

frequency information,” IEEE Trans. on Information Theory,

vol. 52, no. 2, pp. 489–509, 2006.

[32] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic

decomposition by basis pursuit,” SIAM Journal on Scientific

Computing, vol. 20, no. 1, pp. 33–61, 1998.

[33] D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse

solution of underdetermined systems of linear equations by

stagewise orthogonal matching pursuit,” IEEE Trans. on Infor-

mation Theory, vol. 58, no. 2, pp. 1094–1121, 2012.

[34] M. E. Tipping, “Sparse Bayesian learning and the relevance

vector machine,” The Journal of Machine Learning Research,

vol. 1, pp. 211–244, 2001.

[35] L. Figueiredo, I. Jesus, J. T. Machado, J. Ferreira, and J. M.

De Carvalho, “Towards the development of intelligent trans-

portation systems,” in Proc. of IEEE Intelligent Transportation

Systems, Oakland, CA, USA, Aug. 2001, pp. 1206–1211.

[36] Z. Zhang, X. Wang, W. Anwar, and Z. L. Jiang, “A compari-

son of moments-based logo recognition methods,” in Proc. of

Abstract and Applied Analysis, vol. 2014, 2014, pp. 1–8.

[37] C. Y. Chen, W. Choi, and M. Chandraker, “Atomic scenes for

scalable traffic scene recognition in monocular videos,” in Proc.

of IEEE Winter Conf. on Applications of Computer Vision, Lake

Placid, NY, USA, Mar. 2016, pp. 1–9.

[38] T. Huang, D. Koller, J. Malik, G. Ogasawara, B. Rao, S. J.

Russell, and J. Weber, “Automatic symbolic traffic scene anal-

ysis using belief networks,” in Advancement of Artificial Intel-

ligence, vol. 94, 1994, pp. 966–972.

[39] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray,

“Visual categorization with bags of keypoints,” in Proc. of

Workshop on Statistical Learning in Computer Vision, Prague,

Czech Republic, May 2004, pp. 1–22.

[40] X. Zhen and L. Shao, “Action recognition via spatio-temporal

local features: A comprehensive study,” Image and Vision

Computing, vol. 50, pp. 1–13, 2016.

[41] U. L. Altintakan and A. Yazici, “Towards effective image clas-

sification using class-specific codebooks and distinctive local

features,” IEEE Trans. on Multimedia, vol. 17, no. 3, pp. 323–

332, 2015.

[42] A. Vedaldi and B. Fulkerson, “VLFeat - an open and portable

library of computer vision algorithms,” in Proc. of 18th ACM

International Conf. on Multimedia, New York, NY, USA, Oct.

2010, pp. 1469–1472.

[43] M. Grant and S. Boyd, “CVX: Matlab software for disciplined

convex programming, version 2.1,” http://cvxr.com/cvx, Mar

2014.

[44] M. C. Grant and S. P. Boyd, “Graph implementations for

nonsmooth convex programs,” in Recent advances in learning

and control. London, UK: Springer, 2008, pp. 95–110.

[45] I. Sikiri, K. Brki, J. Krapac, and S. egvi, “Image representations

on a budget: Traffic scene classification in a restricted band-

width scenario,” in Proc. IEEE Intelligent Vehicles Symposium

Proceedings, Dearborn, MI, USA, June 2014, pp. 845–852.

[46] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling

deep neural networks,” CoRR, vol. abs/1710.08864, 2017.

[47] A. Krizhevsky and G. Hinton, “Learning multiple layers of

features from tiny images,” Master’s Thesis, Department of

Computer Science, University of Toronto, 2009.

[48] M. Brookes, “The matrix reference manual,” Im-

perial College London, 2005. [Online]. Available:

http://www.ee.imperial.ac.uk/hp/staff/dmb/matrix/intro.html

[49] D. J. MacKay, “Bayesian interpolation,” Neural computation,

vol. 4, no. 3, pp. 415–447, 1992.

[50] T. Fletcher, “Relevance vector machines explained,” University

College London: London, UK, 2010. [Online]. Available:

http://home.mit.bme.hu/ horvath/IDA/RVM.pdf


