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ABSTRACT: A series of six-coordinate [Cu(L)L1][BF4]2 (L1 = 
2,6-bis{1-oxyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-2-
yl}pyridine) complexes is reported. Ferromagnetic coupling 
between the Cu and L1 ligand spins is enhanced by a ‘L’ co-lig-
and with distal methyl substituents, which is attributed to a ste-
rically-induced suppression of its Jahn-Teller distortion. 

Jahn-Teller distortions of Cu(II)  complexes of meridional tri-
dentate ligands can be unusually plastic.1-5 Such compounds 
usually exhibit Jahn-Teller elongated structures with a {dx2‒y2}1 
electron configuration (structure A, Chart 1),6 which may inter-
convert with the isomeric structure A’ if their two ligands are 
identical,7 such as in salts of [Cu(terpy)2]2+.8 However, this is 
transformed to an alternative {dz2}1 ground state (structure B) 
by ligands promoting lengthening of all the distal Cu‒N bonds.9 
This can be driven by steric crowding,2,3 conformational strain3 
or reduced basicity of the distal N-donor atoms.4 One such com-
pound transforms from structure B towards structure A on 
cooling, which is coupled to anion disorder in the crystal.4 

In another context, flexible Jahn-Teller distortions can afford 
switchable molecular materials in copper(II) complexes of ni-
troxyl radical ligands.1,10 Thermal, light- or pressure-induced 
reorientation of their Jahn-Teller elongation axis flips the metal 
dx2‒y2 magnetic orbital, changing the magnitude and sign of the 
metal-radical interaction. That causes large changes in the 
color, magnetic moment and EPR spectrum of the material. 
This phenomenon is best studied in [Cu(hfac)2]/nitronyl ni-
troxide coordination polymers,11 but molecular complexes of 
chelating nitroxyl ligands can also exhibit the effect.12 

With this in mind, we targeted the heteroleptic complexes 
[Cu(L)L1]2+, where L1 is the biradical 2,6-bis{1-oxyl-4,4,5,5-
tetramethyl-4,5-dihydro-1H-imidazol-2-yl}pyridine13-18 and L 
is another tridentate ligand (Charts 2 and S1). The steric 
influence of the L1 methyl substituents should promote a Jahn-
Teller elongation along the Cu−iminonitroxyl (IMNT) bonds 
(structure A). However, introducing comparable steric bulk to 
the L co-ligand might perturb the Jahn-Teller properties of the 
complex,2,3 either by changing the axis of elongation (structure 
A’) or inducing a transformation to structure B. This would 
perturb the magnetic properties of the molecule, which could 
afford a new type of switchable magnetic solid. Magnetic 
exchange between Cu(II) ions and coordinated IMNT radicals 

Chart 1 Jahn-Teller isomers of the complexes in this work.6,9 
Short and long Cu−N bonds are indicated by full and dotted 
lines, respectively. The red ligand in each molecule 
represents the ‘L’ co-ligand (Chart 2). 

 
Chart 2 The ligands and complexes employed in this work. 

 

is usually ferromagnetic in character, but is 10x smaller when 
the radical occupies an axial19,20 rather than an equatorial 
site16,20-22 in a tetragonal Cu(II) complex. 



 

Reaction of equimolar quantities of Cu[BF4]2·6H2O, L1 and 
the appropriate co-ligand (L) in methanol gave [Cu(L)L1][BF4]2 
as dark red precipitates (Chart 1). Their formulations were 
confirmed by mass spectrometry and microanalysis, with 3, 4 
and 6 containing one or two equiv lattice water. Their stability 
may reflect the steric influence of the L1 α-methyl substituents, 
which would inhibit the formation of [Cu(L1)2]2+ by ligand 
exchange. The compounds form clusters of plate-like crystals 
from common solvents, which are often deliquescent. Hence 
only one example was crystallographically characterized, 
namely 2·nMeNO2 (n ≈2.1). While the refinement suffers from 
disorder (Figures S5 and S6), the main features of the structure 
are clear (Figure 1). The complex adopts structure A (Chart 1), 
with a Jahn-Teller elongation to the distal N-donors of the L1 
ligand [Cu(1)‒N(9) = 2.289(5) and Cu(1)‒N(19) = 2.323(5) Å]. 

 

Figure 1 The [Cu(terpyCl)L1]2+ cation in 2·nMeNO2. Only one 
orientation of the disordered L1 ligand atoms is shown, H atoms 
are omitted and displacement ellipsoids are at the 50 % level. 
Color code: C, white; Cl, yellow; Cu, green; N, blue; O, red. 

The complexes exhibit χMT = 1.20-1.33 cm3mol‒1K at room 
temperature, close to the value predicted by the Curie law for 
three weakly interacting S = ½ spins.23 χMT for all the 
compounds increases upon cooling, implying the presence of 
ferromagnetic exchange interactions, although the rate of 
increase varies between the samples (Figures 2, S7 and S8). 
The data were modelled by a Hamiltonian treating exchange 
between the Cu (S1) and L1 radical spins (S2, S3; eq 1):16 

H = ‒2J(S1·S2 + S1·S3) ‒2J’(S2·S3)   (1) 

where J describes the Cu···L1 interaction and J’ is the intra-
ligand coupling between the L1 spins (Table 1). Small decreases 
in χMT for 2-4·H2O below 10 K are not reproduced by the fits, 
and might reflect weak intermolecular interactions which are 
not included in the model. A low-temperature decrease in χMT 
for 6·2H2O has no influence on its fitted parameters, though 
(Figure S8). Variations in g{Cu} may reflect small temperature-
independent paramagnetism or paramagnetic impurity 
contributions to the data. However these were omitted from 
the analysis, since satisfactory fits were obtained without them.  

Compounds 1-5 show ferromagnetic Cu···L1 coupling (+11 ≤ 
J ≤ +19 cm‒1) and an antiferromagnetic intra-ligand interaction 
(Table 1). The values of J are consistent with a Jahn-Teller 
elongation along the Cu‒N{IMNT} bonds in structure A (Chart 
1), as observed crystallographically for 2.20 However 6·2H2O, 
with the distally methylated co-ligand Me2-3-bpp (Chart 2), 
shows larger values for J (+50 cm‒1) and J’ (‒25 cm‒1). Hence,  

Table 1 Fitted magnetic exchange parameters for the 
compounds in this work (Figure 2).  

 g{Cu} g{NO} J{Cu…NO} J’{NO…NO} R2 

1 2.151(6) 2.01a +17.4(5) ‒4.6(2) 0.991 

2 2.121(2) 2.01a +11.6(2) ‒2.8(1) 0.996 

3·2H2O 2.175(4) 2.01a +13.5(2) ‒1.0(1) 0.999 

4·H2O 2.102(4) 2.01a +11.2(3) ‒5.2(1) 0.977 

5 2.111(4) 2.01a +10.9(2) ‒0.5(1) 0.997 

6·2H2O 2.082(4) 2.01a +49.6(9) ‒25.4(5) 0.951 

aThis value was fixed during the fitting process. 

the electronic structure of 6 is different from the other 
complexes. The antiferromagnetic J’{NO···NO} values were 
reproduced computationally (see below), but contrast with 
free L1 24 and its ZnCl2 adduct16 which show ferromagnetic 
intra-ligand coupling. Precedent is provided by 2,6-bis{3-
oxide-1-oxyl-4,4, 5,5-tetramethyl-4,5-dihydro-1H-imidazol-2-
yl}pyridine (L2), the nitronyl nitroxide analogue of L1. 
J’{NO···NO} is also ferromagnetic in L2,25 but is 
antiferromagnetic in [Cu(L2)2]2+.26 

Since the materials were only available in small quantities, 
these results were investigated by gas phase DF calculations. 
Structure minimizations of 12+-62+ (the [Cu(L)L1]2+ cations in 
1-6, Chart S2) employed the -B97X-D functional and 6-
311G** basis set, which assigned structure A to 12+-42+ with a 
Jahn-Teller elongation along the Cu‒N{IMNT} bonds (Chart 1). 
The Cu‒N distances are similar in each case, and agree well 
with the experimental values for 2 (Table 2). However 
structure A’, with a Jahn-Teller elongation along the Cu‒N{bpp} 
bonds, was the lowest energy isomer for 52+ and 62+ by this 
protocol. That reflects competition between the steric 
influence of the methyl groups on each ligand, combined with 
the intrinsic preference of six-coordinate copper(II) 
compounds for a {dx2‒y2}1  ground state.1 

The complexes were also minimized in their alternative 
Jahn-Teller isomer, by constraining the appropriate elongated 
Cu‒N bonds to 2.29 Å (Table 2). The energy difference between 
the two isomers (E) is 0.2 ≤ |E| ≤ 2.1 kcalmol‒1. That is 
comparable to the thermal energy kT, showing the Jahn-Teller 
structures of 12+-62+ in condensed phases should be strongly 
influenced by environmental factors such as crystal packing. 
That could explain why the lowest structure predicted by E 
for 52+ and 62+ does not match that observed experimentally.  

The higher energy isomer of 62+ resembles structure B 
(Chart 1) from its Cu‒N{pyrazolyl} distances, which are 0.06 Å 
longer than the equivalent distances in structure A of 52+.2-4 The 
highest lying metal-based α-orbital of this isomer of 62+ also has 
increased {dz2}1 character (Figures S10-S15). The Cu‒
N{pyrazolyl} distances in 62+ are consistently longer than in 52+ 
(Table 2), because the N‒CH3 bonds in Me2-3-bpp (1.45 Å) are 
shorter than the C‒CH3 bonds in Me2-1-bpp (1.49 Å). That 
places those methyl groups closer to the metal ion in 62+, giving 
them a greater steric influence on the coordination sphere. 

J{Cu···NO} exchange constants were calculated from the 
DFT-minimized structures, at the M06L/ZORA-def2-TZVPP 
level (see Supporting Information for details). Computed J 
values for structure A of 12+-42+ are +10-16 cm‒1 (Table 2), 
confirming those compounds adopt structure A in the solid 
state (Table 1). Larger J values are computed for 52+ and 62+, 
with J for 62+ in structure B (40 cm‒1) approaching the 
measured value of 50 cm‒1. That reflects overlap of the L1 



 

 

Figure 2. Measured (gray) and fitted (black) magnetic susceptibility data for the compounds in this work. Alternative curve fits to 
validate the results in Table 1 are in Figures S7 and S8, 

Table 2 Calculated Cu‒N distances (Å) and exchange coupling constants (cm‒1) for the energy-minimized structures 
of 12+-62+ (Chart 1); and the energy difference between the two isomers for each compound (kcalmol‒1). Experimental 
data for 2·nMeNO2 are included for comparison, while other measured J and J’ values are in Table 1. A negative value 
of E shows structure A or B (for 62+) is the lowest energy isomer under these conditions, and vice versa. 

 2·nMeNO2 12+ 22+ 32+ 42+ 52+ 62+ 

 Structure A Structure Aa Structure Aa Structure Aa Structure Aa Structure A Structure B 

Cu‒N{L1 pyridyl} 2.052(4) 2.092 2.090 2.089 2.110 2.055 2.044 

Cu‒N{L1 IMNT} 2.289(5), 2.323(5) 2.290, 2.290 2.288, 2.288 2.287, 2.291 2.288, 2.288 2.290, 2.290b 2.290, 2.290b 

Cu‒N{L pyridyl} 1.943(4) 1.971 1.968 1.963 2.025 1.991 1.989 

Cu‒N{L distal} 2.062(5), 2.064(4) 2.090, 2.091 2.093, 2.095 2.096, 2.102 2.061, 2.062 2.106, 2.106 2.161, 2.166 

J{Cu···NO} +11.6 +13.6 +14.5 +15.8 +9.8 +23.7 +39.7 

  Structure A’ Structure A’ Structure A’ Structure A’ Structure A’a Structure A’a 

Cu‒N{L1 pyridyl} ‒ 2.005 2.004 2.006 2.006 2.007 2.003 

Cu‒N{L1 IMNT} ‒ 2.129, 2.129 2.128, 2.128 2.134, 2.135 2.102, 2.102 2.088, 2.088 2.119, 2.119 

Cu‒N{L pyridyl} ‒ 2.027 2.024 2.011 2.096 2.108 2.027 

Cu‒N{L distal} ‒ 2.290, 2.290b 2.290, 2.290b 2.290, 2.290b 2.290, 2.290b 2.263, 2.272 2.295, 2.311 

J{Cu···NO} ‒ +108.6 +109.6 +104.8 +126.5 +136.4 +115.1 

        

J’{NO···NO}  ‒2.8 –3.5 –3.2 –3.1 –2.1 –6.0 –4.4 

E  ‒ ‒0.9 ‒0.5 ‒0.9 ‒0.2 +1.5 +2.1 

aThis is the lowest energy isomer computed for this compound in the gas phase. bThis value was fixed during the minimization of the 
higher energy Jahn-Teller isomer. 

 

N{IMNT} donor atoms with the SOMO dz2 orbital torus, leading 
to a significantly larger Cu d contribution to the L1 SOMO in 52+ 
and 62+ (Figure S15, Table S6).21 All the complexes gave J >100 
cm‒1 in the alternative A’ isomer, which is inconsistent with 
observation and confirms none of the compounds adopt that 
structure.  

J’{NO···NO} for 12+-62+ was also calculated, using the 
corresponding [Zn(L)L1]2+ complexes as models. These were 

weakly antiferromagnetic as observed experimentally, 
although the larger J’ value in 6·2H2O was not reproduced in its 
zinc analogue. Short side-on NO···NO contacts in crystalline 
nitroxyl radicals27 can be associated with intermolecular 
antiferromagnetic couplings of up to −100 cm‒1.28 Hence, while 
it remains to be crystallographically confirmed, this larger J’ 
might arise from a pairwise intermolecular NO···NO interaction 
in 6·2H2O, which would be modelled equally well by eq 1. 



 

In conclusion, the magnetic structure of 6·2H2O is distinct 
from 1-5, showing ca 4x larger couplings between the spins in 
the molecule. DF calculations show that can be explained by a 
sterically induced change in the Jahn-Teller structure of the 
copper ion in 62+ towards structure B (Chart 1), with a {dz2}1 
ground state.2,3,9 Our current work aims to design new 
switchable heterospin molecular magnets based on this 
concept. 

Experimental data sets associated with this paper are 
available from the University of Leeds library (http://doi. 
org/10.5518/591). 
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