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Abstract

The noun lexica of many natural languages

are divided into several declension classes

with characteristic morphological properties.

Class membership is far from deterministic,

but the phonological form of a noun and/or

its meaning can often provide imperfect clues.

Here, we investigate the strength of those clues.

More specifically, we operationalize this by

measuring how much information, in bits, we

can glean about declension class from know-

ing the form and/or meaning of nouns. We

know that form and meaning are often also

indicative of grammatical gender—which, as

we quantitatively verify, can itself share in-

formation with declension class—so we also

control for gender. We find for two Indo-

European languages (Czech and German) that

form and meaning respectively share signifi-

cant amounts of information with class (and

contribute additional information above and

beyond gender). The three-way interaction be-

tween class, form, and meaning (given gender)

is also significant. Our study is important for

two reasons: First, we introduce a new method

that provides additional quantitative support

for a classic linguistic finding that form and

meaning are relevant for the classification of

nouns into declensions. Secondly, we show

not only that individual declensions classes

vary in the strength of their clues within a

language, but also that these variations them-

selves vary across languages. The code is

publicly available at https://github.com/

rycolab/declension-mi.

1 Introduction

To an English speaker learning German, it may

come as a surprise that one cannot necessarily pre-

dict the plural form of a noun from its singular. This

is because pluralizing nouns in English is relatively

simple: Usually we merely add an -s to the end

(e.g., cat 7→ cats). Of course, not all English nouns

follow such a simple rule (e.g., child 7→ children,

sheep 7→ sheep, etc.), but those that do not are

+

Figure 1: Declension classes, their conditional en-

tropies (H), and their mutual information quantities (I)
with form (W ), meaning (V ), and declension class (C),

given gender (G) in German and Czech. H(W | G) and

H(V | G) correspond to the overall uncertainty over

forms and meaning given gender—estimating these val-

ues falls outside the scope of this paper.

fairly few. German, on the other hand, has compar-

atively many nouns following comparatively many

common, morphological rules. For example, some

plurals are formed by adding a suffix to the sin-

gular: Insekt ‘insect’ 7→ Insekt-en, Hund ‘dog’ 7→
Hund-e, Radio ‘radio’ 7→ Radio-s. For others, the

plural is formed by changing a stem vowel:1 Mut-

ter ‘mother’ 7→ Mütter, or Nagel ‘nail’ 7→ Nägel.

Some others form plurals with both suffixation and

vowel change: Haus ‘house’ 7→ Häus-er and Koch

‘chef’ 7→ Köch-e. Still others, like Esel ‘donkey’,

have the same form in plural and singular. How

baffling for the adult learner! And, the problem

only worsens when we consider other inflectional

morphology, such as case.

Disparate plural-formation and case rules of

the kind described above split nouns into declen-

sion classes. To know a noun’s declension class

is to know which morphological form it takes in

which context (e.g., Benveniste 1935; Wurzel 1989;

Nübling 2008; Ackerman et al. 2009; Ackerman

and Malouf 2013; Beniamine and Bonami 2016;

Bonami and Beniamine 2016). But, this begs the

1This vowel change, umlaut, corresponds to fronting.
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question: What clues can we use to predict the

class for a noun? In some languages, predict-

ing declension class is argued to be easier if we

know the noun’s phonological form (Aronoff, 1992;

Dressler and Thornton, 1996) or lexical seman-

tics (Carstairs-McCarthy, 1994; Corbett and Fraser,

2000). However, semantic or phonological clues

are, at best, only very imperfect hints as to class

(Wurzel, 1989; Harris, 1991, 1992; Aronoff, 1992;

Halle and Marantz, 1994; Corbett and Fraser, 2000;

Aronoff, 2007). Given this, we quantify how much

a noun’s form and/or meaning shares with its class,

and determine whether that amount of information

is uniform across classes.

To do this, we measure the mutual informa-

tion both between declension class and meaning

(i.e., distributional semantic vector) and between

declension class and form (i.e., orthographic form),

as in Figure 1. We select two Indo-European lan-

guages (Czech and German) that have declension

classes. We find that form and meaning both share

significant amounts of information, in bits, with

declension class in both languages. We further find

that form clues are stronger than meaning clues; for

form, we uncover a relatively large effect of 0.5–0.8

bits, while, for lexical semantics, a moderate one of

0.3–0.5 bits. We also measure the three-way inter-

action between form, meaning, and class, finding

that phonology and semantics contribute overlap-

ping information about class. Finally, we analyze

individual inflection classes and uncover that the

amount of information they share with form and

meaning is not uniform across classes or languages.

We expect our results to have consequences,

not only for NLP tasks that rely on morpholog-

ical information—such as bilingual lexicon in-

duction, morphological reinflection, and machine

translation—but also for debates within linguistics

on the nature of inflectional morphology.

2 Declension Classes in Language

The morphological behavior of declension classes

is quite complex. Although various factors are

doubtless relevant, we focus on phonological and

lexical semantic ones here. We have ample reason

to suspect that phonological factors might affect

class predictability. In the most basic sense, the

form of inflectional suffixes are often altered based

on the identity of the final segment of the stem.

For example, the English plural suffix is spelled as

-s after most consonants, like in ‘cats’, but it gets

spelled as -es if it appears after an s, sh, z, ch etc.,

like in ‘mosses’, ‘rushes’, ‘quizzes’, ‘beaches’ etc.

Often differences in the spelling of plural affixes

or declension class affixes are due to phonologi-

cal rules that get noisily realized in orthography,

but there might also be additional regularities that

do not correspond to phonological rules but still

have an impact. For example, statistical regularities

over phonological segments in continuous speech

guide first language acquisition (Maye et al., 2002),

even over non-adjacent segments (Newport and

Aslin, 2004). Probabilistic relationships have also

been uncovered between the sounds in a word and

the word’s syntactic category (Farmer et al., 2006;

Monaghan et al., 2007; Sharpe and Marantz, 2017)

and between the orthographic form of a word and

its argument structure valence (Williams, 2018).

Thus, we expect the form of a noun to provide

clues to declension class.

Semantic factors too are often relevant for de-

termining certain types of morphologically rele-

vant classes, such as grammatical gender, which

is known to be related to declension class. It has

been claimed that there are only two types of gen-

der systems: semantic systems (where only seman-

tic information is required) and formal systems

(where semantic information as well as morpho-

logical and phonological factors are relevant) (Cor-

bett and Fraser, 2000, 294). Moreover, a large

typological survey, Qian et al. (2016) finds that

meaning-sensitive grammatical properties, such as

gender and animacy, can be decoded well from

distributional word representations for some lan-

guages, but less well for others. These examples

suggest that it is worth investigating whether noun

semantics provides clues about declension class.

Lastly, form and meaning might interact, as in

the case of phonaesthemes where the sounds of

words provide non-arbitrary clues about their mean-

ings (Sapir, 1929; Wertheimer, 1958; Holland and

Wertheimer, 1964; Maurer et al., 2006; Monaghan

et al., 2014; D’Onofrio, 2014; Dingemanse et al.,

2015; Dingemanse, 2018; Pimentel et al., 2019).

Therefore, we check whether form and meaning

jointly share information with declension class.

2.1 Orthography as a proxy for phonology?

We motivate an investigation into the relationship

between the form of a word and its declension class

by appealing at least partly to phonological motiva-

tions. However, we make the simplifying assump-



tion that phonological information is adequately

captured by orthographic word forms—i.e., strings

of written symbols or graphemes. In general, one

should question this assumption (Vachek, 1945;

Luelsdorff, 1987; Sproat, 2000, 2012; Neef et al.,

2012). For the particular languages we investigate

here, it is less problematic, as Czech and German

are known to be languages with fairly “transpar-

ent” mappings between spelling and pronunciation

(Matějček, 1998; Miles, 2000; Caravolas and Volı́n,

2001), achieving higher performance on grapheme-

to-phoneme conversion than do English and other

languages that have more “opaque” orthographic

systems (Schlippe et al., 2012). These studies sug-

gest that we are justified in taking orthography as a

proxy for phonological form. Nonetheless, to mit-

igate against any phonological information being

inaccurately represented in the orthographic form

(e.g., vowel lengthening in German), several of our

authors, who are fluent reader-annotators of our

languages, checked our classes for any unexpected

phonological variations. (Examples are in §3.)

2.2 Distributional Lexical Semantics

We adopt a distributional approach to lexical se-

mantics (Harris, 1954) that relies on pretrained

word embeddings for this paper. We do this

for multiple reasons: First, distributional seman-

tic approaches to create word vectors, such as

WORD2VEC (Mikolov et al., 2013), have been

shown to do well at extracting lexical features

such as animacy and taxonomic information (Ru-

binstein et al., 2015) and can also recognize se-

mantic anomaly (Vecchi et al., 2011). Second, the

distributional approach to lexical meaning can be

easily operationalized into a straightforward proce-

dure for extracting “meaning” from text corpora at

scale. Finally, having a continuous representation

of meaning, like word vectors, enables training of

machine learning classifiers.

2.3 Controlling for grammatical gender?

Grammatical gender has been found to interact with

lexical semantics (Schwichtenberg and Schiller,

2004; Williams et al., 2019, 2020), and often can

be determined from form (Brooks et al., 1993; Do-

brin, 1998; Frigo and McDonald, 1998; Starreveld

and La Heij, 2004). This means that it cannot be

ignored in the present study. While the precise na-

ture of the relationship between declension class

and gender is far from clear, it is well established

that the two should be distinguished (Aronoff 1992;

Wiese 2000; Kürschner and Nübling 2011, inter

alia). We first measure the amount of informa-

tion shared between gender and class, according

to the methods described in §4, to verify that the

predicted relationship exists. We then verify that

gender and class overlap in information in German

and Czech to a high degree, but that we cannot

reduce one to the other (see Table 3 and §6). We

proceed to control for gender, and subsequently

measure how much additional information form or

meaning provides about class.

3 Data

For our study, we need orthographic forms of

nouns, their associated word vectors, and their de-

clension classes. Orthographic forms are the easiest

component, as they can be found in any large text

corpus or dictionary. We isolated noun lexemes

(i.e., or syntactic category–specific representations

of words) by language. We select Czech nouns

from Unimorph (Kirov et al., 2018) and German

nouns from Baayen et al. (1995, CELEX2). For

lexical semantics, we trained 300D WORD2VEC

vectors on language-specific Wikipedia.2

We select the nominative singular form as the

donor for both orthographic and lexical semantic

representations, because it is the canonical lemma,

in these languages and also usually the stem for

the rest of the morphological paradigm. We restrict

our investigation to monomorphemic lexemes be-

cause: (i) one stem can take several affixes which

would multiply its contribution to the results, and

(ii) certain affixes come with their own class.3

Compared to form and meaning, declension

class is a bit harder to come by, because it re-

quires linguistic annotation. We associated lex-

emes with their classes on a by-language basis

by relying on annotations from fluent speaker lin-

guists, either for class determination (for Czech) or

for verifying existing dictionary information (for

German). For Czech, declension classes were de-

rived by edit distance heuristic over affix forms,

which grouped lemmata into subclasses if they

received the same inflectional affixes (i.e., they

constituted a morphological paradigm). If ortho-

graphic differences between two sets of suffixes

in the lemma form could be accounted for by

positing a phonological rule, then the two sets

were collapsed into a single set; for example, in

2We use the GENSIM toolkit(Řehůřek and Sojka, 2010).
3Since these require special treatment, they are set aside.



Original Final Training Validation Test Average Length # Classes

Czech 3011 2672 2138 267 267 6.26 13
German 4216 3684 2948 368 368 5.87 16

Table 1: Number of words in dataset. Counts per language-category pair are listed both before and after prepro-

cessing, train-validation-test split, average stem length, and # of classes. Since we use 10-fold cross-validation, all

instances are included in the test set at some point, and are used to estimate the cross-entropies in §5.

the “feminine -a” declension class, we collapsed

forms for which the dative singular suffix surfaces

as -e following a coronal continuant consonant

(figurka:figurce ‘figurine.DAT.SG’), -i following a

palatal nasal (piran̆a:pirani ‘piranha.DAT.SG’), and

as -ĕ following all other consonants (kráva:krávĕ

‘cow.DAT.SG’). As for meaning, descriptively, gen-

der is roughly a superset of declension classes in

Czech; among the masculine classes, animacy is

a critical semantic feature, whereas form seems to

matter more for feminine and neuter classes. Our

final tally of Czech noun contains a total of 2672

nouns in 13 declension classes.

For German, nouns came morphologically

parsed and lemmatized, as well as coded for class

(Baayen et al., 1995, CELEX2, v.2.5). We use

CELEX2 to isolate monomorphemic noun lexemes

and bin them into classes. CELEX2 declesion

classes are more fine-grained than traditional de-

scriptions of declension class; mappings between

CELEX2 classes and traditional linguistic descrip-

tions of declension class (Alexiadou and Müller,

2008) are provided in Table 4 in the Appendix.

CELEX2 declension class encoding is compound

and includes: (i) the number prefix (the first slot

‘S’ is for singular, and the second ‘P’ for plural),

(ii) the morphological form identifier—zero refers

to non-existent forms (e.g., plural is zero for sin-

gularia tantum nouns), and other numbers refer to

a form identifier of morphological paradigm (e.g.,

genitive applies an additional suffix for singular

masculine nouns, but never for feminines)—and

(iii) an optional ‘u’ identifier, which refers to vowel

umlaut, if present. More details of the German pre-

processing steps are in the Appendix. In the final

tally, we consider a total of 16 declension classes,

which can be broken into 3 types of singular and 7

types of plural, summing to a total of 3684 nouns.

After associating nouns with forms, meanings,

and classes, we perform exclusions: Because fre-

quency affects class entropy (Parker and Sims,

2015), we removed all classes with fewer than 20

lexemes.4 We subsequently removed all lexemes

which did not appear in our WORD2VEC models

trained on Wikipedia dumps. The remaining lex-

emes were split into 10 folds for cross-validation:

One for testing, another for validation, and the

remaining 8 for training. Table 1 shows train-

validation-test splits, average length of nouns, and

number of declension classes, by language. Table 5

in the Appendix provides final noun lexeme counts

by declension class.

4 Methods

Notation. We define each lexeme in a language

as a triple. Specifically, the ith triple consists of an

orthographic word form wi, a distributional seman-

tic vector vi that encodes the lexeme’s semantics,

and a declension class ci. These triples follow a (un-

known) probability distribution p(w,v, c)—which

can be marginalized to obtain marginal distribu-

tions, e.g. p(c). We take the space of word forms

to be the Kleene closure over a language’s alpha-

bet Σ; thus, we have wi ∈ Σ∗. Our distributional

semantic space is a high-dimensional real vector

space R
d where vi ∈ R

d. The space of declen-

sion classes is language-specific and contains as

many elements as the language has classes, i.e.,

C = {1, . . . ,K} where ci ∈ C. For each noun, a

gender gi from a language-specific space of gen-

ders G is associated with the lexeme. In both Czech

and German, G contains three genders: feminine,

masculine, and neuter. We also consider four ran-

dom variables: an R
d-valued random variable V , a

Σ∗-valued random variable W , a C-valued random

variable C and a G-valued random variable G.

Bipartite Mutual Information. Bipartite MI

(or, simply MI) is a symmetric quantity that mea-

sures how much information (in bits) two random

variables share. In the case of C (declension class)

and W (orthographic form), we have

I(C;W ) = H(C)−H(C | W ) (1)

4We ran another version of our models that included all
the original classes and observed no notable differences.



As can be seen, MI is the difference between an

unconditional and a conditional entropy. The un-

conditional entropy is defined as

H(C) = −
∑

c∈C

p(c) log p(c) (2)

and the conditional entropy is defined as

H(C | W ) = (3)

−
∑

c∈C

∑

w∈Σ∗

p(c,w) log p(c | w)

A good estimate of I(C;W ) will naturally encode

how much the orthographic word form tells us

about its corresponding lexeme’s declension class.

Likewise, to measure the interaction between de-

clension class and lexical semantics, we also con-

sider the bipartite mutual information I(C;V ).

Tripartite Mutual Information. To consider

the interaction between three random variables at

once, we need to generalize MI to three classes.

One can calculate tripartite MI is as follows:

I(C;W ;V ) = I(C;W )− I(C;W | V ) (4)

As can be seen, tripartite MI is the difference be-

tween a bipartite MI and a conditional bipartite MI.

The conditional bipartite MI is defined as

I(C;W | V ) = H(C | V )−H(C | W,V ) (5)

In plainspeak, Equation 4 is the difference between

how much C and W interact and how much they

interact after “controlling” for V . 5

Controlling for Gender. Working with mutual

information also gives us a natural way to control

for quantities that we know influence meaning and

form. We do this by considering conditional MI.

We consider both bipartite and tripartite conditional

mutual information. These are defined as follows:

I(C;W | G) = (6a)

H(C | G)−H(C | W,G)

I(C;W ;V | G) = (6b)

I(C;W | G)− I(C;W | V,G)

5We emphasize here the subtle, but important, distinction
between I(C;W ;V ) and I(C;W,V ). (The difference in no-
tation lies in the comma replacing the semicolon.) While the
first (tripartite MI) measures the ammount of (redundant) in-
formation shared by the three variables, the second (bipartite)
measures the (total) information that class shares with either
the form or the lexical semantics.

Estimating these quantities tells us how much C
and W (and, in the case of tripartite MI, V also)

interact after we take G (the grammatical gender)

out of the picture. Figure 1 provides a graphical

summary for this section until this point.

Normalization. To further contextualize our re-

sults, we consider two normalization schemes for

MI. Normalizing renders MI estimates across lan-

guages more directly comparable (Gates et al.,

2019). We consider the normalized mutual infor-

mation, i.e., which fraction of the unconditional

entropy is the mutual information:

NMI(C;W ) =
I(C;W )

min{H(C),H(W )}
(7)

In practice, H(C) ≪ H(W ) in most cases and nor-

malized mutual information is more appropriately

termed the uncertainty coefficient (Theil, 1970):

U(C | W ) =
I(C;W )

H(C)
(8)

This can be computed from any mutual information

equation, and will yield a percentage of the entropy

that the mutual information accounts for—a more

interpretable notion of the predictability between

class and form or meaning.

5 Computation and Approximation

In order to estimate the mutual information quanti-

ties of interest per §4, we need to estimate a variety

of entropies. We derive our mutual information

estimates from a corpus D = {(vi,wi, ci)}
N
i=1

.

5.1 Plug-in Estmation of Entropy

The most straight-forward quantity to estimate is

H(C). Given a corpus, we may use plug-in estima-

tion: We compute the empirical distribution over

declension classes from D. Then, we plug that em-

pirical distribution over declension classes C into

the formula for entropy in Equation 2. This esti-

mator is biased (Paninski, 2003), but is a suitable

choice given because we have only a few declen-

sion classes and a large amount of data. Future

work will explore whether better estimators (Miller,

1955; Hutter, 2001; Archer et al., 2013, 2014) af-

fect the conclusions of studies such as this one.

5.2 Model-based Estimation of Entropy

In contrast, estimating H(C | W ) is non-trivial.

We cannot simply apply plug-in estimation because



we cannot compute the infinite sum over Σ∗ that is

required. Instead, we follow previous work (Brown

et al., 1992; Pimentel et al., 2019) in using the cross-

entropy upper bound to approximate H(C | W )
with a model. More formally, for any probability

distribution q(c | w), we estimate

H(C | W ) ≤ Hq(C | W ) (9)

= −
∑

c∈C

∑

w∈Σ∗

p(c,w) log q(c | w)

To circumvent the need for infinite sums, we use

a held-out sample D̃ = {(ṽi, w̃i, c̃i)}
M
i=1

disjoint

from D to approximate the true cross-entropy

Hq(C | W ) with the following quantity

Ĥq(C | W ) = −
1

M

M∑

i=1

log q (c̃i | w̃i) (10)

where we assume the held-out data is distributed

according to the true distribution p. We note that

Ĥq(C | W ) → Hq(C | W ) as M → ∞. While the

exposition above focuses on learning a distribution

q(c | w) for classes and forms to approximate

H(C | W ), the same methodology can be used to

estimate all necessary conditional entropies.

Form and gender: q(c | w, g). We train two

LSTM classifiers (Hochreiter and Schmidhuber,

1996)—one for each language. The last hidden

state of the LSTM models is fed into a linear layer

and then a softmax non-linearity to obtain proba-

bility distributions over classes. To condition our

model on gender classes, we embedd each gender

and feed it into each LSTM’s initial hidden state.

Meaning and gender: q(c | v, g). We trained a

simple multilayer perceptron (MLP) classifier to

predict the declension class, given the WORD2VEC

representation. When conditioning on gender, we

again embedded each class, concatenating these

embeddings with the WORD2VEC ones before feed-

ing the result into the MLP.

Form, meaning, and gender: q(c | w,v, g).
We again trained two LSTM classifiers, but

this time, also conditioned on meaning (i.e.,

WORD2VEC). We avoided overfitting by reducing

the WORD2VEC dimensionality from its original

300 dimensions to k with language-specific PCAs.

We then linearly transformed them to match the

hidden size of the LSTMs, and fed them in. To

also condition on gender, we followed the same

procedures, but used half of each LSTM’s initial

hidden state for each vector (i.e., WORD2VEC and

gender one-hot embeddings).

Optimization. All classifiers were trained using

Adam (Kingma and Ba, 2015) and code was imple-

mented using PyTorch. Hyperparameters—number

of training epochs, hidden sizes, PCA compression

dimension (k), and number of layers—were opti-

mized using Bayesian optimization with a Gaus-

sian process prior (Snoek et al., 2012). For each

experiment, fifty models were trained to maximize

expected improvement on the validation set.

5.3 An Empirical Lower Bound on MI

With our empirical approximations of the desired

entropy measures, we can calculate the desired

approximated MI values, e.g.,

I(C;W | G) ≈ Ĥ(C | G)− Ĥq(C | W,G) (11)

where Ĥ(C | G) is the plug-in estimation of the

entropy. Such an approximation, though, is not

ideal, since we do not know if the true MI is ap-

proximated by above or below. Nonetheless, we

use plug-in estimation, which underestimates en-

tropy, and Hq(C | W,G) is estimated with a cross-

entropy upperbound, we have

I(C;W | G) = H(C | G)−H(C | W,G) (12)

' Ĥ(C | G)−H(C | W,G)

' Ĥ(C | G)− Ĥq(C | W,G)

We note that these lower bounds are exact when

taking an expectation under the true distribution p.

We cannot make a similar statement about tripartite

MI, though, since it is computed as the difference

of two mutual information quantities, both of which

are lower-bounded in their approximations.

6 Results

Our main experimental results are presented in Ta-

ble 2. We find that both form and lexical semantics

significantly interact with declension class in both

Czech and German. We observe that our estimates

of I(C;W | G) is larger (0.5–0.8 bits) than our es-

timates of I(C;V | G) (0.3–0.5 bits). We also ob-

serve that the MI estimates in Czech are higher than

in German. However, we caution that the estimates

for the two languages are not fully comparable be-

cause they hail from models trained on different

amounts of data. The tripartite MI estimates be-

tween class, form, and meaning, were relatively



Form & Declension Class (LSTM) Meaning & Declension Class (MLP)

H(C | G) HQ(C | W,G) I(C;W | G) U(C | W,G) H(C | G) HQ(C | V,G) I(C;V | G) U(C | V,G)

Czech 1.35 0.56 0.79 58.8% 1.35 0.82 0.53 39.4%

German 2.17 1.60 0.57 26.4% 2.17 1.88 0.29 13.6%

Both (Form and Meaning) & Declension Class Tripartite MI (LSTM)

H(C | G) HQ(C | W,V,G) I(C;W,V | G) U(C | W,V,G) I(C;W | G) I(C;W | V,G) I(C;W ;V | G) U(C | W ;V,G)

Czech 1.35 0.37 0.98 72.6% 0.79 0.44 0.35 25.9%

German 2.17 1.50 0.67 30.8% 0.57 0.37 0.20 9.2%

Table 2: MI between form and class (top-left), meaning and class (top-right), both form and meaning and class

(bottom-left), and tripartite MI (bottom-right). All values are calculated given gender, and bold if significant.

H(C) H(C | G) I(C;G) U(C | G)

Czech 2.75 1.35 1.40 50.8%
German 2.88 2.17 0.71 24.6%

Table 3: MI between class and gender I(C;G): H(C)
is class entropy, H(C | G) is class entropy given gen-

der, U(C;G) is the uncertainty coefficient.

small (0.2–0.35 bits) for both languages. We inter-

pret this finding as showing that much of the infor-

mation contributed by form is not redundant with

information contributed by meaning—although a

substantial ammount is. All results in this section

were significant for both languages, according to a

Welch (1947)’s t-test, which yielded p < 0.01 after

Benjamini and Hochberg (1995) correction.6

As a final sanity check, we measure mutual in-

formation between class and gender I(C;G) (see

Table 3). In both cases, the mutual information be-

tween class and gender is significant. MIs ranged

from approximately 3/4 of a bit in German to up to

1.4 bits in Czech, nearly 25% and nearly 51% of

the remaining entropy of class, respectively. Like

the quantities discussed in §4, this MI can also

be estimated using simple plug-in estimation. Re-

member, if class were entirely reducible to gender,

conditional entropy of class given gender would be

zero. This is not the case: Although the conditional

entropy of class given gender is lower for Czech

(1.35 bits) than for German (2.17 bits), in neither

case is declension class informationally equivalent

to the language’s grammatical gender system.

7 Discussion and Analysis

Next, we ask whether individual declension classes

differ in how idiosyncratic they are, e.g., does any

one German declension class share less information

6A Welch (1947)’s t-test differs from Student (1908)’s t-
test in that the latter assumes equal variances, and the former
does not, making it preferable (see Delacre et al. 2017).

with form than the others? To address this, we qual-

itatively inspect per-class pointwise mutual infor-

mation (PMI) in Figure 2a–2b. See Table 5 in the

Appendix for the five highest and lowest surprisal

examples per model. Several qualitative trends

were observed: (i) classes show a decent amount

of variability, (ii) unconditional entropy for each

class is inversely proportional to the class’ size, (iii)

PMI is higher on average for Czech than German,

and (iv) classes that have high PMI(C;V | G)
usually have high PMI(C;W | G) (with notable

exceptions we discuss below).

Czech. In general, masculine classes have

smaller PMI(C = c;W | G) than feminine or

neuter ones of comparable size—the exception be-

ing ‘special, masculine, plural -ata’. This class

ends exclusively in -e or -ĕ, which might contribute

to that class’ higher PMI(C = c;W | G). That

PMI(C = c;W | G) is high for feminine and

neuter classes suggests that the overall I(C;W | G)
results might be largely driven by these classes,

which predominantly end in vowels. We also note

that the high PMI(C = c;W | G) for feminine

‘plural -e’, might be driven by the many Latin or

Greek loan words present in this class.

With respect to meaning, recall that masculine

declension classes reflect animacy status: ‘an-

imate1’ contains nouns referring mostly to hu-

mans, as well as a few animals (kocour ‘tom-

cat’, c̆olek ‘newt’), ‘animate2’ mostly animals

with a few humans (syn ‘son’, křest’an ‘Chris-

tian’), ‘inanimate1’ contains many plants, staple

foods (chléb ‘bread’, ocet ‘vinegar’) and meaning-

ful places (domov ‘home’, kostel ‘church’), and

‘inanimate2’ contains many basic inanimate nouns

(kámen ‘stone’). Of these masculine classes, ‘inan-

imate1’ has a lower PMI(C = c;V | G) than its

class size alone might lead us to predict. Feminine

and neuter classes show no clear pattern, although

neuter classes ‘-eni’ and ‘-o’ have comparatively
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Figure 2: Pointwise MI for declension classes. PMI for each random variable X ∈ {W,V, {W,V } , {W ;V }}
are plotted for classes increasing in size (towards the right): I(C = c;V |G) (bottom), I(C = c;W |G) (bottom

middle), I(C = c;V,W |G) (top middle), and tripartite I(C = c;V ;W |G) (top).

high PMI(C = c;V | G).
For PMI(C = c;V ;W | G), we observe that

‘masculine, inanimate1’ is the smallest quantity, fol-

lowed by most other masculine classes (e.g., mas-

culine animate classes with -ové or -i plurals) for

which PMI(C = c;W | G) was also low. Among

non-masculine classes, we observe that feminine

‘pl -i’ and the neuter classes -o and -enı́ show higher

tripartite PMI. The latter two classes have rela-

tively high PMI across the board.

German. PMI(C = c;W | G) for classes con-

taining words with umlautable vowels (i.e., S3/P1u,

S1/P1u) or loan words (i.e., S3/loan) tends to be

high; in the prior case, our models seem able to

separate umlautable from non-umlautable vowels,

and in the latter case, loan word orthography from

native orthography. PMI(C = c;V | G) quantities

are roughly equivalent across classes of different

size, with the exception of three classes: S1/P4,

S3/P1, and S1/P3. S1/P4 consists of highly seman-

tically variable nouns, ranging from relational noun

lexemes (e.g., Glied ‘member’, Weib ‘wife’, Bild

‘picture’) to masses (e.g., Reis ‘rice’), which per-

haps explains its relatively high PMI(C = c;V |
G). For S1/P3 and S3/P1, PMI(C = c;V | G) is

low, and we observe that both declension classes id-

iosyncratically group clusters of semantically simi-

lar nouns: S1/P3 contains “exotic” birds (Papagei

‘parrot’, Pfau ‘peacock’), but also nouns ending

in -or, (Traktor ‘tractor’, Pastor ‘pastor’), whereas

S3/P1 contains very few nouns, such as names of

months (März, ‘March’, Mai ‘May’) and names of

mythological beasts (e.g., Sphinx, Alp).

Tripartite PMI is fairly idiosyncratic in German:

The lowest quantity comes from the smallest class,

S1/P2u. S1/P3, a class with low PMI(C = c;V |
G) from above, also has low tripartite PMI. We

speculate that this class could be a sort of ‘catch-

all’ class with no clear regularities. The highest

tripartite PMI comes from S1/P4, which also had

high PMI(C = c;V | G). The result suggests that

submorphemic meaning bearing units, or phonaes-



themes might be present; taking inspiration from

Pimentel et al. 2019, which aims to automatically

discover such units, we observe that many words in

S1/P4 contain letters {d, e, g, i, l}, often in identi-

cally ordered orthographic sequences, such as Bild,

Biest, Feld, Geld, Glied, Kind, Leib, Lied, Schild,

Viech, Weib, etc. While these letters are common in

German orthography, their noticeable presence sug-

gests further elucidation of declension classes in

the context of phonaesthemes could be warranted.

8 Conclusion

We adduce new evidence that declension class

membership is not wholly idiosyncratic nor fully

deterministic based on form or meaning in Czech

and German. We measure several mutual informa-

tion quantities that range from 0.2 bits to nearly a

bit. Despite their relatively small magnitudes, our

measured mutual information between class and

form accounted for between 25% and 60% of the

class’ entropy, even after relevant controls, and MI

between class and meaning accounted for between

13% and nearly 40%. We analyze results per-class,

and find that classes vary in how much information

they share with meaning and form. We also observe

that classes that have high PMI(C = c;V | G) of-

ten have high PMI(C = c;W | G), with a few

noted exceptions that have specific orthographic

(e.g., German umlauted plurals), or semantic (e.g.,

Czech masculine animacy) properties. In sum, this

paper has proposed a new information-theoretic

method for quantifying the strength of morphologi-

cal relationships, and applied it to declension class.

We verify and build on existing linguistic findings,

by showing that the mutual information quantities

between declension class, orthographic form, and

lexical semantics are statistically significant.

Acknowledgments

Thanks as well to Guy Tabachnik for informative

discussions on Czech phonology, to Jacob Eisen-

stein for useful questions about irregularity, and to

Andrea Sims and Jeff Parker for advice on citation

forms. Thanks to Ana Paula Seraphim for helping

beautify Figure 1.

References

Farrell Ackerman, James P. Blevins, and Robert Mal-
ouf. 2009. Parts and wholes: Implicative patterns in
inflectional paradigms. Analogy in Grammar: Form
and Acquisition, pages 54–82.

Farrell Ackerman and Robert Malouf. 2013. Morpho-
logical organization: The low conditional entropy
conjecture. Language, pages 429–464.

Artemis Alexiadou and Gereon Müller. 2008. Class
Features as Probes. In Asaf Bachrach and Andrew
Nevins, editors, Inflectional Identity, volume 18
of Oxford Studies in Theoretical Linguistics, pages
101–155. Oxford University Press, Oxford.

Evan Archer, Il Memming Park, and Jonathan W. Pil-
low. 2013. Bayesian and quasi-Bayesian estimators
for mutual information from discrete data. Entropy,
15(5):1738–1755.

Evan Archer, Il Memming Park, and Jonathan W. Pil-
low. 2014. Bayesian entropy estimation for count-
able discrete distributions. The Journal of Machine
Learning Research, 15(1):2833–2868.

Mark Aronoff. 1992. Noun classes in Arapesh. In Year-
book of Morphology 1991, pages 21–32. Springer.

Mark Aronoff. 2007. In the beginning was the word.
Language, 83(4):803–830.

R. Harald Baayen, Richard Piepenbrock, and Leon Gu-
likers. 1995. The CELEX2 lexical database. Lin-
guistic Data Consortium.

Sacha Beniamine and Olivier Bonami. 2016. A com-
prehensive view on inflectional classification. In An-
nual Meeting of the Linguistic Association of Great
Britain.

Yoav Benjamini and Yosef Hochberg. 1995. Control-
ling the false discovery rate: A practical and pow-
erful approach to multiple testing. Journal of the
Royal Statistical Society: Series B (Methodological),
57(1):289–300.
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Z Matějček. 1998. Reading in Czech. part I: Tests of
reading in a phonetically highly consistent spelling
system. Dyslexia, 4(3):145–154.

Daphne Maurer, Thanujeni Pathman, and Catherine J.
Mondloch. 2006. The shape of boubas: Sound–
shape correspondences in toddlers and adults. De-
velopmental Science, 9(3):316–322.

Jessica Maye, Janet F. Werker, and LouAnn Gerken.
2002. Infant sensitivity to distributional informa-
tion can affect phonetic discrimination. Cognition,
82(3):101–111.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Elaine Miles. 2000. Dyslexia may show a different face
in different languages. Dyslexia, 6(3):193–201.

George Miller. 1955. Note on the bias of informa-
tion estimates. In Information Theory in Psychol-
ogy: Problems and Methods, pages 95–100.



Padraic Monaghan, Morten H. Christiansen, and
Nick Chater. 2007. The phonological-distributional
coherence hypothesis: Cross-linguistic evidence
in language acquisition. Cognitive Psychology,
55(4):259–305.

Padraic Monaghan, Richard C. Shillcock, Morten H.
Christiansen, and Simon Kirby. 2014. How ar-
bitrary is language? Philosophical Transac-
tions of the Royal Society B: Biological Sciences,
369:20130299.

Martin Neef, Anneke Neijt, and Richard Sproat. 2012.
The relation of writing to spoken language, volume
460. De Gruyter.

Elissa L. Newport and Richard N. Aslin. 2004. Learn-
ing at a distance I. Statistical learning of non-
adjacent dependencies. Cognitive Psychology,
48(2):127 – 162.
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A Further Notes on Preprocessing

The breakdown of our declension classes is given

in Table 4. We will first discuss more details about

our preprocessing for German, and then for Czech.

German. After extracting declension classes

from CELEX2, we made some additional prepro-

cessing decisions for German, usually based on

orthographic or other considerations. For example,

we combined the classes S1 with S4 classes, P1

with P7, and P6 with P3 because the difference be-

tween each member of any of these pairs lies solely

in spelling (a final <s> is doubled in the spelling

when GEN.SG -(e)s, or the PL -(e)n is attached).

Whether a given singular, say S1, becomes

inflected as P1 or P2—or, for that matter, the

corresponding umlauted versions of these plural

classes—is phonologically conditioned (Alexiadou

and Müller, 2008). If the stem ends in a trochee

whose second syllable consists of schwa plus /n/,

/l/, or /r/, the schwa is not realized, i.e., it gets P2,

otherwise it gets P1. For this phonological reason,

we also chose to collapse P1 and P2.

We also collapsed all loan classes (i.e., those

with P8–P10) under one plural class ‘Loan’. This

choice resulted in us merging loans with Greek

plurals (like P9, Myth-os / Myth-en) with those

with Latin plurals (like P8, Maxim-um / Maxim-a

and P10, Trauma / Trauma-ta). This choice might

have unintended consequences on the results, as the

orthography of Latin and Greek differ substantially

from each other, as well as from the native German

orthography, and might be affecting our measure

of higher form-based MI for S1/Loan and S3/Loan

classes in Table 3 of the main text. One could

reasonably make a different choice, and instead

remove these examples from consideration, as we

did for classes with fewer than 20 lemmata.

Czech. The preprocessing for Czech was a bit

less involved, since the classes were derived from

an edit-distance heuristic. A fluent speaker-linguist

identified major noun classes by grouping together

nouns with shared suffixes in the surface (ortho-

graphic) form. If the differences between two sets

of suffixes in the surface form could then be ac-

counted for by positing a basic phonological rule—

for example, vowel shortening in monosyllabic

words—then the two sets were collapsed.

Among masculine nouns, four large classes were

identified that seemed to range from “very animate”

to “very inanimate.” The morphological divisions

between these classes were very systematic, but

there was substantial overlap: dat.sg and loc.sg

differentiated ‘animate1’ from ‘animate2’, ‘inani-

mate1’ and ‘inanimate2’; acc.sg, nom.pl and voc.pl

differentiated ‘animate2’ from ‘inanimate1’ and

‘inanimate2’, and gen.sg differentiated ‘inanimate1’

from ‘inanimate2’ (see Figure 3. Further subdivi-

sions were made within the two animate classes for

the apparent idiosyncratic nominative plural suf-

fix, and within the ‘inanimate2’ class, where nouns

took either -u or -e as the genitive singular suffix.

This division may have once reflected a final palatal

on nouns taking -e in the genitive singular case, but

this distinction has since been lost. All nouns in

the ‘inanimate2’ “soft” class end in coronal con-

sonants, whereas nouns in the ‘inanimate1’ “hard”

class have a variety of final consonants.

Among feminine nouns, the ‘feminine -a’ class

contained all feminine words that ended in -a in

the nominative singular form. (Note that there exist

masculine nouns ending in -a, but these did not

pattern with the ‘feminine -a’ class). The ‘feminine

pl -e’ class contained feminine nouns ending in

-e, -ě, or a consonant, and as the name suggests,

had the suffix -e in the nominative plural form.

The ‘feminine pl -i’ class contained feminine nouns

ending in a consonant and had the suffix -i in the

nominative plural form. No feminine nouns ended

in a dorsal consonant.

Among neuter nouns, all words ended in a vowel.

Figure 3: Czech paradigm for masculine nouns.

B Some prototypical examples

To explore which examples, across classes might

be most prototypical, we samples the top five high-

est and lowest suprisal examples. The results are



German Czech
class # classic class gender(s) class # gender

S1/P1 1157 Decl I MSC, NEUT masculine, inanimate2 823 MSC

S3/P3 1105 Decl VI FEM feminine, -a 818 FEM

S1/P0 264 Singularia Tantum MSC, NEUT, FEM feminine, pl -e 275 FEM

S1/P5 256 “default -s PL” MSC, NEUT, FEM neuter, -o 149 NEUT

S3/P0 184 Singularia Tantum MSC, NEUT, FEM neuter, -enı́ 133 NEUT

S1/P1u 154 Decl II MSC masculine, animate2, pl -i) 130 MSC

S2/P3 151 Decl V MSC masculine, animate1, pl -i) 112 MSC

S1/P3 70 Decl IV MSC, NEUT feminine, pl -i 80 FEM

S3/loan 67 Loanwords MSC, NEUT, FEM masculine, animate1, pl -ové 55 MSC

S3/P1 11 Decl VIII FEM masculine, inanimate1 32 MSC

S1/P4u 51 Decl III MSC, NEUT special, masculine, pl -ata 26 MSC

S3/P5 49 “default -s PL” MSC, NEUT, FEM neuter, -e/-ĕ/-ı́ 21 NEUT

S1/loan 41 Loanwords MSC, NEUT masculine, animate1, pl -é 18 MSC

S3/P1u 35 Decl VII FEM

S1/P4 25 Decl III MSC, NEUT

S1/P2u 24 Decl II MSC, phon.

Total 3684 2672

Table 4: Declension Classes. ‘class’ refers to the declension class identifier, ‘#’ refers to the number of lexemes in

each declension class, and ‘gender’ refers to the gender(s) present in each class. German declension classes came

from CELEX2, for which ‘S’ refers to a noun’s singular form, ‘P’ refers to its plural, ‘classic class’ refers to the

conception of class from Brockhaus Wahrig Wörterbuch.

Czech German
stem class H(C | W ) stem class H(C | W )

azalka feminine, -a 6.1x10−5 Kalesche FEM, 6, S3P3 0.013

matamatika feminine, -a 6.2x10−5 Tabelle FEM, 6, S3P3 0.013

čtvrtka feminine, -a 6.6x10−5 Stelze FEM, 6, S3P3 0.014

paprika feminine, -a 6.7x10−5 Lende FEM, 6, S3P3 0.014

matoda feminine, -a 6.7x10−5 Gamasche FEM, 6, S3P3 0.015
ptakopysk masculine, animate1, pl -i 1.34 Karton MSC, 1, S1P5 2.03
špendlı́k masculine, inanimate2 1.34 Humus MSC, ?, S3P0 2.06
hospodář neuter, -enı́, derived from verb (instr-pl) 1.36 Mufti MSC, 1, S1P5 2.19
dudlı́k masculine, inanimate2 1.39 Magma NEU, ?, S1P10 2.23
záznamnı́k masculine, inanimate2 1.48 Los NEU, 1, S1P1 2.43

Table 5: Five highest and lowest surprisal examples given form and meaning (w2v) by language.

in Table 5. We observe that the lowest surprisal

from form for each language generally come from

a single class for each language: feminine, -a for

Czech and S3/P3 for German. These two classes

were among the largest, having lower class en-

tropy, and both contained feminine nouns. Forms

with higher surprisal generally came from several

smaller classes, and were predominately masculine.

This sample size is small however, so it remains to

be investigated whether this tendency in our data

belies a genuine statistically significant relationship

between gender, class size, and surprisal.


