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ABSTRACT Objective: Gait may be a useful biomarker that can be objectively measured with wearable

technology to classify Parkinson’s disease (PD). This study aims to: (i) comprehensively quantify a battery

of commonly utilized gait digital characteristics (spatiotemporal and signal-based), and (ii) identify the

best discriminative characteristics for the optimal classification of PD. Methods: Six partial least square

discriminant analysis (PLS-DA) models were trained on subsets of 210 characteristics measured in 142

subjects (81 people with PD, 61 controls (CL)). Results: Models accuracy ranged between 70.42-88.73%

(AUC: 78.4-94.5%) with a sensitivity of 72.84-90.12% and a specificity of 60.3-86.89%. Signal-based

digital gait characteristics independently gave 87.32% accuracy. The most influential characteristics in the

classification models were related to root mean square values, power spectral density, step velocity and

length, gait regularity and age. Conclusions: This study highlights the importance of signal-based gait

characteristics in the development of tools to help classify PD in the early stages of the disease.

INDEX TERMS Classification, Machine Learning, Digital Gait, Parkinson’s disease, Partial least square-

discriminant analysis (PLS-DA).

IMPACT STATEMENT Gait characteristics quantified with wearable devices paired with machine learning

models can be used as tool in early clinical management of Parkinson’s disease.

I. INTRODUCTION

Parkinson’s disease (PD) is the second most common neu-

rodegenerative disease after Alzheimer’s disease [1]. PD

presents a combination of motor and non-motor symptoms

that collectively can cause functional disability, loss of inde-

pendence and reduced quality of life [2]. The heterogeneity of

PD creates significant problems for accurate diagnosis, par-

ticularly in the early disease stages where symptoms may be

very subtle [3]. Diagnostic accuracy to differentiate PD from

other neurological disorders by movement disorder specialists

ranges between 74% and 80% [4]. PD state markers (status

i.e., with or without PD) with strong sensitivity and specificity

also have potential to act as trait markers (detection of dis-

ease in its prodromal stage). They are therefore of paramount

importance because they could contribute towards timely and

accurate diagnosis and clinical management [5].

Gait is a potential state and trait marker because gait im-

pairments present in very early disease [6], precede the onset

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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of overt motor signs and evolve more rapidly than other motor

features of PD [7]. Tools to objectively quantify discrete gait

characteristics include pressure insoles/mats, 3D motion cap-

ture, force plates, electromyography, and instrumented walk-

ways/treadmills [8]. Although they are essential to accurately

characterize gait impairments in clinical populations, their

routine use is limited to research settings due to cost and the

expertise required to use them [9], [10]. If gait assessments

are to provide state, and potentially trait markers for PD,

development of tools that are highly specific and sensitive to

PD, whilst remaining clinically and ecologically viable, are

essential.

Wearable devices such as accelerometers provide a solu-

tion to this challenge. They are capable of quantifying digi-

tal gait characteristics objectively in clinical/laboratory-based

settings as well as in real-world conditions [11]. Accelerome-

ters can capture spatiotemporal characteristics similar to other

gait analysis tools [12]. They can also capture gait contin-

uously over long distances/durations, which drastically in-

creases the opportunity to extract additional meaningful infor-

mation. For example, using signal processing techniques, time

and frequency domain analysis can quantify signal magnitude,

regularity, complexity, smoothness, and symmetry [13]–[15].

These alternative signal derived gait characteristics may pro-

vide complementary/superior state markers in early PD [16]

and in objective monitoring of PD [17]. The optimal charac-

teristic or combination therefore remains unclear.

Tools are needed to evaluate the optimal combination of

characteristics for use in PD in order to improve disease classi-

fication. Data driven modelling using machine learning (ML)

algorithms when combined with multi-dimensional gait can

be used to address this question [18]–[21]. Whilst this previ-

ous work points to the potential, it is limited to small sample

sizes, limited gait characteristics and the risk of overfitting

data due to high correlation with multiple variables derived

from the same signal [9].

Because accelerometers can provide a large amount of gait

characteristics, a comprehensive analysis on an adequately

sized population of mild to moderate PD subjects is required

to identify the optimal gait characteristics for use as state

markers in PD. This study therefore aims: (i) to comprehen-

sively quantify digital gait characteristics (spatiotemporal and

signal-based) from a single accelerometer in people with mild

to moderate PD, and (ii) to explore the best discriminative

digital gait characteristics for optimal classification of PD. We

hypothesize that a data driven approach where signal based

characteristics combined with more typical spatiotemporal

gait variables will be superior to quantify gait in PD and as

a result, would contribute a feasible and objective method to

aid the diagnosis of PD.

II. RESULTS

Table 1 shows demographics, cognitive and clinical character-

istics of the participants. Compared to Controls (CLs), people

with PD were of similar age, were shorter, weighed less and

had significantly poorer global cognition. The average PD

TABLE 1. Demographic and Clinical Characteristics

M: Male; F: Female; BMI: Body mass index; MoCA: Montreal Cognitive Assessment;

NFOG: New freezing of gait questionnaire; LEDD: Levodopa equivalent daily dose;

MDS – UPDRS III: Movement Disorder Society - Unified Parkinson’s Disease Rating

Scale Part III. In bold significant p values (p < 0.05).

TABLE 2. PLS-DA Classification Performance in PD From Different
Combinations of Accelerometer Derived Gait Characteristics (Char) and
Participant Demographic (DEM) Data

duration was 24 months from diagnosis at the time of gait

assessment.

A. CLASSIFICATION OF PD

Six partial least square – discriminant analysis (PLS-DA)

models were trained on the different sub-datasets (Table 2).

Three to five latent variables (components) in all the PLS-DA

models based on the predictive performance were enough to

explain the total variance of independent variables (standard

goodness of fit parameters (Q², R²X, and R²Y) provided in

supplementary Figure S1).

Table 2 shows the classification performance. Overall sig-

nal based characteristics gave better classification perfor-

mance (accuracy: 87.32%, sensitivity: 90.12%, specificity:

81.97%) compared to spatiotemporal characteristics alone

(accuracy: 70.42%, sensitivity: 76.54%, specificity: 62.3%).
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FIGURE 1. Receiver operating characteristics curve for each of the six
classification models.

By adding demographic (including MoCA) data to spatiotem-

poral and signal based characteristic models, the increase in

classification performance was negligible (<2%), while speci-

ficity of the models improved by 2–4%. By combining the

spatiotemporal characteristics to signal based characteristics

the accuracy and specificity of the model decreased slightly

(accuracy: 86.62%, sensitivity: 90.12%, specificity: 81.97%).

However, this increased again when the demographics were

added (accuracy: 88.73%, sensitivity: 90.12%, specificity:

86.89%) and is marginally better than the model trained on

the signal based characteristics and demographics (accuracy:

88.03%, sensitivity: 90.12%, specificity: 85.25%).

Figure 1 shows the area under the receiver operating charac-

teristic curve (AUC) for all the six models. The AUC is higher

for signal based characteristics as compared to spatiotemporal

gait characteristics. The addition of demographics had negli-

gible impact on models AUC.

B. IMPORTANT CHARACTERISTICS IN THE MODEL

Figure 2 shows the characteristics with a Variable Importance

in the Projection (VIP) [22] value of > = 1.5 in at least one of

the PLS-DA model components trained on the overall data set.

The VIP score for all variables (Table S1) and their definitions

(Table S3) are provided in the supplementary material.

Characteristics are ranked based on the average VIP score

of all the components in the model (Figure 2). Signal mag-

nitude based measures such as root mean square (RMS) in

all three directions (vertical (VT), mediolateral (ML) and

anteroposterior (AP)) for each pass of straight walking, per

stride and step were highly influential. Signal frequency

domain measures such as the power spectral density (PSD)

amplitude and slope of the signal in ML, harmonic ratio in

AP & VT, index of harmonicity in ML, range of signal in

AP and stride harmonic ratio in the ML & AP direction were

important. Among signal regularity based characteristics, step

and stride regularity in the ML direction were important. Spa-

tiotemporal measures such as step velocity, step length, and

step length variability were influential. Complexity of the sig-

nal, in the form of phase plot characteristic long half orbit area

asymmetry and Lyapunov exponent derived from combined

resultant axes from tri-axial accelerometer, were relevant. In

this model, the age of the subjects was also important in the

classification process.

C. STATISTICAL SIGNIFICANCE OF IMPORTANT

CHARACTERISTICS BETWEEN PD AND CL

On average, PD and CL groups walked 5 and 6 passes on the

mat respectively, with an average of 42 steps for PD and 45

steps for CL. Compared to the CL group, PD had significantly

lower signal magnitudes, signal frequency characteristics, reg-

ularity, complexity, step velocity and step length (Figure 3).

In addition, PD had higher coefficient of variability in step

length, Lyapunov exponent and signal index of harmonicity in

PSD. The mean ± standard deviation of all 210 gait character-

istics are available in the supplementary material (Table S2).

Correlation analysis results between the gait characteristics

are given in the supplementary material (Figure S2).

III. DISCUSSION

To the best of our knowledge, this is the most comprehensive

study to quantify digital gait characteristics from a single tri-

axial accelerometer and identify discriminative characteristics

for optimal classification of early stages of PD. Two hundred

and ten digital gait characteristics from spatiotemporal, sig-

nal magnitude, regularity, complexity and frequency domains

were used in this study. A PLS-DA method, which can deal

with multi-collinearity [22], [23], was used in the classifi-

cation step. Based on the results, signal based characteris-

tics (Acceleration RMS, PSD (amplitude, slope and range),

harmonic ratio, index of harmonicity and regularity) added

greater classification value compared to traditional spatiotem-

poral gait characteristics. This highlights the importance of

extracting signal based digital characteristics to support the

development of sensitive and objective pre-screening diagnos-

tic tools, to support early identification of PD.

The variety of methodologies and data analysis techniques

used across studies makes comparisons problematic due to

inconsistent findings and variable classification accuracy [20],

[24], [25]. Relative to past studies, the results here and the

methodology used, show comparable or improved accuracy

and better balance in sensitivity and specificity to classify

people with PD. Assuming that the participants in this study

are accurately diagnosed, the accuracy reported in this study

is higher than that reported by movement disorder special-

ists [4]. These results were derived from pre-extracted signal

based characteristics, tailored to assess multifaceted move-

ment patterns required to quantify the synergistic movements

seen in PD [14]. Deep learning methods such as convolutional

neural networks (CNN), could be used for larger sample sizes
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FIGURE 2. The importance of variables in the projection of the components (comp) on overall dataset. The further the line from 0 the more important
the variable.

to find the better classification accuracy from raw accelera-

tion signals [18]. Potentially, these approaches could achieve

favorable results from bigger datasets; however, the high accu-

racy reported in this study, combined with the ability to deter-

mine the key characteristics that contributed to it, is favorable

from a clinical perspective. A lot of data driven approaches

are based on a “black box” approach which may be difficult

to fully understand and interpret. The adopted approach here

provides interpretable information to describe how PD gait

differs from older adult controls, therefore, unlike a black box

method, it can provide targets for intervention.

The key characteristics that achieved VIP scores greater

than 1.5 included a variety of traditionally adopted spatiotem-

poral information and acceleration signal-based characteris-

tics. Spatiotemporal characteristics replicating variables from

instrumented walkways have been predominantly assessed

due to the advantage of increased interpretability [12], [26].

Due to their discrete nature, a drawback of these charac-

teristics is that they solely quantify movements of the feet

in the line of progression. For complex measures such as

asymmetry and variability, which are highly prevalent in PD

[26]–[28] even at the early stages [6], we argue that these

gait characteristics are best quantified using information from

multiple planes of motion [29], [30]. Here, the top five per-

forming characteristics were from mediolateral signals, which

due to being quantified at L5, are related to measures of

stability/postural control during gait [31], [32]. We propose

the additional information achieved through a comprehensive

analysis of each component of the signal can better quan-

tify these complex characteristics and is the reason for an

improved classification accuracy. Previously when examining

people with PD with the use of instrumented walkways, step

width and its variability showed low correlation with other

gait characteristics but was highly relevant for classification

[33], [34]. To our knowledge, single accelerometers located

on the lower back, cannot accurately quantify step width and

the benefit of assessing it with the already included charac-

teristics is unknown. Future research should aim to include

68 VOLUME 1, 2020



FIGURE 3. Statistical difference between people with PD (PD) and CL, characteristics are standardized into z-score, deviation from zero along the axis
radiating from the center of the plot represents how many standard deviations the PD differ from CL (range: ±1 SD, z-score based on CL means and SDs),
and star indicates p < 0.05.

step width, or equivalent proxy characteristics, so that it can

contribute to an expected higher classification accuracy.

A. LIMITATIONS AND FUTURE WORK

The PLS-DA model was trained and tested on a mild to

moderate PD cohort, who had gait assessment within an av-

erage of 24 months from clinical diagnosis. We considered

them at an early stage of PD and assumed that the partici-

pants were accurately diagnosed; all participants met the UK

Brain Bank criteria for PD at the time of assessment. They

therefore may not be generalizable to an older/younger group

with greater/smaller disease severity and disease duration.

All participants were on dopaminergic medication; although

this reflects clinical practice, future studies should consider

replicating these methods in a drug naïve cohort. Although

it is presumed that state variables are good targets for the

identification of trait markers, it is possible that findings from

this study may not be generalizable for prodromal PD. A

trained model should be tested on a diverse prodromal co-

hort followed longitudinally with diagnosis confirmed post

mortem.

We used five domains to try to map the presented features,

future work should also consider factor analysis approaches to

determine gait models that includes independent domains to

group gait variables [13]. Furthermore, future efforts should

test if these variables are not only sensitive, but also spe-

cific to detect PD gait impairment, and should determine

the generalizability of the results to other neurodegenerative

diseases that present similar mobility impairment. Although

accelerometers are proposed as a feasible tool, they are not

currently adopted as part of PD diagnostics and substantial

efforts are required to overcome the challenges preventing

their potential adoption [35]. Wearable sensors are becoming

smaller and combining multiple sensors in a single low price

device is now possible [36]. It is plausible that at the time

of potential clinical adoption, sensors such as gyroscopes and

VOLUME 1, 2020 69



REHMAN ET AL.: ACCELEROMETRY-BASED DIGITAL GAIT CHARACTERISTICS FOR CLASSIFICATION OF PARKINSON’S DISEASE: WHAT COUNTS?

magnetometers could contribute towards a more accurate cal-

culation of existing, or provide additional, movement based

characteristics, such as turning quality. These characteristics

may contribute to an improved classification accuracy. Re-

search into their inclusion is therefore warranted. Gyroscopes

would also improve the ability to detect straight line walking

episodes in free living environments. This would allow us

to assess gait within the participant’s natural environment.

Future work might focus on the replication of the analyses

based on free living data.

B. APPLICATIONS/CLINICAL IMPLICATIONS

The objective nature of gait assessment with a wearable sen-

sor, together with the practical advantages of its implementa-

tion to a clinical environment motivates its adoption. If this

adoption becomes a reality, the comprehensive approach pre-

sented here performed better in terms of trade-off between

sensitivity and specificity than previously proposed models

and is built using clinically interpretable characteristics quan-

tified with an accelerometer. The results from the current

methodology provide evidence for a favorable approach to

identify early movement diagnostic markers of PD. This im-

proved accuracy is potentially a step in the right direction to-

wards an approach that can aid predictions of specific disease

progression and an understanding of the underlying mecha-

nisms that underpin gait impairment in PD.

IV. CONCLUSIONS

This study showed that a comprehensive approach that com-

bined signal based characteristics with traditional measures

of gait and participant demographic information, was optimal

for the classification of the PD group. The results therefore

show that, if using wearable sensors to provide potential state

markers of PD, characteristics taken from the multiple signal

based domains and planes of motion better highlight synergis-

tic movements of people with PD. Additionally out of the 210

that were included, it highlighted which gait characteristics

were the most capable to highlight these synergistic move-

ments. It is hoped these results are a step towards the adoption

of comprehensive approaches in future attempts to find the

best movement based state markers at the early stages of PD.

These approaches may be applicable for better classification

at the prodromal stage or even between phenotypes where gait

could be considered as a digital biomarker for PD.

V. MATERIALS AND METHODS

A. PARTICIPANTS

Data from 81 people with PD and 61 CLs, collected as part of

the “Incidence of Cognitive Impairment in Cohorts with Lon-

gitudinal Evaluation - GAIT” (ICICLE-GAIT) study, were

used in this work [37]. The study was approved by the “New-

castle and North Tyneside research ethics committee” (REC

No. 09/H0906/82). All the participants gave their written in-

formed consent before participating in the study.

B. DEMOGRAPHICS AND CLINICAL MEASURES

Demographic characteristics such as age, height and weight

were recorded for all the subjects. Cognition was assessed

with the Montreal Cognitive Assessment (MOCA) [38].

Freezing in gait was assessed with New Freezing of Gait

(NFOG) questionnaire [39]. Levodopa equivalent daily dose

(LEDD mg/day) was calculated according to defined criteria

[40]. To assess PD motor severity, Hoehn & Yahr stage [41]

and the Movement Disorder Society Unified Parkinson’s Dis-

ease Rating Scale [42] (MDS-UPDRS) – Part III were used.

C. EQUIPMENT

Participants wore a tri-axial accelerometer (Axivity AX3, di-

mensions: 23.0 × 32.5 × 7.6 mm, Sample frequency 100 Hz,

Range: ± 8g), on the lower back (L5), affixed by double

sided tape (BSN Medical Limited, Hull, U.K) [12]. An in-

strumented mat (Platinum model GAITRite: 7.0 × 0.6 m,

Spatial accuracy: 1.27 cm, Temporal accuracy of 1 sample

(240 Hz, ∼ 4.17 ms)) was used for accurate segmentation and

identification of walking.

D. TESTING PROTOCOLS AND DATA SEGMENTATION

PD participants were assessed one hour after dopaminer-

gic medication intake. Participants walked at their preferred

walking speed for two minutes continuously over a 25 m

oval circuit (Figure 4-(a)). Axivity was synchronized with the

real-time clock of GAITRite. Straight walks with each pass

on mat, strides, and steps were automatically segmented in

Matlab based on the heel strike and toe-off timings from the

GAITRite mat (Figure 4-(b)).

E. GAIT CHARACTERISTICS EXTRACTION

Along with spatiotemporal characteristics, various signal-

based gait characteristics were extracted (defined in the sup-

plementary material (Table S3)). Depending on the character-

istic, segmentation of data on a step-by-step, stride-by-stride

or multiple consecutive strides basis was required. Two hun-

dred and ten gait characteristics (spatiotemporal and signal-

based) were extracted and divided into five different domains

(spatiotemporal, frequency based, signal magnitude, signal

regularity, and signal complexity) as shown in Figure 4-(c).

In the spatiotemporal domain (N: 25 characteristics), 14

gait characteristics were extracted based on previous work

[12]. Cadence, and the coefficient of variability for both step

and strides characteristics was added. In the signal power

spectral density domain we extracted frequency based charac-

teristics (N: 56) including amplitude, width, slope, and range

of the dominant peak from the power spectral density [43],

harmonic ratio [44], and index of harmonicity [45]. In the sig-

nal regularity domain (N: 20), various outputs from deriving

the step and stride regularity from performing autocorrelation

and also, the gait symmetry index were quantified [46], [47].

From the signal magnitude domain (N: 84), root mean square,

jerk, jerk ratio, maximum and minimum values were extracted

for each step, stride, and straight walk from each axis of the
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FIGURE 4. Process flow for quantification of gait characteristics: (a) Gait assessment in the lab, (b) Accelerometery signal segmentation based on
GAITRite timing for each pass, stride and step, (c) Extraction of gait characteristics

VOLUME 1, 2020 71



REHMAN ET AL.: ACCELEROMETRY-BASED DIGITAL GAIT CHARACTERISTICS FOR CLASSIFICATION OF PARKINSON’S DISEASE: WHAT COUNTS?

signal [14]. In the complexity domain (N: 25), we included

geometrical characteristics extracted based on the shapes in

the phase plots [48] along with Lyapunov exponents [49].

F. CLASSIFICATION MODELING AND VARIABLE

IMPORTANCE

Partial Least Square (PLS) regression [50] combined with

discriminant analysis (PLS-DA) [23] was used to handle 216

independent characteristics (including gait, demographics and

clinical information) to classify two dependent variables (peo-

ple with PD & CL) from a relatively low number of subjects

(N = 142). The motivation to use this method and details

about it are given in the supplementary material S1. A separate

model for each selection of independent characteristics was

built for classification of PD. The number of components

for the model was determined on the cross-validation per-

formance in PLS-DA. The quality of each predictive model

based on the number of components, was determined by the

cumulated index Q², which assesses global fitness (predictive

accuracy). Its value should be greater than 0, with values close

to 1 being ideal for identifying the most relevant components

in the model. Similarly, to determine the explanatory power of

the components for the independent and dependent variables,

cumulative index of R²X and R²Y were used respectively to

determine the quality of the model. Ideally, these indexes

should be greater than 0 and close to 1 for each component to

be included in the model. The importance of each independent

variable in the model was determined based on the projection

(VIP) score, which shows the importance of the explanatory

variables for building the model components [22]. The VIP

score was used to identify the variables that were moderately

(0.8 < VIP < 1) or highly influential (VIP > 1) in the model

[22]. Independent t-tests were performed on these identified

variables to evaluate the difference between people with PD

and CL. Pearson’s correlation analysis was also performed to

check dependency among the important gait characteristics.

SUPPLEMENTARY MATERIALS

S1: Motivation to use PLS-DA and method detail. Figure S1:

PLS-DA models quality based on the number of components.

Table S1: Variable importance in the projection of the compo-

nents in PLS-DA. Table S2: Difference between people with

PD and CL based on independent sample t-test. Table S3:

Definition of gait characteristics used in the study.
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