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Abstract. The long time behavior of solutions to stochastic porous media equations with
nonlinear multiplicative noise on bounded domains with Dirichlet boundary data is studied. Based
on weighted L1-estimates, the existence and uniqueness of invariant measures with optimal bounds
on the rate of mixing are proved. Along the way, the existence and uniqueness of entropy solutions
are shown.
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1. Introduction. In this work we prove the existence and uniqueness of invari-
ant measures, with optimal estimates on the rate of mixing, for stochastic porous
media equations with nonlinear multiplicative noise\left\{     

\partial tu(t, x) = \Delta 
\bigl( 
| u| m - 1u

\bigr) 
(t, x) +

\sum \infty 
k=1 \sigma 

k(x, u(t, x)) \.\beta k(t),

u(0) = \xi ,

u| \partial Q = 0

(1.1)

on bounded domains Q \subseteq \BbbR d, where (\beta k)k\geq 1 is a sequence of independent Brownian
motions, m \in (1,\infty ), \xi is the initial condition (which lies in a suitably weighted
L1
x space), and (\sigma k)k\geq 1 is a sequence of H\"older continuous coefficients (for the exact

assumptions, see sections 2 and 3.2). Our main result is the following contraction
estimate (see Theorem 3.8 below): There exists a (uniform in the initial condition)
constant C > 0 such that for each pair of entropy solutions u(\cdot ; \xi ), u(\cdot ; \~\xi ) to (1.1) with
initial conditions \xi , \~\xi , respectively, we have

(1.2) \BbbE \| u(t; \xi ) - u(t; \~\xi )\| L1
w;x

\leq Ct - 
1

m - 1 , t > 0,

where L1
w;x is the weighted L1

x space with weight w given by the solution to \Delta w =  - 1
with zero Dirichlet boundary conditions on Q. This contraction estimate implies the
existence and uniqueness of an invariant measure \mu to (1.1) and the following optimal
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ERGODICITY FOR STOCHASTIC POROUS MEDIA EQUATIONS 4525

bound (see Remark 3.13) on the rate of mixing:

sup
\xi \in L1

w;x

sup
\| F\| Lip(L1

w;x)\leq 1

\bigm| \bigm| \bigm| \bigm| PtF (\xi ) - 
\int 
L1

w;x

F (\~\xi )\mu (d\~\xi )

\bigm| \bigm| \bigm| \bigm| \leq Ct - 
1

m - 1 , t > 0,

where Lip
\bigl( 
L1
w;x

\bigr) 
denotes the space of Lipschitz continuous functions from L1

w;x to \BbbR ,
and Pt denotes the Markov semigroup on Bb(L

1
w;x) associated to (1.1) (see Theorem

3.12 below). On the way to these results we further prove the existence, uniqueness,
and stability of entropy solutions to (1.1), and the time continuity of entropy solutions
with values in L1

\omega L
1
w;x (see Theorems 3.1, 3.2, and 3.3 below).

The existence, uniqueness, and mixing properties of solutions to stochastic porous
media equations have attracted considerable attention in the literature (see section
1.1 below). However, all available results are essentially restricted to additive noise
in the following sense: They either treat only purely additive noise or assume that
the noise contains a sufficiently nondegenerate additive part. Therefore, (1.1) is out
beyond the reach of existing results.

Stochastic porous media equations of the type (1.1) informally appear as contin-
uum limits of interacting branching particle processes. More precisely, M\'el\'eard and
Roelly have shown in [MR93] that, under appropriate rescaling, the mean field limit
of branching particle processes that interact through a potential V solves a nonlocal,
nonlinear stochastic diffusion equation of the type

(1.3) \partial tu(t, x) =
1

2
\Delta (| u| (V \ast u)) (t, x) +

\sqrt{} 
b(x, u(t, x))u(t, x) \.W (t),

where \.W (t) is space-time white noise. Informally, localizing the particle interactions,
by taking V to a Dirac mass, leads to a stochastic partial differential equation (SPDE)
of the type (1.1), albeit with space-time white noise. This last step has been rigorously
justified in the deterministic case by Lions and Mas-Gallic [LMG01] and Carrillo,
Craig, and Patacchini [CCP19]. We emphasize that (1.3) has purely multiplicative
noise, without nondegenerate additive part, so that established methods on ergodicity
and mixing do not apply.

In a broader scope, the aim of the present article is to understand the applicability
of the dissipativity approach (see [DPZ14, section 11.6] and the references therein) to
the ergodicity of SPDEs with multiplicative noise. While the focus is on stochastic
porous media equations, the ideas are equally relevant for the case of semilinear SPDEs
(see Remark 1.1 below). Let us briefly and informally recall the dissipativity approach
in the case of additive noise; that is, let u, \~u be solutions to

\partial tu(t, x) = \Delta 
\bigl( 
| u| m - 1u

\bigr) 
(t, x) +G \.W (t),

with zero Dirichlet boundary conditions on Q and diffusion coefficients G. Then,
informally, using Lemma B.1 below we have

\partial t\| u - \~u\| 2
H - 1

x
= 2

\bigl( 
\Delta 
\bigl( 
| u| m - 1u

\bigr) 
 - \Delta 

\bigl( 
| \~u| m - 1\~u

\bigr) 
, u - \~u

\bigr) 
H - 1

x

=  - 2(| u| m - 1u - | \~u| m - 1\~u, u - \~u)L2
x

(1.4)

\leq  - 2Cm\| u - \~u\| m+1

Lm+1
x

\leq  - 2Cm\| u - \~u\| m+1

H - 1
x
,

where H - 1
x := (H1

0;x)
\ast and Cm > 0. This implies contraction estimates of the type

\| u(t) - \~u(t)\| 2
H - 1

x
\leq Cmt

 - 1
m - 1 , t > 0,
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4526 K. DAREIOTIS, B. GESS, AND P. TSATSOULIS

and polynomial rates of mixing

sup
\xi \in H - 1

x

sup
\| F\| 

Lip(H
 - 1
x )

\leq 1

\bigm| \bigm| \bigm| \bigm| PtF (\xi ) - 
\int 
H - 1

x

F (\~\xi )\mu (d\~\xi )

\bigm| \bigm| \bigm| \bigm| \leq Ct - 
1

m - 1 , t > 0.

This argument is restricted to additive noise. Indeed, if we consider (1.1) then, fol-
lowing the previous computations, we have

\partial t\BbbE \| u - \~u\| 2
H - 1

x
\leq  - 2Cm\BbbE \| u - \~u\| m+1

H - 1
x

+

\infty \sum 
k=1

\BbbE \| \sigma k(u) - \sigma k(\~u)\| 2
H - 1

x
.

Even when u \mapsto \rightarrow \sigma k(\cdot , u) is Lipschitz continuous in H - 1
x (which is rarely the case; see,

for example, the discussion in [DGG19]), it is unclear how to prove stability without
a smallness assumption on the Lipschitz constant of the coefficients \sigma k.

The main insight of the present work is that the weighted topology L1
w;x intro-

duced here is better adapted to the dissipativity approach for SPDEs with multiplica-
tive noise. In fact, it is shown that the stochastically perturbed equation enjoys the
same stability properties as those of the deterministic PDE when considered in this
weighted topology.

Remark 1.1. The same questions can be asked in the case of semilinear SPDEs,
such as

(1.5) \partial tu(t, x) = (\Delta u(t, x) + f(u(t, x))) +

\infty \sum 
k=1

\sigma k(x, u(t, x)) \.\beta k(t),

with zero Dirichlet boundary conditions. For simplicity let us assume that f : \BbbR \rightarrow \BbbR 
is nondecreasing. Again, an L2-based approach suffers from the It\^o-correction terms,
since, informally,

\partial t\BbbE \| u - \~u\| 2L2
x

= 2\BbbE (\Delta (u - \~u) + f(u) - f(\~u), u - \~u)L2
x
+

\infty \sum 
k=1

\BbbE \| \sigma k(u) - \sigma k(\~u)\| 2L2
x

=  - 2\BbbE \| \nabla (u - \~u)\| 2L2
x
+ 2\BbbE (f(u) - f(\~u), u - \~u)L2

x
+

\infty \sum 
k=1

\| \sigma k(u) - \sigma k(\~u)\| 2L2
x

\leq  - 2CP\BbbE \| u - \~u\| 2L2
x
+

\infty \sum 
k=1

\| \sigma k(u) - \sigma k(\~u)\| 2L2
x
,

where CP is the Poincar\'e constant. This implies stability only if the Lipschitz constant
of u \mapsto \rightarrow \sigma k(\cdot , u) is small enough. Hence, even if the deterministic PDE is stable, this
is not necessarily inherited by the stochastically perturbed equation.

However, the weighted norm \| \cdot \| L1
w;x

is better adapted to studying the stability
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of (1.5), in the sense that, informally,

\partial t\BbbE \| u - \~u\| L1
w;x

= \BbbE 
\int 
Q

sgn(u - \~u)\Delta (u - \~u)w dx+ \BbbE 
\int 
Q

sgn(u - \~u)(f(u) - f(\~u))w dx

+
1

2
\BbbE 
\int 
Q

sgn\prime (u - \~u)

\infty \sum 
k=1

| \sigma k(u) - \sigma k(\~u)| 2w dx

\leq  - \BbbE 
\int 
Q

\nabla | u - \~u| \nabla w dx - \BbbE 
\int 
Q

sgn\prime (u - \~u)| \nabla (u - \~u)| 2w dx

+ \BbbE 
\int 
Q

sgn(u - \~u)(f(u) - f(\~u))w dx

+
1

2
\BbbE 
\int 
Q

sgn\prime (u - \~u)

\infty \sum 
k=1

| \sigma k(u) - \sigma k(\~u)| 2w dx.(1.6)

The second and third terms on the right-hand side of the last inequality are nonposi-
tive, the fourth one vanishes under certain regularity assumptions on \sigma (see Assump-
tion 2.2), while for the first, we have that

 - \BbbE 
\int 
Q

\nabla | u - \~u| \nabla w dx = \BbbE 
\int 
Q

| u - \~u| \Delta w dx =  - \BbbE 
\int 
Q

| u - \~u| dx \leq  - C\BbbE 
\int 
Q

| u - \~u| w dx.

Consequently,

\partial t\BbbE \| u - \~u\| L1
w;x

\leq  - C\BbbE \| u - \~u\| L1
w;x
,

which immediately implies exponential mixing, with the same rate as in the deter-
ministic case.

While the above remark outlines the principal idea in a related setting, a rigorous
justification of this informal argument is much more involved: Since the intended
estimates rely on the weighted L1

x topology, the appropriate concept of solutions is
that of entropy solutions. Indeed, the informal computations (1.6) rely on an It\^o
formula applied to the weighted L1

w;x-norm. Due to the degeneracy of (1.1), the
corresponding solutions are expected to have limited regularity. The justification of
It\^o's formula in the context of low regularity solutions and irregular functions, such
as the L1

w;x-norm, is the key idea of the concept of entropy solutions. This aspect
is further complicated by working on a bounded domain. In fact, the uniqueness
of entropy solutions for (1.1) on bounded domains could not previously be shown
due to additional boundary terms. Also, this difficulty is overcome in the present
work by the use of the weighted L1

x spaces instead. Another obstacle appears in the
construction of the associated Markov semigroup to (1.1), due to the lack of \BbbP -almost
surely uniform in time estimates (cf., e.g., (3.1) below). In order to overcome this
difficulty, we prove instead the time continuity of entropy solutions with values in
L1
\omega L

1
w;x, which is sufficient to deduce the Markov property.
Finally, let us point out that the reason we work with Dirichlet boundary con-

ditions on bounded domains is twofold: First, the principal approach outlined above
relies on the existence of an appropriate weight w which is a positive solution to the
Dirichlet problem \Delta w =  - 1. In the case of periodic boundary data, the existence
of such a weight or an appropriate replacement is not clear. Second, we extend the
framework of entropy solutions in [DGG19] where the periodic case was considered.
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4528 K. DAREIOTIS, B. GESS, AND P. TSATSOULIS

This extension is interesting in its own regard, as it is not immediate due to the pres-
ence of additional boundary terms, which in the current framework are treated by
working in weighted L1-spaces.

1.1. Comments on the literature. The available results can be categorized
into two classes: The first class of results relies on the dissipativity approach exploiting
the contractive properties of the deterministic porous media equation, while the second
class relies on the mixing effects of the random perturbation. As such, these two classes
lead to essentially different assumptions and results.

The first results on the existence of invariant measures for stochastic porous media
equations were obtained by Da Prato and R\"ockner [DPR04a, DPR04b] and Bogachev,
Da Prato and R\"ockner [BDPR04]. The dissipativity approach to proving the existence,
uniqueness and rates of mixing was first applied to stochastic porous media equations
by Da Prato et al. in [DPRRW06]; see also the more recent monograph by Barbu,
Da Prato, and R\"ockner [BDPR16]. As explained above, this approach is restricted to
additive noise. Since the obtained estimates are based on the contractive properties
of the (deterministic) porous media operator, no nondegeneracy assumptions on the
noise need to be made, and the obtained rates of mixing are of polynomial type. In
[BGLR11] the dissipativity approach was further used by Beyn et al. in order to prove
that the random attractor consists of a single random point. A generalization of the
dissipativity approach, based on coupling arguments, has been introduced by Gess
and T\"olle in [GT14, GT16], allowing us to prove the ergodicity of generalized porous
media equations in cases where no strict contraction estimates, such as (1), apply.

Concerning the second class of results, in the case of purely additive noise,

\partial tu(t, x) = \Delta 
\bigl( 
| u| m - 1u

\bigr) 
(t, x) +G \.W (t),

couplings by change of measure were constructed by Wang in [Wan07, Wan13]; see also
Liu [Liu09]. This construction relies on a nondegeneracy assumption on the diffusion
coefficients G. In particular, it has to be assumed that G is surjective onto the energy
space Lm+1

x . Since this assumption competes with the smoothness assumption on
the noise required by the well-posedness theory (cf., e.g., Liu and R\"ockner [LR15]),
this restricts the applicability of these results to one spatial dimension. Because this
approach exploits the nondegeneracy of the noise by means of establishing Harnack
inequalities on the resulting Markov semigroup, the associated rate of mixing is of
exponential type; that is, there is a unique invariant measure \mu and constants \lambda > 0,
C \geq 0 such that

sup
\xi 

\| Pt\delta \xi  - \mu \| TV \leq Ce - \lambda t, t > 0.

Lower bounds on the exponential rate \lambda have been obtained by Wang in [Wan15a].
Flandoli, Gess, and Scheutzow in [FGS17] and Gess in [Ges13] used these methods
in order to prove synchronization by noise, in the sense that the random attractor
was shown to consist of a single random point. This line of argument has been
further improved by Wang in [Wan15b], where coupling by change of measure has
been replaced by reflection coupling, which allowed also the inclusion of perturbations
by multiplicative noise, while retaining the nondegeneracy assumption on the additive
noise part, that is,

\partial tu(t, x) = \Delta 
\bigl( 
| u| m - 1u

\bigr) 
(t, x) +B(u) \.W 1(t) +G \.W 2(t),
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with G being nondegenerate as above. This work seems to be the only previous result
on ergodicity for stochastic porous media equations with multiplicative noise in the
literature. However, in this work B is still assumed to be Lipschitz continuous in
H - 1

x , which in the case of B(u) = \sigma (x, u(x)) (as in (1.1)) essentially implies that \sigma is
linear in u.

In the case of linear multiplicative noise, the stochastic porous media equation
can be transformed into a deterministic porous media equation with random coeffi-
cients. Under further, stringent assumptions on the noise, this can be used to derive
statements on the long-time behavior. See, for example, [Lot07, Ges14, BR11, Ges15]
and the references therein.

We conclude the discussion of available results on the ergodicity of stochastic
porous media equations by emphasizing that there are no previous results on the
ergodicity of (1.1) with purely nonlinear multiplicative noise, as it appears in (1.3).

The well-posedness of entropy solutions to (1.1) on the torus has been recently
shown by Dareiotis, Gerencs\'er, and Gess in [DGG19]. In the context of the well-
posedness of solutions, it already has been realized in [DGG19] that L1

x appears to be
better suited than H - 1

x , which was used in many previous works (see, for example,
[LR15] and the references therein), since the nonlinear diffusion coefficients behave
nicely in L1

x, while they are not expected to be even Lipschitz continuous in H - 1
x . The

proof of well-posedness of entropy solutions to (1.1) on bounded domains, given in
the present work, builds upon the analysis from [DGG19]. In contrast to the periodic
case considered in [DGG19], the presence of the boundary introduces the need for a
weighted L1-norm in order to control boundary terms.

1.2. Organization of the article. In section 2 we set up the right formulation
for studying the well-posedness of (1.1). In section 3 we present our main results.

In section 3.1 we discuss the well-posedness of stochastic porous media equations
on bounded domains. We begin with the existence, uniqueness, and L1-contraction of
entropy solutions (see Theorem 3.1), stability with respect to the data (see Theorem
3.2), and continuity in L1

\omega L
1
w;x (see Theorem 3.3). These results hold for more general

porous media operators \Delta A (see Assumption 2.1(a)), and the initial condition \xi is
assumed to be in Lm+1

\omega Lm+1
x . As a corollary of Theorems 3.1 and 3.3 we present an

extension result to initial conditions in L1
\omega L

1
w;x (see Proposition 3.4). In section 3.2

we present a bound for the solutions in Lm+1
\omega Lm+1

x which is uniform in the initial
condition and in time (see Proposition 3.6). We then discuss the main contraction
estimate (see Theorem 3.8), the Markov property (see Proposition 3.10), and mixing
to a unique equilibrium with optimal rate (see Theorem 3.12).

In section 4 we prove some important L1-estimates, in section 5 we prove the
results listed in section 3.1, and in section 6 we prove the results listed in section 3.2.
Many technical results and proofs can be found in Appendix A.

1.3. Notation. For a set S \subset \BbbR d and m \in \BbbN , we denote by Cm(S) the space of
m-times differentiable functions on S and by Cm

c (S) the subset of m-times differen-
tiable compactly supported functions on S. Given a variable s \in S, p \in [1,\infty ], and
m \in \BbbR , we denote by Lp

s and Wm,p
s the usual Lp and Wm,p spaces of functions in this

variable. If p = 2 we write Hm
s instead of Wm,2

s . If, in addition, m \in \BbbN , we write Hm
0;s

for the closure of Cm
c (S) in Hm

s . For a probability space (\Omega ,\scrF ,\BbbP ) and p \in [1,\infty ), we
denote by Lp

\omega the space of p-integrable random variables in \omega \in \Omega . If the probability
space carries a filter (\scrF t)t\geq 0, we denote by Lp

\omega ,t the space of predictable p-integrable
random processes in (\omega , t) \in \Omega \times [0, T ] for every T > 0. For spaces of functions of
several arguments, we sometimes use mixed notation. For example, Lp

\omega L
q
x stands for
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the space of p-integrable random variables taking values in Lq
x, while L

p
\omega ,tL

q
x stands

for the space of predictable p-integrable random processes taking values in Lq
x.

We denote by w the solution to the boundary value problem\Biggl\{ 
\Delta w =  - 1,

w| \partial Q = 0.
(1.7)

It is well known that w \in H1
0;x and w > 0 in Q. We define L1

w;x to be the space of
measurable functions f : Q\rightarrow \BbbR such that

(1.8) \| f\| L1
w;x

:=

\int 
Q

| f(x)| w(x) dx <\infty .

We define the set

(1.9) \scrS := \{ d,K,m, | Q| , T\} ,

where d denotes the dimension of the x-space, K and m are positive constants given
by Assumptions 2.1 and 2.2 below, | Q| denotes the volume of Q, and T > 0.

Throughout the article, C denotes a strictly positive constant which depends on
the structural set \scrS , unless otherwise stated, and might change from line to line. In
the proofs we will frequently use the notation a \lesssim b by which we mean a \leq Cb. The
notation a \lesssim q b (respectively, Cq) means that the constant C depends on \scrS and on
q. We also write a \vee b (respectively, a \wedge b) to denote the maximum (respectively,
minimum) between a and b.

In the proofs we sometimes use the abbreviation
\int 
x
,
\int 
t
instead of

\int 
Q

dx,
\int T

0
dt.

An analogous notation is used for multiple integrals. For example,
\int 
t,x

stands for\int T

0

\int 
Q

dxdt.

2. Formulation. We consider a generalization of (1.1) in the form

(2.1)

\left\{     
\partial tu(t, x) = \Delta A(u(t, x)) + \sigma k(x, u(t, x)) \.\beta k(t),

u(0) = \xi ,

u| \partial Q = 0

under Assumptions 2.1 and 2.2 below. For simplicity, we also assume that the bounded
domain Q \subset \BbbR d is smooth, although this assumption can be relaxed. From now
on we fix a filtered probability space (\Omega ,\scrF , \{ \scrF t\} t\geq 0,\BbbP ) with a sequence (\beta k)k\geq 1 of
independent Brownian motions.

For a locally integrable function f : \BbbR \rightarrow \BbbR we define

[f ](r) :=

\int r

0

f(\zeta ) d\zeta , [f, c](r) :=

\int r

c

f(\zeta ) d\zeta .

We also let a :=
\surd 
A\prime .

Assumption 2.1. The following hold for some K \geq 1 and m > 1.
(a) The function A : \BbbR \mapsto \rightarrow \BbbR is differentiable, strictly increasing, and odd. The

function a is differentiable away from the origin, and it satisfies the bounds

(2.2) | a(0)| \leq K, | a\prime (r)| \leq K| r| 
m - 3

2 if r > 0
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as well as

(2.3) Ka(r) \geq I| r| \geq 1, K| [a](r) - [a](\~r)| \geq 
\biggl\{ 
| r  - \~r| if | r| \vee | \~r| \geq 1,

| r  - \~r| m+1
2 if | r| \vee | \~r| < 1.

(b) The initial condition \xi is an \scrF 0-measurable Lm+1
x -valued random variable such

that \BbbE \| \xi \| m+1

Lm+1
x

<\infty .

Assumption 2.2. The function \sigma : Q \times \BbbR \mapsto \rightarrow \ell 2 satisfies the following bounds.
There exist \kappa \in (0, 12 ], \=\kappa \in ( 1

m\wedge 2 , 1], and K \geq 1 such that for every r \in \BbbR , \~r \in 
[r  - 1, r + 1], and x, y \in Q,

| \sigma (x, r)| \ell 2 \leq K(1 + | r| ), | \sigma (x, r) - \sigma (y, \~r)| \ell 2 \leq K| r  - \~r| 12+\kappa +K(1 + | r| )| x - y| \=\kappa .

For \sigma , \~\sigma : Q\times \BbbR \mapsto \rightarrow \ell 2 satisfying Assumption 2.2 we set

d(\sigma , \~\sigma ) := sup
x\in Q, r\in \BbbR 

| \sigma (x, r) - \~\sigma (x, r)| 2\ell 2
(1 + | r| )m+1

.

Definition 2.3. A pair of functions (\eta , \phi ) is called admissible if
(i) \eta \in C2(\BbbR ), \eta \prime \prime \geq 0, and supp \eta \prime \prime is compact; and
(ii) \phi \geq 0, \phi = \varphi \varrho where \varphi \in C\infty 

c ([0, T )) and \varrho \in C\infty 
c (Q) .

Similarly to [DGG19] we give the following definition of entropy solutions for
(2.1).

Definition 2.4. A predictable stochastic process u : \Omega \times [0,\infty ) \rightarrow Lm+1
x is an

entropy solution to (2.1) if
i. u \in Lm+1

\omega ,t Lm+1
x and A(u) \in L2

\omega ,tH
1
0;x;

ii. for every f \in C(\BbbR ) bounded we have [af ](u)\in L2
\omega ,tH

1
x and \partial xi

[af ](u)=f(u)\partial xi
[a](u);

and
iii. for every admissible pair of functions (\eta , \phi ) as in Definition 2.3 we have that

 - 
\int T

0

\int 
Q

\eta (u)\partial t\phi dxdt \leq 
\int 
Q

\eta (\xi )\phi (0) dx+

\int T

0

\int 
Q

\bigl[ 
\eta \prime a2

\bigr] 
(u)\Delta \phi dxdt

+

\int T

0

\int 
Q

\biggl( 
1

2
\phi \eta \prime \prime (u)| \sigma (u)| 2\ell 2  - \phi \eta \prime \prime (u)| \nabla [a](u)| 2

\biggr) 
dx dt

+

\int T

0

\int 
Q

\phi \eta \prime (u)\sigma k(u) dxd\beta k(t).

We refer to (2.1) as \scrE (A, \sigma , \xi ). In what follows we write u(\cdot ; \xi ) to denote the
solution of \scrE (A, \sigma , \xi ). If the value of the initial condition is clear from the context,
we simply write u.

3. Main results.

3.1. Well-posedness. The next two theorems build upon the analysis from
[DGG19] and concern the existence, uniqueness and stability of entropy solutions to
(2.1). All of the results in this subsection hold for fixed, but arbitrarily large, T > 0.

Theorem 3.1. Let Assumptions 2.1 and 2.2 hold. Then, there exists a unique en-
tropy solution u of \scrE (A, \sigma , \xi ). Moreover, if u(t; \~\xi ) is an entropy solution of \scrE (A, \sigma , \~\xi ),
the following contraction estimate holds:

(3.1) sup ess
t\in [0,T ]

\BbbE \| u(t; \xi ) - u(t; \~\xi )\| L1
w;x

\leq \BbbE \| \xi  - \~\xi \| L1
w;x
.
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Theorem 3.2. Let (An)n\geq 1 and (\xi n)n\geq 1 satisfy Assumption 2.1, and let (\sigma n)n\geq 1

satisfy Assumption 2.2, uniformly in n. Assume furthermore that for n\rightarrow \infty , An \rightarrow 
A uniformly on compact sets, \xi n \rightarrow \xi in Lm+1

\omega Lm+1
x , and d(\sigma n, \sigma ) \rightarrow 0 for some A

and \xi satisfying Assumption 2.1 and \sigma satisfying Assumption 2.2. Let un, u be the
unique entropy solutions of \scrE (An, \sigma n, \xi n), \scrE (A, \sigma , \xi ). Then, as n \rightarrow \infty , un \rightarrow u in
L1
\omega ,tL

1
w;x.

In the next theorem we prove the continuity of entropy solutions in L1
\omega L

1
w;x.

Theorem 3.3. Let Assumptions 2.1 and 2.2 hold. If u is an entropy solution of
\scrE (A, \sigma , \xi ), then u \in C([0, T ];L1

\omega L
1
w;x).

As a corollary of the contraction estimate (3.1) and the continuity in L1
\omega L

1
w;x we

have the following extension result.

Proposition 3.4. Let Assumptions 2.1 and 2.2 hold. The mapping

Lm+1
\omega Lm+1

x \ni \xi \mapsto \rightarrow u(\cdot ; \xi ) \in C([0, T ];L1
\omega L

1
w;x)

extends uniquely to a continuous map from L1
\omega L

1
w;x to C([0, T ];L1

\omega L
1
w;x). Further-

more, the following contraction estimate holds for every \xi , \~\xi \in L1
\omega L

1
w;x:

sup
t\in [0,T ]

\BbbE \| u(t; \xi ) - u(t; \~\xi )\| L1
w;x

\leq \BbbE \| \xi  - \~\xi \| L1
w;x
.(3.2)

3.2. Ergodicity. In this section we assume that A(r) = | r| m - 1r for m \in (1,\infty ).
From now on, it will be more convenient to work with initial conditions \xi \in L1

w;x. In
the following, we define u(\cdot ; \xi ) for \xi \in L1

w;x by continuity using Proposition 3.4. By
Remark 3.5 and Proposition 3.6 below, one can prove that for every \xi \in L1

\omega L
1
w;x the

extension u(\cdot ; \xi ) is an entropy solution of (2.1) on (0, T ] for every T > 0, in the sense
that it satisfies Definition 2.4 with [0, T ] replaced by [s, T ], for every s \in (0, T ].

Remark 3.5. Although Proposition 3.4 allows us to extend u(\cdot ; \xi ) for \xi \in L1
\omega L

1
w;x

by continuity, it is unclear whether the extension solves (2.1) in general. However, it
is easy to see that if there exists a sequence \xi n \rightarrow \xi such that for every s > 0

(3.3) sup
n\geq 1

sup
t\in [s,T ]

\BbbE \| u(t; \xi n)\| Lm+1
x

<\infty ,

then u(\cdot ; \xi ) is an entropy solution of (2.1) on (0, T ]. Indeed, since u(\cdot ; \xi n) \rightarrow u(\cdot ; \xi )
in C([0, T ];L1

\omega L
1
w;x), we know that for every s \in (0, T ], passing to a subsequence,

u(s, x; \xi n) \rightarrow u(s, x; \xi ) for almost every (\omega , x). Hence, by Fatou's lemma we have

\BbbE \| u(s; \xi )\| Lm+1
x

\leq lim inf
n\rightarrow \infty 

\BbbE \| u(s; \xi n)\| Lm+1
x

\leq sup
n\geq 1

\BbbE \| u(s; \xi n)\| Lm+1
x

,

and the latter quantity is uniformly bounded in n due to (3.3). Hence, by Theorem
3.1 there exists a unique solution of (2.1) on [s, T ] with initial condition u(s; \xi ), which
we denote by us(\cdot ;u(s; \xi )). By Corollary 6.1 we know that u(\cdot ; \xi n) coincides with
us(\cdot ;u(s; \xi n)) (the unique entropy solution of (2.1) with initial condition u(s; \xi n)) on
[s, T ]. Since u(s; \xi n) \rightarrow u(s; \xi ) in L1

\omega L
1
w;x, using (3.2) we see that us(\cdot ;u(s; \xi n)) \rightarrow 

us(\cdot ;u(s; \xi )) in C([s, T ];L1
\omega L

1
w;x). But u(t; \xi n) = us(t;u(s; \xi n)) for t \in [s, T ], which,

in turn, implies that u(t; \xi ) = us(t;u(s; \xi )). Since s \in (0, T ] is arbitrary, this proves
that u(\cdot ; \xi ) is an entropy solution on (0, T ].

The next proposition states that entropy solutions satisfy the so-called ``coming
down from infinity"" property, which implies (3.3).
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Proposition 3.6. Let Assumption 2.2 hold. Then,

(3.4) sup
\xi \in Lm+1

\omega ,x

sup
t\in [0,\infty )

(t \wedge 1)
m+1
m - 1\BbbE \| u(t; \xi )\| m+1

Lm+1
x

<\infty .

Remark 3.7. By a simple application of Fatou's lemma we can replace the supre-
mum over \xi \in Lm+1

\omega ,x by a supremum over \xi \in L1
\omega L

1
w;x in (3.4).

The choice A(r) = | r| m - 1r allows us to obtain a polynomial (with respect to
time) decay for differences of entropy solutions uniformly in the initial conditions, as
shown in the next theorem.

Theorem 3.8. Let Assumption 2.2 hold, and let m\ast = m
m - 1 . There exists C > 0

depending only on m such that for all t \geq 0 we have

sup
\xi ,\~\xi \in L1

\omega L1
w;x

\BbbE \| u(t; \xi ) - u(t, \~\xi )\| L1
w;x

\leq C\| w\| m\ast 
Lm\ast 

x
t - 

1
m - 1 .

Below we let Bb(L
1
w;x) be the space of bounded Borel measurable functions from

L1
w;x to \BbbR . We need the following definition.

Definition 3.9. We define Pt : Bb(L
1
w;x) \rightarrow Bb(L

1
w;x) by

PtF (\xi ) := \BbbE F (u(t; \xi )),

where F \in Bb(L
1
w;x) and \xi \in L1

w;x .

Proposition 3.10. Let Assumption 2.2 hold. The family (Pt)t\geq 0 is a Feller
Markov semigroup on Bb(L

1
w;x).

Remark 3.11. One can actually define Pt : Bb(L
1
w;x) \rightarrow Bb(L

1
w;x) for any A satis-

fying Assumption 2.1(a) using Proposition 3.4. It is clear from the proof of Proposition
3.10 that Pt is a Feller Markov semigroup on Bb(L

1
w;x) even in this case.

Theorem 3.8 provides a quantitative estimate for the semigroup Pt acting on Lip-
schitz continuous functions on L1

w;x and allows us to prove the existence and unique-
ness of an invariant measure (which is actually supported on Lm+1

x ). It also provides
optimal mixing rates (see Remark 3.13) uniformly in the initial condition. We sum-
marize in the following theorem.

Theorem 3.12. Let Assumption 2.2 hold, and let m\ast = m
m - 1 . There exists a

unique invariant measure \mu \in \scrM 1(L
1
w;x) for the semigroup Pt which, moreover, is

supported on Lm+1
x . Furthermore, there exists C > 0, depending only on m, such that

for all t \geq 0,

sup
\xi \in L1

w;x

sup
\| F\| Lip(L1

w;x)\leq 1

\bigm| \bigm| \bigm| \bigm| \bigm| PtF (\xi ) - 
\int 
L1

w;x

F (\~\xi )\mu (d\~\xi )

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C\| w\| m\ast 
Lm\ast 

x
t - 

1
m - 1 ,

where Lip
\bigl( 
L1
w;x

\bigr) 
is the space of Lipschitz continuous functions from L1

w;x to \BbbR .

Remark 3.13. The decay rate in Theorems 3.8 and 3.12 is optimal, in the sense
that there exists a solution to the deterministic system that cannot decay faster than

t - 
1

m - 1 as t \rightarrow \infty . Indeed, one can consider the homogeneous porous media equation
\partial tu = \Delta 

\bigl( 
| u| m - 1u

\bigr) 
with Dirichlet boundary conditions and search for solutions of the
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form u(t, x) = (1 + t) - 
1

m - 1 f(x). It is easy to check that u is a solution if f satisfies
the following equation:

(3.5)

\Biggl\{ 
\Delta 
\bigl( 
| f | m - 1f

\bigr) 
+ 1

m - 1f = 0,

f | \partial Q = 0.

Existence and regularity of nonzero solutions to (3.5) for sufficiently smooth bounded
domains was studied in [AP81]. In particular, [AP81, Proposition 1] implies the
existence of a nonzero solution f which is bounded on \partial \Omega \cup \Omega .

We would like to point out that in the case of additive noise, under sufficient
nondegeneracy assumptions, it is known that the decay is exponential in the total
variational norm (see, for example, [Wan15a, section 3]).

4. The (\star )-property and \bfitL \bfone -estimates. In this section we introduce the ( \star )-
property, a purely technical concept, and derive the basic L1-estimates which we use
in later sections to prove our main results. Before we proceed we need some notation.

Below we fix a nonnegative compactly supported smooth function \rho : \BbbR \rightarrow \BbbR sup-
ported in (0, 1) such that

\int 
\rho (t) dt = 1, and for \theta \in (0, 1) we set \rho \theta (t) := \theta  - 1\rho (\theta  - 1t).

For x \in \BbbR d we also let \varrho (x) :=
\prod d

i=1 \rho (xi), and for \varepsilon \in (0, 1) we set \varrho \varepsilon (x) :=
\varepsilon  - d\varrho (\varepsilon  - 1x).

For g \in C\infty (\BbbR ) with supp g\prime compact, \~\varrho \in C\infty 
c (Q \times Q), \varphi \in C\infty 

c ((0, T )), \~\sigma as in
Assumption 2.2, predictable random variable \~u \in Lm+1

\omega ,t Lm+1
x , \theta > 0, and a \in \BbbR , we

set

\phi \theta (t, x, s, y) := \~\varrho (x, y)\rho \theta (t - s)\varphi 

\biggl( 
t+ s

2

\biggr) 
,

F\theta (t, x, a) :=

\int T

0

\int 
Q

\~\sigma k(y, \~u(s, y))g(\~u(s, y) - a)\phi \theta (t, x, s, y) dy d\beta 
k(s),

with a slight abuse of notation since we hide the dependence of \phi \theta and F\theta on the
various functions.

We need the following definition.

Definition 4.1. We say that a predictable random variable u \in Lm+1
\omega ,t Lm+1

x has
the ( \star )-property with coefficient \sigma if for every g, \varrho , \varphi , \~\sigma , \~u as above and for every \theta > 0
sufficiently small, we have that F\theta (\cdot , \cdot , u) \in L1

\omega L
1
t,x and

\BbbE 
\int T

0

\int 
Q

F\theta (t, x, u(t, x)) dxdt(4.1)

\leq  - \BbbE 
\int 
[0,T ]2

\int 
Q2

\sigma k(x, u(s, x))\~\sigma k(y, \~u(s, y))g\prime (u(s, x)

 - \~u(s, y))\phi \theta (t, x, s, y) dx dy dtds+ C\theta 1 - \mu 

for \mu = 3m+5
4(m+1) and some constant C > 0 (independent of \theta ).

The main result of this section is Lemma 4.4 which is the counterpart of [DGG19,
Theorem 4.1] for Dirichlet boundary conditions. For the reader's convenience we split
the proof of Lemma 4.4 into Proposition 4.2 and Lemma 4.3.

From now on, for \alpha , \delta , \varepsilon \in (0, 1) and \lambda \geq 0, we set

(4.2) \scrG \alpha (\delta , \varepsilon , \lambda ) := \delta 2\kappa + \delta  - 1\varepsilon 2\=\kappa + \delta \varepsilon  - 1 + \delta 2\alpha \varepsilon  - 2 + \varepsilon  - 2\lambda 2 + \varepsilon  - 1\lambda .
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Proposition 4.2. Let u, \~u be entropy solutions of the Dirichlet problems \scrE (A, \sigma , \xi ),
\scrE ( \~A, \~\sigma , \~\xi ), where the data satisfy Assumptions 2.1 and 2.2, and assume that u satisfies
the ( \star )-property with coefficient \sigma (see Definition 4.1). Then, for every nonnegative
function \psi \in C\infty 

c (Q), \varphi \in C\infty 
c ((0, T )), and \alpha \in (0, 12 ) there exists C \equiv C(\scrS , \alpha , \psi , \varphi ) >

0 such that for every \lambda , \varepsilon , \delta \in (0, 1) we have that

 - \BbbE 
\int T

0

\int 
Q2

| u(t, x) - \~u(t, y)| \partial t\varphi (t)\psi (x)\varrho \varepsilon (x - y) dxdy dt

\leq \BbbE 
\int T

0

\int 
Q2

| A(u(t, x)) - \~A(\~u(t, y))| \varphi (t)\Delta \psi (x)\varrho \varepsilon (x - y) dx dy dt

+ C\varepsilon  - 2\BbbE 
\Bigl( 
\| 1| u| \geq R\lambda 

(1 + | u| )\| mLm
t,x

+ \| 1| \~u| \geq R\lambda 
(1 + | \~u| )\| mLm

t,x

\Bigr) 
+ C

\bigl( 
\scrG \alpha (\delta , \varepsilon , \lambda ) + \delta  - 1d(\sigma , \~\sigma )

\bigr) 
\BbbE 
\biggl( 
1 + \| u\| m+1

Lm+1
t,x

+ \| \~u\| m+1

Lm+1
t,x

\biggr) 
,

where R\lambda = sup\{ R \in [0,\infty ] : | a(r) - \~a(r)| \leq \lambda for every | r| \leq R\} and \scrG \alpha as in (4.2).

Proof. The proof is similar to [DGG19, Proof of Theorem 4.1]. The main dif-
ference lies in the presence of \psi since we impose Dirichlet boundary conditions, and
thus we cannot let \psi = 1 as in the case of periodic boundary conditions dealt with in
[DGG19]. We only give a sketch of the proof, highlighting the differences.

Let \eta \delta be a symmetric smooth approximation of | \cdot | given by

\eta \delta (0) = \eta \prime \delta (0) = 0, \eta \prime \prime \delta (r) = \delta  - 1\~\eta (\delta  - 1| r| )

for some nonnegative \~\eta \in C\infty (\BbbR ) which is bounded by 2 and supported in (0, 1) and
integrates to 1. Below we repeatedly use the following properties of \eta \delta :

| \eta \delta (r) - | r| | \lesssim \delta , supp \eta \prime \prime \delta \subset [ - \delta , \delta ],
\int 

| \eta \prime \prime \delta (r  - \~r)| d\~r \leq 2, | \eta \prime \prime \delta (r)| \leq 2\delta  - 1.

For y \in Q, s \in (0, T ), and \varepsilon , \theta > 0 sufficiently small, we also set

\phi \varepsilon ,\theta (t, x, s, y) := \rho \theta (t - s)\varrho \varepsilon (x - y)\varphi 

\biggl( 
t+ s

2

\biggr) 
\psi (x), \phi \varepsilon (t, x, y) := \varrho \varepsilon (x - y)\varphi (t)\psi (x).

We first apply the definition of entropy solutions with u = u(t, x), \eta (u) = \eta \delta (u - a),
for a \in \BbbR , and \phi (t, x) = \phi \varepsilon ,\theta (t, x, s, y). Noting that \phi \varepsilon ,\theta (0, x, s, y) = 0 for \theta sufficiently
small, this gives that, \BbbP -almost surely,

 - 
\int T

0

\int 
Q

\eta \delta (u - a)\partial t\phi \varepsilon ,\theta dx dt \leq 
\int T

0

\int 
Q

[\eta \prime \delta (\cdot  - a)a2, a](u)\Delta x\phi \varepsilon ,\theta 

+
1

2
\phi \varepsilon ,\theta \eta 

\prime \prime 
\delta (u - a)| \sigma (x, u)| 2\ell 2 dxdt

 - 
\int T

0

\int 
Q

\phi \varepsilon ,\theta \eta 
\prime \prime 
\delta (u - a)| \nabla x[a](u)| 2 dxdt

+

\int T

0

\int 
Q

\phi \varepsilon ,\theta \eta 
\prime 
\delta (u - a)\sigma k(x, u) dxd\beta k(t).

We now plug in \~u(s, y) in place of a (all the expressions are smooth functions of a)
and integrate over s, y. Then we repeat the same procedure with the roles of u and
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\~u reversed, add the two resulting inequalities, and take expectations to obtain the
estimate

 - \BbbE 
\int 
t,x,s,y

\eta \delta (u - \~u) (\partial t\phi \varepsilon ,\theta + \partial s\phi \varepsilon ,\theta )(4.3)

\leq \BbbE 
\int 
t,x,s,y

\bigl( 
[\eta \prime \delta (\cdot  - \~u)a2, \~u](u)\Delta x\phi \varepsilon ,\theta + [\eta \prime \delta (\cdot  - u)\~a2, u](\~u)\Delta y\phi \varepsilon ,\theta 

\bigr) 
 - \BbbE 

\int 
t,x,s,y

\eta \prime \prime \delta (u - \~u)
\bigl( 
| \nabla x[a](u)| 2 + | \nabla y[\~a](\~u)| 2

\bigr) 
\phi \varepsilon ,\theta 

+ \BbbE 
\int 
s,y

\biggl[ \int 
t,x

\eta \prime \delta (u - a)\sigma k(x, u)\phi \varepsilon ,\theta d\beta 
k(t)

\biggr] 
a=\~u

+ \BbbE 
\int 
t,x

\biggl[ \int 
s,y

\eta \prime \delta (\~u - a)\~\sigma k(y, \~u)\phi \varepsilon ,\theta d\beta 
k(s)

\biggr] 
a=u

+ \BbbE 
\int 
t,x,s,y

1

2
\eta \prime \prime \delta (u - \~u)\phi \varepsilon ,\theta 

\bigl( 
| \sigma (u)| 2\ell 2 + | \~\sigma (\~u)| 2\ell 2

\bigr) 
.

The next step is to pass to the limit \theta \rightarrow 0 to obtain the estimate

 - \BbbE 
\int 
t,x,y

\eta \delta (u - \~u)\partial t\phi \varepsilon \leq \BbbE 
\int 
t,x,y

[\eta \prime \delta (\cdot  - \~u)a2, \~u](u)\Delta x\phi \varepsilon 

+ [\eta \prime \delta (\cdot  - u)\~a2, u](\~u)\Delta y\phi \varepsilon (=: I1 + I2)(4.4)

 - \BbbE 
\int 
t,x,y

\eta \prime \prime \delta (u - \~u)\phi \varepsilon 
\bigl( 
| \nabla x[a](u)| 2 + | \nabla y[\~a](\~u)| 2

\bigr) 
(=: I3)

+
1

2
\BbbE 
\int 
t,x,y

\eta \prime \prime \delta (u - \~u)\phi \varepsilon | \sigma (x, u) - \~\sigma (y, \~u)| 2\ell 2 , (=: I4)

with u = u(t, x) and \~u = \~u(t, y). To do so, we first note that

\partial t\phi \varepsilon ,\theta (t, x, s, y) + \partial s\phi \varepsilon ,\theta (t, x, s, y) = \rho \theta (t - s)\varrho \varepsilon (x - y)(\partial t\varphi )

\biggl( 
t+ s

2

\biggr) 
\psi (x).

We then use [DGG19, Proposition 3.5] to pass to the limit \theta \rightarrow 0 for each term in
(4.3). The main difference here is the presence of \psi , but it is easy to see that [DGG19,
Proposition 3.5] still applies in our case since \psi is in \scrC \infty 

c (Q). The only subtle terms
in (4.3) are those involving the stochastic integrals, but they can also be treated as
in [DGG19, Proof of Theorem 4.1]. For the first stochastic integral, we note that \phi \varepsilon ,\theta 
vanishes for t /\in [s, s+ \theta ], and since \~u(s, y) is \scrF s-measurable, the expectation vanishes
for every \theta > 0 by a simple factorization argument. For the second stochastic integral,
we use the ( \star )-property for u(t, x) which, together with the last term in (4.3), gives
I4 in (1) if we let \theta \rightarrow 0. For the term I1 we note that

I1 = \BbbE 
\int 
t,x,y

[\eta \prime \delta (\cdot  - \~u)a2, \~u](u)\Delta x\phi \varepsilon 

=  - \BbbE 
\int 
t,x,y

[\eta \prime \delta (\cdot  - \~u)a2, \~u](u)\partial 2xiyi
\phi \varepsilon (=: I1,1)

+ \BbbE 
\int 
t,x,y

[\eta \prime \delta (\cdot  - \~u)a2, \~u](u)\varphi (t)\partial xi
(\partial xi

\psi (x)\varrho \varepsilon (x - y)) . (=: I1,2)
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We furthermore note that

I1,1 =  - \BbbE 
\int 
t,x,y

\int u

\~u

\int r

\~u

\eta \prime \prime \delta (r  - \~r)a(r)2 d\~r dr \partial 2xiyi
\phi \varepsilon 

=  - \BbbE 
\int 
\~u\leq u

\int u

\~u

\int u

\~u

1\{ \~r\leq r\} \eta 
\prime \prime 
\delta (r  - \~r)a(r)2 d\~r dr \partial 2xiyi

\phi \varepsilon 

 - \BbbE 
\int 
\~u\geq u

\int u

\~u

\int u

\~u

1\{ \~r\geq r\} \eta 
\prime \prime 
\delta (r  - \~r)a(r)2 d\~r dr \partial 2xiyi

\phi \varepsilon .

Similarly we have that I2 = I2,1 + I2,2, where

I2,1 :=  - \BbbE 
\int 
\~u\leq u

\int u

\~u

\int u

\~u

1\{ \~r\leq r\} \eta 
\prime \prime 
\delta (r  - \~r)\~a(\~r)2 dr d\~r \partial 2yixi

\phi \varepsilon 

 - \BbbE 
\int 
\~u\geq u

\int u

\~u

\int u

\~u

1\{ \~r\geq r\} \eta 
\prime \prime 
\delta (r  - \~r)\~a(\~r)2 dr d\~r \partial 2yixi

\phi \varepsilon 

and

I2,2 := \BbbE 
\int 
t,x,y

[\eta \prime \delta (\cdot  - u)\~a, u](\~u)\varphi (t)\partial yi
(\partial xi

\psi (x)\varrho \varepsilon (x - y)) .

For I3 as in [DGG19, Proof of Theorem 4.1], we have the bound

I3 \leq 2\BbbE 
\int 
\~u\leq u

\int u

\~u

\int u

\~u

1\{ \~r\leq r\} \eta 
\prime \prime 
\delta (r  - \~r)\~a(\~r)a(r) d\~r dr \partial 2xiyi

\phi \varepsilon 

+ 2\BbbE 
\int 
\~u\geq u

\int u

\~u

\int u

\~u

1\{ \~r\geq r\} \eta 
\prime \prime 
\delta (r  - \~r)\~a(\~r)a(r) d\~r dr \partial 2xiyi

\phi \varepsilon .

We now add the terms I1,1, I2,1, and I3 to obtain the estimate

I1,1 + I2,1 + I3 \leq \BbbE 
\int 
t,x,y

\int u

\~u

\int u

\~u

\eta \prime \prime \delta (r  - \~r)| a(r) - \~a(\~r)| 2 d\~r dr| \partial 2xiyi
\phi \varepsilon | .

Altogether, the previous estimates imply the bound

 - \BbbE 
\int 
t,x,y

\eta \delta (u - \~u)\partial t\phi \varepsilon (4.5)

\leq \BbbE 
\int 
t,x,y

[\eta \prime \delta (\cdot  - \~u)a2, \~u](u)\varphi (t)\partial xi (\partial xi\psi (x)\varrho \varepsilon (x - y)) (=: I \prime 1)

+ \BbbE 
\int 
t,x,y

[\eta \prime \delta (\cdot  - u)\~a2, u](\~u)\varphi (t)\partial yi
(\partial xi

\psi (x)\varrho \varepsilon (x - y)) (=: I \prime 2)

+ \BbbE 
\int 
t,x,y

\int u

\~u

\int u

\~u

\eta \prime \prime \delta (r  - \~r)| a(r) - \~a(\~r)| 2 d\~r dr| \partial 2xiyi
\phi \varepsilon | (=: I \prime 3)

+ \BbbE 
\int 
t,x,y

1

2
\eta \prime \prime \delta (u - \~u)\phi \varepsilon | \sigma (x, u) - \~\sigma (y, \~u)| 2\ell 2 . (=: I \prime 4)

For the term on the left-hand side of (4.5) we have that\bigm| \bigm| \bigm| \bigm| \int 
t,x,y

(\eta \delta (u - \~u) - | u - \~u| )\partial t\phi \varepsilon 
\bigm| \bigm| \bigm| \bigm| \lesssim \delta ,

since | \eta \delta (\cdot ) - | \cdot | | \lesssim \delta .
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For the terms I \prime 1 and I \prime 2 we have that

I \prime 1 = \BbbE 
\int 
t,x,y

[\eta \prime \delta (\cdot  - \~u)a2, \~u](u)\varphi (t)\Delta \psi (x)\varrho \varepsilon (x - y) (=: I \prime 1,1)

+ \BbbE 
\int 
t,x,y

[\eta \prime \delta (\cdot  - \~u)a2, \~u](u)\varphi (t)\partial xi
\psi (x)\partial xi

(\varrho \varepsilon (x - y)) (=: I \prime 1,2)

and

I \prime 2 = \BbbE 
\int 
t,x,y

[\eta \prime \delta (\cdot  - u)\~a2, u](\~u)\varphi (t)\partial xi
\psi (x)\partial yi

(\varrho \varepsilon (x - y)).

The term I \prime 1,1 can be written as

I \prime 1,1 = \BbbE 
\int 
t,x,y

\int u

\~u

sgn(r  - \~u)a(r)2 dr \varphi (t)\Delta \psi (x)\varrho \varepsilon (x - y)

+ \BbbE 
\int 
t,x,y

\int u

\~u

(\eta \prime \delta (r  - \~u) - sgn(r  - \~u)) a(r)2 dr \varphi (t)\Delta \psi (x)\varrho \varepsilon (x - y)

= \BbbE 
\int 
t,x,y

\int u

\~u

sgn(r  - \~u)a(r)2 dr \varphi (t)\Delta \psi (x)\varrho \varepsilon (x - y) (=: I \prime 1,1,1)

+ \BbbE 
\int 
t,x,y

\int u

\~u

1| r - \~u| \leq \delta (\eta 
\prime 
\delta (r  - \~u)

 - sgn(r  - \~u)) a(r)2 dr\varphi (t)\Delta \psi (x)\varrho \varepsilon (x - y). (=: I \prime 1,1,2)

For the term I \prime 1,1,2 using the boundedness of \Delta \psi , the fact that
\int 
x
\varrho \varepsilon (x - y) \lesssim 1, and

Assumption 2.1(a) we get that

| I \prime 1,1,2| \lesssim \BbbE 
\int 
t,x,y

\int 
| r - \~u| \leq \delta 

a(r)2 dr\varphi (t) | \Delta \psi (x)| \varrho \varepsilon (x - y)

\lesssim \delta \BbbE 
\int 
t,x,y

sup
| r - \~u| \leq \delta 

a(r)2 \varphi (t)\varrho \varepsilon (x - y)

\lesssim \delta \BbbE 
\int 
t,y

\Biggl( \int \delta +| \~u| 

0

a\prime (r) dr

\Biggr) 2

\varphi (t) \lesssim \delta \BbbE 
\Bigl( 
1 + \| \~u\| mLm

t,x

\Bigr) 
.

The term I \prime 1,2 can be written as

I \prime 1,2 = \BbbE 
\int 
t,x,y

\int u

\~u

sgn(r  - \~u)a(r)2 dr\varphi (t)\partial xi\psi (x)\partial xi(\varrho \varepsilon (x - y))

+ \BbbE 
\int 
t,x,y

\int u

\~u

(\eta \prime \delta (r  - \~u) - sgn(r  - \~u))a(r)2 dr\varphi (t)\partial xi
\psi (x)\partial xi

(\varrho \varepsilon (x - y))

= \BbbE 
\int 
t,x,y

\int u

\~u

sgn(r  - \~u)a(r)2 dr\varphi (t)\partial xi
\psi (x)\partial xi

(\varrho \varepsilon (x - y)) (=: I \prime 1,2,1)

+ \BbbE 
\int 
t,x,y

\int u

\~u

1| r - \~u| \leq \delta (\eta 
\prime 
\delta (r  - \~u)

 - sgn(r  - \~u)) a(r)2 dr\varphi (t)\partial xi\psi (x)\partial xi(\varrho \varepsilon (x - y)). (=: I \prime 1,2,2)

Similar calculations as in the case of I \prime 1,1,2, but now using the fact that
\int 
x
| \partial xi

(\varrho \varepsilon (x - 
y))| \lesssim \varepsilon  - 1, imply that

I \prime 1,2,2 \lesssim \delta \varepsilon  - 1\BbbE 
\Bigl( 
1 + \| \~u\| mLm

t,x

\Bigr) 
.
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Putting these estimates together gives

I \prime 1 \leq \BbbE 
\int 
t,x,y

\int u

\~u

sgn(r  - \~u)a(r)2 dr \varphi (t)\Delta \psi (x)\varrho \varepsilon (x - y)(4.6)

+ \BbbE 
\int 
t,x,y

\int u

\~u

sgn(r  - \~u)a(r)2 dr \varphi (t)\partial xi\psi (x)\partial xi(\varrho \varepsilon (x - y))

+ C\delta \varepsilon  - 1\BbbE 
\Bigl( 
1 + \| \~u\| mLm

t,x

\Bigr) 
.

We also have

I \prime 2 = \BbbE 
\int 
t,x,y

\int \~u

u

sgn(\~r  - u)\~a(\~r)2 d\~r \varphi (t)\partial xi
\psi (x)\partial yi

(\varrho \varepsilon (x - y)) (=: I \prime 2,1)

+ \BbbE 
\int 
t,x,y

\int \~u

u

1| \~r - u| \leq \delta (\eta 
\prime 
\delta (\~r  - u)

 - sgn(\~r  - u)) \~a(\~r)2 d\~r \varphi (t)\partial xi
\psi (x)\partial yi

(\varrho \varepsilon (x - y)) (:= I \prime 2,2)

and, as before,

I \prime 2 \leq \BbbE 
\int 
t,x,y

\int \~u

u

sgn(\~r  - u)\~a(\~r)2 d\~r \varphi (t)\partial xi
\psi (x)\partial yi

(\varrho \varepsilon (x - y))(4.7)

+ C\delta \varepsilon  - 1\BbbE 
\Bigl( 
1 + \| u\| mLm

t,x

\Bigr) 
.

The term I \prime 3 can be treated exactly as in [DGG19, Proof of Theorem 4.1] to obtain

I \prime 3 \lesssim \varepsilon  - 2(\delta 2\alpha + \lambda 2)\BbbE 
\Bigl( 
1 + \| u\| mLm

t,x
+ \| \~u\| mLm

t,x

\Bigr) 
(4.8)

+ \varepsilon  - 2
\Bigl( 
\BbbE \| 1| u| \geq R\lambda 

(1 + | u| )\| mLm
t,x

+ \BbbE \| 1| \~u| \geq R\lambda 
(1 + | \~u| )\| mLm

t,x

\Bigr) 
.

For the term I \prime 4 we notice that

I \prime 4 \lesssim \BbbE 
\int 
t,x,y

\eta \prime \prime \delta (u - \~u)\phi \varepsilon 
\bigl( 
| \sigma (x, u) - \sigma (x, \~u)| 2\ell 2 + | \sigma (x, u)(4.9)

 - \sigma (y, \~u)| 2\ell 2 + | \sigma (y, \~u) - \~\sigma (y, \~u)| 2\ell 2
\bigr) 

\lesssim 
\bigl( 
\delta 2\kappa + \delta  - 1\varepsilon 2\=\kappa + \delta  - 1d(\sigma , \~\sigma )

\bigr) 
\BbbE 
\biggl( 
1 + \| u\| m+1

Lm+1
t,x

+ \| \~u\| m+1

Lm+1
t,x

\biggr) 
,

where we use Assumption 2.2 and the fact that | \eta \prime \prime \delta | \lesssim \delta  - 1.
Noting that \partial yi

(\varrho \varepsilon (x - y)) =  - \partial xi
(\varrho \varepsilon (x - y)) and that for every u, \~u, and nonde-

creasing differentiable function A, we have the identity

\int u

\~u

sgn(r  - \~u)A\prime (r) dr = | A(u) - A(\~u)| ,
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we obtain by (4.6)--(4.9) (and the fact that \delta \leq \delta 2\kappa )

 - \BbbE 
\int T

0

\int 
Q2

| u - \~u| \partial t\varphi (t)\psi (x)\varrho \varepsilon (x - y) dxdy dt(4.10)

\leq \BbbE 
\int T

0

\int 
Q2

| A(u) - A(\~u)| \varphi (t)\Delta \psi (x)\varrho \varepsilon (x - y) dxdy dt

+ \BbbE 
\int T

0

\int 
Q2

| A(u) - A(\~u)| \varphi (t)\partial xi
\psi (x)\partial xi

(\varrho \varepsilon (x - y)) dxdy dt

 - \BbbE 
\int T

0

\int 
Q2

| \~A(u) - \~A(\~u)| \varphi (t)\partial xi
\psi (x)\partial xi

(\varrho \varepsilon (x - y)) dxdy dt

+ C\varepsilon  - 2\BbbE 
\Bigl( 
\| 1| u| \geq R\lambda 

(1 + | u| )\| mLm
t,x

+ \| 1| \~u| \geq R\lambda 
(1 + | \~u| )\| mLm

t,x

\Bigr) 
+ C

\bigl( 
\scrG \alpha (\delta , \varepsilon , \lambda ) + \delta  - 1d(\sigma , \~\sigma )

\bigr) 
\BbbE 
\biggl( 
1 + \| u\| m+1

Lm+1
t,x

+ \| \~u\| m+1

Lm+1
t,x

\biggr) 
.

By the triangle inequality, we have that

\BbbE 
\int T

0

\int 
Q2

(| A(u) - A(\~u)|  - | \~A(u) - \~A(\~u)| )\varphi (t)\partial xi
\psi (x)\partial xi

(\varrho \varepsilon (x - y)) dxdy dt

(4.11)

\leq \BbbE 
\int T

0

\int 
Q2

(| A(u) - \~A(u)| + | A(\~u) - \~A(\~u)| )\varphi (t) | \partial xi
\psi (x)\partial xi

(\varrho \varepsilon (x - y))| dxdy dt

\lesssim \varepsilon  - 1\lambda \BbbE 

\Biggl( 
\| u\| 

m+1
2

L
m+1

2
t,x

+ \| \~u\| 
m+1

2

L
m+1

2
t,x

\Biggr) 
+ \varepsilon  - 1\BbbE 

\Bigl( 
\| 1| u| \geq R\lambda 

u\| mLm
t,x

+ \| 1| \~u| \geq R\lambda 
\~u\| mLm

t,x

\Bigr) 
,

where in the last step we use the facts that
\int 
y
| \partial xi

(\varrho \varepsilon (x - y))| ,
\int 
x
| \partial xi

(\varrho \varepsilon (x - y))| \lesssim \varepsilon  - 1

and that for every r \in \BbbR , by Assumption 2.1(a),

| A(r) - \~A(r)| \leq 
\int | r| 

0

| a(\zeta )2  - \~a(\zeta )2| d\zeta 

\lesssim \lambda 

\int | r| 

0

(| a(\zeta )| + | \~a(\zeta )| ) d\zeta + 1| r| \geq R\lambda 

\int | r| 

0

\bigl( 
a(\zeta )2 + \~a(\zeta )2

\bigr) 
d\zeta 

\lesssim \lambda | r| 
m+1

2 + 1| r| \geq R\lambda 
| r| m.

Similarly, since
\int 
x
| \varrho \varepsilon (x - y)| \lesssim 1, we see that

\BbbE 
\int T

0

\int 
Q2

\Bigl( 
| A(u) - A(\~u)|  - | A(u) - \~A(\~u)| 

\Bigr) 
\varphi (t)\Delta \psi (x)\varrho \varepsilon (x - y) dxdy dt(4.12)

\lesssim \lambda \BbbE 

\Biggl( 
\| \~u\| 

m+1
2

L
m+1

2
t,x

\Biggr) 
+ \BbbE 

\Bigl( 
\| 1| \~u| \geq R\lambda 

\~u\| mLm
t,x

\Bigr) 
.

By (4.10)--(4.12) we obtain the desired inequality.

The next lemma is a pointwise in time version of Proposition 4.2.

Lemma 4.3. Let u, \~u be entropy solutions of the Dirichlet problems \scrE (A, \sigma , \xi ),
\scrE ( \~A, \~\sigma , \~\xi ), where the data satisfy Assumptions 2.1 and 2.2, and assume that u satisfies
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the ( \star )-property with coefficient \sigma (see Definition 4.1). Then, for every \psi \in C\infty 
c (Q)

and \alpha \in (0, 12 ) there exists C \equiv C(\scrS , \alpha , \psi ) > 0 such that for every \lambda , \varepsilon , \delta \in (0, 1) and
every right Lebesgue point s \leq t of the mapping

(4.13) \tau \mapsto \rightarrow \BbbE 
\int 
x,y

| u(\tau , x) - \~u(\tau , y)| \psi (x)\varrho \varepsilon (x - y)

we have that

\BbbE 
\int 
Q2

| u(t, x) - \~u(t, y)| \psi (x)\varrho \varepsilon (x - y) dxdy(4.14)

\leq \BbbE 
\int 
Q2

| u(s, x) - \~u(s, y)| \psi (x)\varrho \varepsilon (x - y) dxdy

+ \BbbE 
\int t

s

\int 
Q2

| A(u(\tau , x)) - \~A(\~u(\tau , y))| \Delta \psi (x)\varrho \varepsilon (x - y) dxdy d\tau 

+ C\varepsilon  - 2\BbbE 
\Bigl( 
\| 1| u| \geq R\lambda 

(1 + | u| )\| mLm
t,x

+ \| 1| \~u| \geq R\lambda 
(1 + | \~u| )\| mLm

t,x

\Bigr) 
+ C

\bigl( 
\scrG \alpha (\delta , \varepsilon , \lambda ) + \delta  - 1d(\sigma , \~\sigma )

\bigr) 
\BbbE 
\biggl( 
1 + \| u\| m+1

Lm+1
t,x

+ \| \~u\| m+1

Lm+1
t,x

\biggr) 
,

where R\lambda = sup\{ R \in [0,\infty ] : | a(r) - \~a(r)| \leq \lambda for every | r| \leq R\} and \scrG \alpha as in (4.2).

Proof. The proof is given in [DGG19, Proof of Theorem 4.1] by approximating
the function 1[s,t] and using Proposition 4.2.

We are now ready to prove the main result of this section.

Lemma 4.4. Let u, \~u be entropy solutions of the Dirichlet problems \scrE (A, \sigma , \xi ),
\scrE ( \~A, \~\sigma , \~\xi ), where the data satisfy Assumptions 2.1 and 2.2, and assume that u satisfies
the ( \star )-property with coefficient \sigma (see Definition 4.1).

1. For every \psi \in C\infty 
c (Q) and \alpha \in (0, 12 ) there exists C \equiv C(\scrS , \alpha , \psi ) > 0 such

that for every \lambda , \delta \in (0, 1) and \varepsilon \in (0, 1) sufficiently small,

\BbbE 
\int T

0

\int 
Q

| u(t, x) - \~u(t, x)| \psi (x) dxdt

\leq T\BbbE 
\int 
Q

| \xi (x) - \~\xi (x)| \psi (x) dx+ T sup
| h| \leq \varepsilon 

\BbbE 
\int 
Q

| \~\xi (x) - \~\xi (x+ h)| \psi (x) dx

+ \BbbE 
\int T

0

\int t

0

\int 
Q

| A(u(\tau , x)) - \~A(\~u(\tau , x))| \Delta \psi (x) dxd\tau dt

+ C\varepsilon 
2

m+1\BbbE 
\Bigl( 
1 + \| \nabla [\~a](\~u)\| L1

t,x

\Bigr) 
+ C\varepsilon \BbbE \| \nabla \~A(\~u)\| L1

t,x
+ C\varepsilon  - 2\BbbE 

\Bigl( 
\| 1| u| \geq R\lambda 

(1 + | u| )\| mLm
t,x

+\| 1| \~u| \geq R\lambda 
(1 + | \~u| )\| mLm

t,x

\Bigr) 
+ C

\bigl( 
\scrG \alpha (\delta , \varepsilon , \lambda ) + \delta  - 1d(\sigma , \~\sigma )

\bigr) 
\BbbE 
\biggl( 
1 + \| u\| m+1

Lm+1
t,x

+ \| \~u\| m+1

Lm+1
t,x

\biggr) 
,

where R\lambda = sup\{ R \in [0,\infty ] : | a(r)  - \~a(r)| \leq \lambda for every | r| \leq R\} and \scrG \alpha as
in (4.2).
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2. If we furthermore assume that \~A = A and \~\sigma = \sigma , then for every \psi \in C\infty 
c (Q)

and almost every s < t \leq T we have that

\BbbE 
\int 
Q

| u(t, x) - \~u(t, x)| \psi (x) dx - \BbbE 
\int 
Q

| u(s, x) - \~u(s, x)| \psi (x) dx

\leq \BbbE 
\int t

s

\int 
Q

| A(u(\tau , x)) - A(\~u(\tau , x))| \Delta \psi (x) dxd\tau .

In addition, this estimate holds for s = 0 and u(s), \~u(s) replaced by \xi , \~\xi .

Proof of Lemma 4.4-1. We first notice that for all \varepsilon \in (0, 1) sufficiently small, by
the mean value theorem for \~A(\~u(\tau , \cdot )) we have that

\BbbE 
\int t

s

\int 
Q2

| A(u(\tau , x)) - \~A(\~u(\tau , y))| \Delta \psi (x)\varrho \varepsilon (x - y) dx dy d\tau (4.15)

\leq \BbbE 
\int t

s

\int 
Q

| A(u(\tau , x)) - \~A(\~u(\tau , x))| \Delta \psi (x) dxd\tau + C\varepsilon \BbbE \| \nabla \~A(\~u)\| L1
t,x

for some C\equiv C(\scrS , \| \Delta \psi \| L\infty 
x
)>0, where we also use the fact that

\int 
y
| (x - y)\varrho \varepsilon (x - y)| \lesssim \varepsilon .

Then, by Lemma 4.3 we have that for every right Lebesgue point s \leq t of the mapping
(4.13),

\BbbE 
\int 
Q2

| u(t, x) - \~u(t, y)| \psi (x)\varrho \varepsilon (x - y) dxdy(4.16)

\leq \BbbE 
\int 
Q2

| u(s, x) - \~u(s, y)| \psi (x)\varrho \varepsilon (x - y) dxdy

+ \BbbE 
\int t

s

\int 
Q

| A(u(\tau , x)) - \~A(\~u(\tau , x))| \Delta \psi (x) dxd\tau +M,

where M \equiv M(\delta , \varepsilon , \lambda ) > 0 is given by

M := C\varepsilon  - 2\BbbE 
\Bigl( 
\| 1| u| \geq R\lambda 

(1 + | u| )\| mLm
t,x

+ \| 1| \~u| \geq R\lambda 
(1 + | \~u| )\| mLm

t,x

\Bigr) 
+ C

\bigl( 
\scrG \alpha (\delta , \varepsilon , \lambda ) + \delta  - 1d(\sigma , \~\sigma )

\bigr) 
\BbbE 
\biggl( 
1 + \| u\| m+1

Lm+1
t,x

+ \| \~u\| m+1

Lm+1
t,x

\biggr) 
+ C\varepsilon \BbbE \| \nabla \~A(\~u)\| L1

t,x
.

As in [DGG19, Lemma 3.2] we can prove that

(4.17) lim
h\rightarrow 0

1

h

\int h

0

\BbbE 
\int 
Q

| u(s, x) - \xi (x)| 2\psi (x)2 dx ds = 0,

and similarly for \~u, \~\xi . Hence, if we integrate (4.16) over s \in (0, h), divide by h, and
let h\rightarrow 0, we get

\BbbE 
\int 
Q2

| u(t, x) - \~u(t, y)| \psi (x)\varrho \varepsilon (x - y) dxdy \leq \BbbE 
\int 
Q2

| \xi (x) - \~\xi (y)| \psi (x)\varrho \varepsilon (x - y) dxdy

+ \BbbE 
\int t

0

\int 
Q

| A(u(\tau , x)) - \~A(\~u(\tau , x))| \Delta \psi (x) dxd\tau +M.
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We now integrate the above inequality over t \in [0, T ] to obtain

\BbbE 
\int T

0

\int 
Q2

| u(t, x) - \~u(t, y)| \psi (x)\varrho \varepsilon (x - y) dxdy dt

\leq T\BbbE 
\int 
Q2

| \xi (x) - \~\xi (y)| \psi (x)\varrho \varepsilon (x - y) dx dy

+ \BbbE 
\int T

0

\int t

0

\int 
Q

| A(u(\tau , x)) - \~A(\~u(\tau , x))| \Delta \psi (x) dxd\tau dt+ TM.

Moreover, for every \varepsilon \in (0, 1) sufficiently small such that x + h \in Q whenever x \in 
supp\psi and | h| \leq \varepsilon , we have that

\BbbE 
\int 
Q2

| \xi (x) - \~\xi (y)| \psi (x)\varrho \varepsilon (x - y) dxdy \leq sup
| h| \leq \varepsilon 

\BbbE 
\int 
Q

| \~\xi (x) - \~\xi (x+ h)| \psi (x) dx

+ \BbbE 
\int 
Q

| \xi (x) - \~\xi (x)| \psi (x) dx.

We finally note that by [DGG19, Lemma 3.1],

\BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

\int 
Q2

| u(t, x) - \~u(t, y)| \psi (x)\varrho \varepsilon (x - y) dxdy dt - 
\int T

0

\int 
Q

| u(t, x) - \~u(t, x)| \psi (x) dxdt

\bigm| \bigm| \bigm| \bigm| \bigm| 
\lesssim \varepsilon 

2
m+1

\Bigl( 
1 + \BbbE \| \nabla [\~a](\~u)\| L1

t,x

\Bigr) 
.

This implies the assertion.

Proof of Lemma 4.4-2. We first notice that since \~A = A, we can choose \lambda = 0
and R\lambda = \infty in (4.14). Since we also have that d(\sigma , \~\sigma ) = 0, using again (4.15), (4.14)
reads as follows:

\BbbE 
\int 
Q2

| u(t, x) - \~u(t, y)| \psi (x)\varrho \varepsilon (x - y) dxdy

\leq \BbbE 
\int 
Q2

| u(s, x) - \~u(s, y)| \psi (x)\varrho \varepsilon (x - y) dxdy

+ \BbbE 
\int t

s

\int 
Q

| A(u(\tau , x)) - A(\~u(\tau , x))| \Delta \psi (x) dxd\tau 

+ C \scrG \alpha (\delta , \varepsilon , 0)\BbbE 
\biggl( 
1 + \| u\| m+1

Lm+1
t,x

+ \| \~u\| m+1

Lm+1
t,x

\biggr) 
+ C\varepsilon \BbbE \| \nabla \~A(\~u)\| L1

t,x

for almost every s \leq t \leq T . Note that by (4.17), \tau = 0 is a right Lebesgue point of
(4.13), and hence the last inequality holds also for s = 0. As in [DGG19, Proof of
Theorem 4.1], we pass to the limit \varepsilon , \delta \rightarrow 0 simultaneously by choosing \delta depending
on \varepsilon . More specifically, we choose \nu \in ((m \wedge 2) - 1, \=\kappa ) and \alpha < 1 \wedge m

2 such that
(2\alpha )(2\nu ) > 2 and set \delta = \varepsilon 2\nu . Letting \varepsilon \rightarrow 0 proves the desired estimate.

In the next corollary we replace \psi in Lemma 4.4-2 by w as in (1.7) which implies
an estimate in L1

w;x.
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Corollary 4.5. Under the assumptions of Lemma 4.4-2 we have that for almost
every s < t \leq T,

\BbbE \| u(t) - \~u(t)\| L1
w;x

\leq \BbbE \| u(s) - \~u(s)\| L1
w;x

 - \BbbE 
\int t

s

\| A(u(\tau )) - A(\~u(\tau ))\| L1
x
d\tau .(4.18)

In addition, the following estimate holds:

sup ess
t\in [0,T ]

\BbbE \| u(t) - \~u(t)\| L1
w;x

\leq \BbbE \| \xi  - \~\xi \| L1
w;x
.(4.19)

Proof. We choose a sequence of nonnegative functions \psi n \in C\infty 
c (Q) such that

\psi n \rightarrow w in H1
0,x. Using the facts that | A(u)  - A(\~u)| \in L2

\omega ,tH
1
0,x and that w solves

(1.7), by virtue of Lemma 4.4-2 we get that for almost every s < t \leq T (including
s = 0),

\BbbE 
\int 
Q

| u(t, x) - \~u(t, x)| w(x) dx

\leq 
\int 
Q

| u(s, x) - \~u(s, x)| w(x) dx - \BbbE 
\int t

s

\int 
Q

| A(u(\tau , x)) - A(\~u(\tau , x))| dx d\tau ,

which proves the desired estimate.

5. Proofs of well-posedness.

5.1. Proofs of Theorems 3.1 and 3.2. In this section we first prove Theorem
3.1 on the existence and uniqueness of solutions to \scrE (A, \sigma , \xi ). From Corollary 4.5 (see
(4.19)) it follows that each pair of entropy solutions of \scrE (A, \sigma , \xi ) coincides, provided
that one of them satisfies the ( \star )-property (see Definition 4.1). Hence, in order to
conclude the existence and uniqueness of entropy solutions, it suffices to show the
existence of an entropy solution satisfying the ( \star )-property. To do so, we use a van-
ishing viscosity approximation. The (probabilistically) strong existence of solutions
for the approximating equations is quite standard by now. It relies on a technique
from [GK96], where a characterization of the convergence in probability is used to
show that weak existence combined with strong uniqueness implies strong existence.
This has been used in the past in the context of SPDEs (see [Hof13, GH18] and the
references therein). Proofs are included in Appendix A for the convenience of the
reader.

For the proof of the following proposition we refer the reader to [DGG19, Propo-
sition 5.1].

Proposition 5.1. Let A satisfy Assumption 2.1( a) with a constant K \geq 1.
Then, for every n \geq 1 there exists an increasing function An \in C\infty (\BbbR ) with bounded
derivatives, satisfying Assumption 2.1( a) with constant 3K, such that an(r) \geq 2

n , and

sup
| r| \leq n

| a(r) - an(r)| \leq 
4

n
.(5.1)

Let An be as above, and set

(5.2) \xi n := ( - n) \vee (\xi \wedge n), \sigma n := \rho 
\otimes (d+1)
1
n

\ast \sigma (\cdot , - n \vee (\cdot \wedge n)).D
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Definition 5.2. An L2
x-solution of the Dirichlet problem \scrE (An, \sigma n, \xi n) is a con-

tinuous L2
x-valued process un, such that un, An(un) \in L2

\omega ,tH
1
0;x, and the equality

(un(t, \cdot ), \phi ) = (\xi n, \phi ) - 
\int t

0

(\nabla An(un(s, \cdot )),\nabla \phi ) ds+
\int t

0

\bigl( 
\sigma k
n(\cdot , un(s, \cdot )), \phi 

\bigr) 
d\beta k(s)

holds for every \phi \in C\infty 
c (Q), \BbbP -almost surely, for every t \in [0, T ].

If un is an L2
x-solution of \scrE (An, \sigma n, \xi n), then by standard arguments (see also

[DGG19, p. 24]) one obtains

\BbbE sup
t\leq T

\| un\| pL2
x
+ \BbbE \| \nabla [an](un)\| pL2

t,x
\lesssim p 1 + \BbbE \| \xi n\| pL2

x
,(5.3)

\BbbE sup
t\leq T

\| un\| m+1

Lm+1
x

+ \BbbE \| \nabla An(un)\| 2L2
t,x

\lesssim 1 + \BbbE \| \xi n\| m+1

Lm+1
x

,(5.4)

where the implicit constants do not depend on n. Notice that | \xi n| is bounded by n,
which implies that the right-hand side of the last two inequalities is finite. Moreover,
by the construction of \xi n one concludes that for every p \geq 2,

\BbbE sup
t\leq T

\| un\| pL2
x
+ \BbbE \| \nabla [an](un)\| pL2

t,x
\lesssim p 1 + \BbbE \| \xi \| pL2

x
(5.5)

and

\BbbE sup
t\leq T

\| un\| m+1

Lm+1
x

+ \BbbE \| \nabla An(un)\| 2L2
t,x

\lesssim 1 + \BbbE \| \xi \| m+1

Lm+1
x

.(5.6)

Finally, since an \geq 2
n > 0, we have | \nabla un| \leq Cn| \nabla [an](un)| , and so by (5.5), we have

the (n-dependent) bound

\BbbE \| \nabla un\| pL2
t,x
<\infty .(5.7)

The proofs of the next two lemmas are the same as those of [DGG19, Lemma 5.2]
and [DGG19, Corollary 3.4] and are therefore omitted.

Lemma 5.3. For n \geq 1, let un be an L2
x-solution of \scrE (An, \sigma n, \xi n). Then, un sat-

isfies the ( \star )-property (4.1) with coefficient \sigma n and C \equiv C(\scrS , n) > 0. If, in addition,
\| \xi \| L2

x
has moments of order 4, then the constant C is independent of n.

Lemma 5.4. Let un be a sequence bounded in Lm+1
\omega ,t Lm+1

x , satisfying the ( \star )-
property (4.1) with coefficient \sigma n, uniformly in n. Suppose that un converges for
almost every (\omega , t, x) to a function u and that limn\rightarrow \infty d(\sigma n, \sigma ) = 0. Then u has the
( \star )-property with coefficient \sigma .

The proof of the next proposition is given in Appendix A.

Proposition 5.5. Suppose Assumptions 2.1 and 2.2 hold. Then, for every n \geq 1,
\scrE (An, \sigma n, \xi n) has a unique L2

x-solution un.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Step 1. We first assume that \BbbE \| \xi \| 4L2
x
< \infty . For n \geq 1,

let un be the unique L2
x-solution of \scrE (An, \sigma n, \xi n) by Proposition 5.5. We will show

that (un)n\geq 1 is a Cauchy sequence in L1
\omega ,tL

1
w;x. Let N \geq 1 be arbitrary. As in the

conclusion of the proof of Lemma 4.4-2, we choose \nu such that \nu \in ((m \wedge 2) - 1, \=\kappa ),
and then we choose \alpha < 1\wedge m

2 such that  - 2+ (2\alpha )(2\nu ) > 0, so that \scrG \alpha (\varepsilon 
2\nu , \varepsilon , 0) \rightarrow 0

D
ow

nl
oa

de
d 

09
/3

0/
20

 to
 1

29
.1

1.
76

.2
32

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4546 K. DAREIOTIS, B. GESS, AND P. TSATSOULIS

as \varepsilon \rightarrow 0. Then, let \psi l \in C\infty 
c (Q) be a sequence of nonnegative functions such that

\| \psi l  - w\| H1
0;x

\rightarrow 0 as l \rightarrow \infty . We apply Lemma 4.4-1 to un and un\prime , for arbitrary

n \leq n\prime setting \delta = \varepsilon 2\nu , and \lambda = 8
n . By (5.1) we have that R\lambda \geq n (see the statement

of Lemma 4.4-1 for the definition of R\lambda ). Recalling the uniform estimates (5.5)--(5.6)
and the triangle inequality

\BbbE \| \xi n\prime (\cdot ) - \xi n\prime (\cdot + h)\| L1
x
\leq \BbbE \| \xi (\cdot ) - \xi (\cdot + h)\| L1

x
+ 2\BbbE \| \xi  - \xi n\prime \| L1

x
,

where for convenience we have extended \xi n and \xi on \BbbR d by setting them equal to 0
in Qc, we have

\BbbE \| (un  - un\prime )\psi l\| L1
t,x

\leq Cl

\bigl( 
\BbbE \| \xi  - \xi n\prime \| L1

x
+ \BbbE \| \xi  - \xi n\| L1

x

\bigr) (5.8)

+ \BbbE 
\int T

0

\int t

0

\int 
Q

| An(un(\tau )) - An\prime (un\prime (\tau ))| \Delta \psi l dxd\tau dt

+ Cl\varepsilon 
 - 2\BbbE 

\Bigl( 
\| 1| un| \geq n(1 + | un| )\| mLm

t,x
+ \| 1| un\prime | \geq n(1 + | un\prime | )\| mLm

t,x

\Bigr) 
+ Cl\varepsilon 

 - 2\nu d(\sigma n, \sigma n\prime ) + Cl\varepsilon 
 - 2n - 2 + Cl\varepsilon 

 - 1n - 1 +Ml(\varepsilon ).

Here the constants Cl are independent of \varepsilon , n, n\prime and Ml(\varepsilon ) = \~Ml(\varepsilon 
2\nu , \varepsilon ) for

\~Ml(\delta , \varepsilon ) = Cl

\Biggl( 
\delta 2\kappa + \delta  - 1\varepsilon 2\=\kappa + \delta \varepsilon  - 1 + \delta 2\alpha \varepsilon  - 2 + \varepsilon + sup

| h| \leq \varepsilon 

\BbbE \| \xi (\cdot ) - \xi (\cdot + h)\| L1
x

\Biggr) 
.

In particular Ml(\varepsilon ) \rightarrow 0 as \varepsilon \rightarrow 0 (for every l). Note that

\BbbE 
\int T

0

\int t

0

\int 
Q

| An(un(\tau )) - An\prime (un\prime (\tau ))| \Delta \psi l dxd\tau dt

\leq \BbbE 
\int T

0

\int t

0

\int 
Q

| An(un(\tau )) - An\prime (un\prime (\tau ))| \Delta w dxd\tau dt

+ \BbbE 
\int T

0

\int t

0

\int 
Q

| An(un(\tau )) - An\prime (un\prime (\tau ))| \Delta (\psi l  - w) dx d\tau dt

\lesssim \BbbE \| \nabla | An(un) - An\prime (un\prime )| \| L2
t,x

\| \psi l  - w\| H1
0;x

\lesssim \BbbE 
\Bigl( 
\| \nabla An(un)\| L2

t,x
+ \| \nabla An\prime (un\prime )\| L2

t,x

\Bigr) 
\| \psi l  - w\| H1

0;x

where in the second step we use the fact that \Delta w =  - 1, integration by parts, and
the Cauchy--Schwarz inequality. By virtue of the uniform estimates (5.5) and (5.6)
combined with (5.8), this gives

\BbbE \| (un  - un\prime )w\| L1
t,x

\leq C\| \psi l  - w\| H1
0;x

+ Cl(\BbbE \| \xi  - \xi n\prime \| L1
x
+ \BbbE \| \xi  - \xi n\| L1

x
)

+ Cl\varepsilon 
 - 2\BbbE 

\Bigl( 
\| 1| un| \geq n(1 + | un| )\| mLm

t,x
+ \| 1| un\prime | \geq n(1 + | un\prime | )\| mLm

t,x

\Bigr) 
+ Cl\varepsilon 

 - 2\nu d(\sigma n, \sigma n\prime ) + Cl\varepsilon 
 - 2n - 2 + Cl\varepsilon 

 - 1n - 1 +Ml(\varepsilon ),

where C does not depend on l, \varepsilon , n, or n\prime . One can now choose first l large enough
and then \varepsilon > 0 small enough so that for all n, n\prime large,

\BbbE \| (un  - un\prime )w\| L1
t,x

\leq 1

N
.
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Therefore, (un)n\geq 1 converges in L1
\omega ,tL

1
w;x to a limit u. Moreover, by passing to a

subsequence, we may also assume that

(5.9) lim
n\rightarrow \infty 

un = u

for almost every (\omega , t, x) \in \Omega \times (0, T ) \times Q. Consequently, by Lemmas 5.3 and 5.4
and (5.6), we have that u has the ( \star )-property (4.1) with coefficient \sigma . In addition,
it follows by (5.6) that for any q < m+ 1,

(5.10) (| un(t, x)| q)\infty n=1

is uniformly integrable on \Omega \times [0, T ]\times Q.
We now show that u is an entropy solution. From now on, when we refer to the

estimate (5.5), it means that we only use it with p = 2. By (5.6), it follows that u
satisfies Definition 2.4-i. Let f \in Cb(\BbbR ), and let \eta be as in Definition 2.4. For every
n \geq 1, we clearly have [anf ](un) \in L2

\omega ,tH
1
0,x and \partial xi [anf ](un) = f(un)\partial xi [an](un).

Also, we have | [anf ](r)| \leq \| f\| L\infty 
r
3K| r| m+1

2 for every r \in \BbbR , which, combined with
(5.5) and (5.6), gives that

sup
n

\BbbE \| [anf ](un)\| 2L2
tH

1
0;x

<\infty .

Hence, for a subsequence we have the weak convergences [anf ](un)\rightharpoonup vf , [an](un)\rightharpoonup v
for some vf , v \in L2

\omega ,tH
1
0;x. By (5.1), (5.9), and (5.10) it is easy to see that vf = [af ](u),

v = [a](u). Moreover, for any \phi \in C\infty 
c ([0, T )\times Q) and B \in \scrF , we have

\BbbE 1B

\int T

0

\int 
Q

\partial xi [af ](u)\phi dxdt = lim
n\rightarrow \infty 

\BbbE 1B

\int T

0

\int 
Q

\partial xi [anf ](un)\phi dx dt

= lim
n\rightarrow \infty 

\BbbE 1B

\int T

0

\int 
Q

f(un)\partial xi
[an](un)\phi dxdt

= \BbbE 1B

\int T

0

\int 
Q

f(u)\partial xi
[a](u)\phi dxdt,

where for the last equality we have used that \partial xi [an](un) \rightharpoonup [a](u) (weakly) and
f(un) \rightarrow f(u) (strongly) in L2

\omega ,tL
2
x. Hence, Definition 2.4-ii is satisfied. We now show

Definition 2.4-iii. Let \eta and \phi = \varphi \varrho be as in Definition 2.4-iii, and let B \in \scrF . By
It\^o's formula (see, e.g., [Kry13]) for the function

u \mapsto \rightarrow 
\int 
Q

\eta (u)\varrho dx,

and by It\^o's product rule, we have

 - \BbbE 1B

\int T

0

\int 
Q

\eta (un)\partial t\phi dxdt = \BbbE 1B

\Biggl[ \int 
Q

\eta (\xi n)\phi (0) dx+

\int T

0

\int 
Q

[\eta \prime a2n](un)\Delta \phi dxdt

(5.11)

+

\int T

0

\int 
Q

\biggl( 
1

2
\phi \eta \prime \prime (un)| \sigma n(un)| 2\ell 2  - \phi \eta \prime \prime (un)| \nabla [an](un)| 2

\biggr) 
dxdt

+

\int T

0

\int 
Q

\phi \eta \prime (un)\sigma 
k
n(un) dx d\beta 

k(t)

\Biggr] 
.
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On the basis of (5.9) and (5.10) and the construction of \xi n, \sigma n, and an it is easy to
see that

lim
n\rightarrow \infty 

\BbbE 1B

\int 
Q

\eta (\xi n)\phi (0) dx = \BbbE 1B

\int 
Q

\eta (\xi )\phi (0) dx,

lim
n\rightarrow \infty 

\BbbE 1B

\int T

0

\int 
Q

\eta (un)\partial t\phi dxdt = \BbbE 1B

\int T

0

\int 
Q

\eta (u)\partial t\phi dxdt,

lim
n\rightarrow \infty 

\BbbE 1B

\int T

0

\int 
Q

[\eta \prime a2n](un)\Delta \phi dxdt = \BbbE 1B

\int T

0

\int 
Q

[\eta \prime a2](u)\Delta \phi dxdt,

lim
n\rightarrow \infty 

\BbbE 1B

\int T

0

\int 
Q

\phi \eta \prime \prime (un)| \sigma n(un)| 2\ell 2 dxdt = \BbbE 1B

\int T

0

\int 
Q

\phi \eta \prime \prime (u)| \sigma (u)| 2\ell 2 dx dt,

lim
n\rightarrow \infty 

\BbbE 1B

\int T

0

\int 
Q

\phi \eta \prime (un)\sigma 
k
n(un) dx d\beta 

k(t) = \BbbE 1B

\int T

0

\int 
Q

\phi \eta \prime (u)\sigma k(u) dxd\beta k(t).

Let us set \~f(r) :=
\sqrt{} 
\eta \prime \prime (r). Notice that \partial xi

[ \~fan](un) =
\sqrt{} 
\eta \prime \prime (un)\partial xi

[an](un). As be-

fore, we have (after passing to a subsequence if necessary) \partial xi
[ \~fan](un)\rightharpoonup \partial xi

[ \~fa](u)
(weakly) in L2

\omega ,tL
2
x. In particular, this implies that \partial xi

[ \~fan](un)\rightharpoonup \partial xi
[ \~fa](u) (weakly)

in L2(\Omega \times (0, T )\times Q; d\=\mu ), where d\=\mu := 1B\phi d\BbbP \otimes dx\otimes dt. This implies that

\BbbE 1B

\int T

0

\int 
Q

\phi \eta \prime \prime (u)| \nabla [a](u)| 2 dxdt \leq lim inf
n\rightarrow \infty 

\BbbE 1B

\int T

0

\int 
Q

\phi \eta \prime \prime (un)| \nabla [an](un)| 2 dx dt.

Hence, taking lim inf in (5.11) along an appropriate subsequence, we see that u satisfies
Definition 2.4-iii too.

To summarize, we have shown that if, in addition to the assumptions of Theorem
3.1, we have that \BbbE \| \xi \| 4L2

x
< \infty , then there exists an entropy solution to (2.1) which

has the ( \star )-property (4.1) with coefficient \sigma (therefore, it is also unique by (4.19) in
Corollary 4.5). In addition, we can pass to the limit in (5.5) and (5.6) to obtain that

\BbbE sup
t\leq T

\| u\| 2L2
x
+ \BbbE \| \nabla [a](u)\| 2L2

t,x
\lesssim 1 + \BbbE \| \xi \| 2L2

x
,(5.12)

\BbbE sup
t\leq T

\| u\| m+1

Lm+1
t,x

+ \BbbE \| \nabla A(u)\| 2L2
t,x

\lesssim 1 + \BbbE \| \xi \| m+1

Lm+1
x

.(5.13)

Step 2. We now remove the extra condition on \xi . For n \geq 1, let \xi n be as in (5.2),
and let u(n) be the unique solution of \scrE (A, \sigma , \xi n). Note that u(n) has the ( \star )-property
with coefficient \sigma . Hence, by equation (4.19) we have that (u(n))n\geq 1 is Cauchy in
L1
\omega ,tL

1
w;x and therefore has a limit u. In addition, u(n) satisfy the estimates (5.12)

and (5.13) uniformly in n. With the arguments provided in Step 1 we can show that
u is an entropy solution.

Step 3. We finally show (3.1), which also implies uniqueness. Let \~u be an entropy
solution of \scrE (A, \sigma , \~\xi ). By (4.19) we have that

sup ess
t\in [0,T ]

\BbbE \| u(n)(t) - \~u(t)\| L1
w;x

\leq \BbbE \| \xi n  - \~\xi \| L1
w;x

for the sequence u(n) as in Step 2. The proof is complete if we let n\rightarrow \infty .

Remark 5.6. Let the assumptions of Theorem 3.1 hold. If we further assume that
infr\geq 0 a(r) = c > 0, it is easy to see that, in addition to (5.12) and (5.13), we have

\BbbE \| u\| 2L2
tH

1
0;x

\leq C
\Bigl( 
1 + \BbbE \| \xi \| 2L2

x

\Bigr) 
,
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with C depending on \scrS and c. Furthermore, after a standard approximation argument,
it follows from Definition 2.4 that for each \phi \in H1

0;x we have

(u(t), \phi ) = (\xi , \phi ) - 
\int t

0

(\nabla A(u(s)),\nabla \phi ) ds+
\int t

0

\bigl( 
\sigma k(u(s)), \phi 

\bigr) 
d\beta k(s)

for almost every (\omega , t). These two facts imply by virtue of [KR79, Theorem 3.2] that
u is a continuous L2

x-valued process.

We now proceed with the proof of Theorem 3.2 which implies the stability of
entropy solutions with respect to the initial condition \xi , the nonlinearity A, and \sigma .
The proof is similar to [DGG19, Proof of Theorem 2.2].

Proof of Theorem 3.2. Let \=\xi n =  - an\vee (an\wedge \xi n), where an is chosen large enough
such that

\BbbE \| \xi n  - \=\xi n\| L1
w;x

\leq 1

n
.

Let \=un be the solution of \scrE (An, \sigma n, \=\xi n) which, by Theorem 3.1, exists and is unique
and by Lemma 5.4 satisfies the ( \star )-property (4.1). By (4.19) we know that

\BbbE \| un  - \=un\| L1
tL

1
w;x

\leq \BbbE 
\int T

0

\| \xi n  - \=\xi n\| L1
w;x

dt \leq T

n
.

Thus, it is enough to prove that \=un \rightarrow u in L1
\omega ,tL

1
w;x. Let \psi l \in C\infty 

c (Q) be a sequence
of positive functions such that \| \psi l - w\| H1

0;x
\rightarrow 0 as l \rightarrow \infty . Then, for arbitrary l \geq 1,

we have that

\BbbE \| \=un  - u\| L1
tL

1
w;x

\leq \BbbE \| (\=un  - u)\psi l\| L1
tL

1
x
+ \BbbE \| (\=un  - u)(w  - \psi l)\| L1

tL
1
x

\leq \BbbE \| (\=un  - u)\psi l\| L1
tL

1
x
+ C\| w  - \psi l\| H1

0;x

for some C independent on n (similarly to (5.12)) and l. Using Lemma 4.4-1 and
proceeding similarly to Step 1 in the proof of Theorem 3.1, where the specific choice
of \lambda = 8

n implies that R\lambda \geq bn for some bn \geq 1 which can be chosen such that bn \rightarrow \infty 
as n\rightarrow \infty (since An \rightarrow A uniformly on compact sets by assumption), we obtain that

\BbbE \| \=un  - u\| L1
tL

1
w;x

\leq C\| w  - \psi l\| H1
0,x

+ Cl\BbbE \| \=\xi n  - \xi \| L1
x

+ Cl\varepsilon 
 - 2\BbbE 

\Bigl( 
\| 1| \=un| \geq bn(1 + | \=un| )\| mLm

t,x
+ \| 1| u| \geq bn(1 + | u| )\| mLm

t,x

\Bigr) 
+ Cl\varepsilon 

 - 2\nu d(\sigma n, \sigma ) + Cl\varepsilon 
 - 2n - 2 + Cl\varepsilon 

 - 1n - 1 +Ml(\varepsilon )

for some Ml(\varepsilon ) \rightarrow 0 as \varepsilon \rightarrow 0 (for fixed l) and constants Cl independent of \varepsilon , n, and
C independent of \varepsilon , l, n. To conclude, given N \geq 1 we first choose l large enough and
then \varepsilon small enough so that for all n large enough,

\BbbE \| \=un  - u\| L1
tL

1
w;x

\leq 1

N
,

which completes the proof.

5.2. Proofs of Theorem 3.3 and Proposition 3.4. To prove that entropy
solutions belong to C([0, T ];L1

\omega L
1
w;x), we use the continuity of vanishing viscosity

approximations from Proposition 5.5 and the stability theorem, Theorem 3.2, together
with Lemma 4.3.
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Proof of Theorem 3.3. Let un be given by Proposition 5.5. Recall that by Theo-
rem 3.2 we have

lim
n\rightarrow 0

\BbbE \| u - un\| L1
tL

1
w;x

= 0,

which in particular implies that there exists \scrT \subset [0, T ] with | \scrT | = T and a (non--
relabeled) subsequence such that

lim
n\rightarrow \infty 

\BbbE \| u(t) - un(t)\| L1
w;x

= 0

for every t \in \scrT . We now show that given \lambda > 0, there exists h such that

(5.14) \BbbE \| un(t) - un(t
\prime )\| L1

w;x
\leq \lambda 

for every n \geq 1 and t, t\prime \in \scrT with | t - t\prime | \leq h. By (5.6) we have

\BbbE \| un(t) - un(t
\prime )\| L1

w;x
\lesssim \xi \| w  - \psi l\| L2

x
+ \BbbE 

\int 
Q

| un(t) - un(t
\prime )| \psi l dx,(5.15)

where \psi l \in C\infty 
c (Q), \psi l \geq 0, and \| w  - \psi l\| H1

0;x
\rightarrow 0. We also have

\BbbE 
\int 
Q

| un(t, x) - un(t
\prime , x)| \psi l(x) dx(5.16)

\leq \BbbE 
\int 
Q

\int 
Q

| un(t, x) - un(t
\prime , y)| \psi l(x)\varrho \varepsilon (x - y) dxdy (=: I1)

+ \BbbE 
\int 
Q

\int 
Q

| un(t\prime , x) - un(t
\prime , y)| \psi l(x)\varrho \varepsilon (x - y) dxdy. (=: I2)

By Lemma 4.3 and using that un is continuous in t with values in L2
x (see Remark

5.6) for every n \geq 1 (hence every t \in [0, T ] is a Lebesgue point of (4.13)), we obtain

I2 = \BbbE 
\int 
Q

\int 
Q

| un(t\prime , x) - un(t
\prime , y)| \psi l(x)\varrho \varepsilon (x - y) dxdy

\leq \BbbE 
\int 
Q

\int 
Q

| \xi n(x) - \xi n(y)| \psi l(x)\varrho \varepsilon (x - y) dxdy

+ \BbbE 
\int t\prime 

0

\int 
Q2

| An(un(s, x)) - An(un(s, y))| \Delta \psi l(x)\varrho \varepsilon (x - y) dxdy dt

+ C\scrG \alpha (\delta , \varepsilon , 0)\BbbE 
\biggl( 
1 + \| un\| m+1

Lm+1
t,x

\biggr) 
\leq \BbbE 

\int 
Q

\int 
Q

| \xi (x) - \xi (y)| \psi l(x)\varrho \varepsilon (x - y) dx dy

+ C\varepsilon \BbbE \| \nabla An(un)\| L1
t,x

\| \Delta \psi l\| L\infty 
x

+ Cl\scrG \alpha (\delta , \varepsilon , 0)\BbbE 
\biggl( 
1 + \| un\| m+1

Lm+1
t,x

\biggr) 
for some constant Cl > 0 which depends on l but not on \delta and \varepsilon . Using (5.6) we
conclude that

(5.17) I2 \lesssim \xi \BbbE 
\int 
Q

\int 
Q

| \xi (x) - \xi (y)| \psi l(x)\varrho \varepsilon (x - y) dxdy + \varepsilon \| \Delta \psi l\| L\infty 
x

+Ml(\varepsilon ),
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where Ml(\varepsilon ) \rightarrow 0 as \varepsilon \rightarrow 0 (for fixed l, by choosing \delta and \alpha as in the proof of Lemma
4.4-2). We also have that

I1 \lesssim \delta \| \psi l\| L\infty 
x

+ \BbbE 
\int 
Q

\int 
Q

\eta \delta (un(t, x) - un(t
\prime , y))\psi l(x)\varrho \varepsilon (x - y) dxdy.

By It\^o's formula we conclude that

\BbbE 
\int 
Q

\int 
Q

\eta \delta (un(t, x) - un(t
\prime , y))\psi l(x)\varrho \varepsilon (x - y) dxdy

\leq \BbbE 
\int 
Q

\int 
Q

\eta \delta (un(t
\prime , x) - un(t

\prime , y))\psi l(x)\varrho \varepsilon (x - y) dx dy

+ \BbbE 
\int t

t\prime 

\int 
Q

\int 
Q

\eta \prime \delta (un(s, x) - un(t
\prime , y))\nabla An(un(s, x))\nabla (\psi l(x)\varrho \varepsilon (x - y)) dxdy ds

+ \BbbE 
\int t

t\prime 

\int 
Q

\int 
Q

1

2
\eta \prime \prime \delta (un(s, x) - un(t

\prime , y))| \sigma n(x, un(s, x))| 2\ell 2\psi l(x)\varrho \varepsilon (x - y) dxdy ds,

where we have used the fact that

 - \BbbE 
\int t

t\prime 

\int 
Q

\int 
Q

\eta \prime \prime \delta (un(s, x) - un(t\prime , y))\nabla un(s, x)\nabla An(un(s, x))\psi l(x)\varrho \varepsilon (x - y) dxdy ds \leq 0.

From this, using the fact that | \sigma n(x, un(s, x))| 2\ell 2 \lesssim 1 + | un(s, x)| 2, it follows that

I1 \lesssim \delta \| \psi l\| L\infty 
x

+ I2 + \| \psi l\| W 1,\infty 
x

\int t

t\prime 
\varepsilon  - 1\BbbE \| \nabla An(un(s))\| L2

x
+ \delta  - 1

\Bigl( 
1 + \BbbE \| un(s)\| 2L2

x

\Bigr) 
ds

(5.18)

\lesssim \delta \| \psi l\| L\infty 
x
+I2+\varepsilon 

 - 1| t\prime  - t| 12\BbbE \| \nabla An(un)\| L2
t,x

+\delta  - 1| t\prime  - t| 
m - 1
m+1

\Bigl( 
1 + \BbbE \| un(s)\| 2Lm+1

t,x

\Bigr) 
\lesssim \xi \delta \| \psi l\| L\infty 

x
+ I2 + \varepsilon  - 1| t\prime  - t| 12 + \delta  - 1| t\prime  - t| 

m - 1
m+1 .

Consequently, by (5.15)--(5.18), we obtain

\BbbE \| un(t) - un(t
\prime )\| L1

w;x

\lesssim \xi \| w  - \psi l\| L2
x
+ \BbbE 

\int 
Q

\int 
Q

| \xi (x) - \xi (y)| \psi l(x)\varrho \varepsilon (x - y) dxdy + \varepsilon \| \Delta \psi l\| L\infty 
x

+Ml(\varepsilon ) + \delta \| \psi l\| L\infty 
x

+ \varepsilon  - 1| t\prime  - t| 12 + \delta  - 1| t\prime  - t| 
m - 1
m+1 .

Then, given \lambda > 0, we choose l large enough and \varepsilon , \delta > 0 small enough so that

\| w  - \psi l\| L2
x
+ \BbbE 

\int 
Q

\int 
Q

| \xi (x) - \xi (y)| \psi l(x)\varrho \varepsilon (x - y) dxdy

+ \varepsilon \| \Delta \psi l\| L\infty 
x

+Ml(\varepsilon ) + \delta \| \psi l\| L\infty 
x

\leq \lambda /2.

Then it is clear that for every t\prime , t \in \scrT such that | t\prime  - t| is sufficiently small, we have

\BbbE \| un(t) - un(t
\prime )\| L1

w;x
\leq \lambda ,

which, after passing to the limit n\rightarrow \infty , gives

\BbbE \| u(t) - u(t\prime )\| L1
w;x

\leq \lambda .

Consequently u : \scrT \rightarrow L1
\omega L

1
w;x is uniformly continuous, and hence it has a unique

continuous extension on [0, T ].
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Proof of Proposition 3.4. Let (\xi n)n\geq 1 be a sequence in L
m+1
\omega Lm+1

x such that \xi n \rightarrow 
\xi in L1

\omega L
1
w;x. By Theorem 3.1, for every m > n \geq 1 we have the estimate

sup
t\in [0,T ]

\BbbE \| u(t; \xi m) - u(t; \xi n)\| L1
w;x

\leq \BbbE \| \xi m  - \xi n\| L1
w;x
,

where we have replaced sup esst\in [0,T ] by supt\in [0,T ] in (3.1) since, by Theorem 3.3,

we know that u(\cdot ; \xi n) \in C([0, T ];L1
\omega L

1
w;x) for every n \geq 1. Thus, the sequence

\{ u(\cdot ; \xi n)\} n\geq 1 is Cauchy in C([0, T ];L1
\omega L

1
w;x), which implies that the limit v(\cdot ; \xi ) :=

limn\rightarrow \infty u(\cdot ; \xi n) exists in C([0, T ];L1
\omega L

1
w;x). Moreover, if (\~\xi n)n\geq 1 is another sequence

in Lm+1
\omega Lm+1

x which converges to \xi in L1
\omega L

1
w;x, by again using Theorem 3.1 we get

that for every n \geq 1,

sup
t\in [0,T ]

\BbbE \| u(t; \xi n) - u(t; \~\xi n)\| L1
w;x

\leq \BbbE \| \xi n  - \~\xi n\| L1
w;x
,

which shows that v(\cdot ; \xi ) is independent of (\xi n)n\geq 1. It is easy to see that for
\xi \in Lm+1

\omega Lm+1
x , v(\cdot ; \xi ) coincides with u(\cdot ; \xi ) in C([0, T ];L1

\omega L
1
w;x). Thus, v is the

unique continuous (with respect to the variable \xi ) extension of u on C([0, T ];L1
\omega L

1
w;x).

To ease the notation we identify u with v. Finally, (3.2) follows easily by construc-
tion.

6. Proofs of ergodicity.

6.1. Proof of Proposition 3.6. This is a simple application of Fatou's lemma
combined with Lemma A.1 and Theorem 3.3.

Proof of Proposition 3.6. Let t \in [0,\infty ). By Theorem 3.3 we know that u(\cdot ; \xi ) \in 
C([0,\infty );L1

\omega L
1
w;x), and hence there exists a sequence tn \rightarrow t such that u(tn; \xi ) \rightarrow 

u(t; \xi ) for almost every (\omega , x). By Lemma A.1 we can assume that

sup
n\geq 1

(tn \wedge 1)
m+1
m - 1\BbbE \| u(tn; \xi )\| m+1

Lm+1
x

\leq C

for some C > 0 depending only on d, K, m, and | Q| and not on t and \xi . Then, by
Fatou's lemma we have that

(t \wedge 1)
m+1
m - 1\BbbE \| u(t; \xi )\| m+1

Lm+1
x

\leq lim inf
n\rightarrow \infty 

(tn \wedge 1)
m+1
m - 1\BbbE \| u(tn; \xi )\| m+1

Lm+1
x

\leq sup
n\geq 1

(tn \wedge 1)
m+1
m - 1\BbbE \| u(tn; \xi )\| m+1

Lm+1
x

\leq C,

which completes the proof since t is arbitrary.

6.2. Proof of Theorem 3.8. In this section we prove Theorem 3.8. The proof
is based on (4.18) in Corollary 4.5, which, however, we have only shown for entropy
solutions satisfying the ( \star )-property (4.1) and for almost every s < t. For this reason
we first use the approximations from Proposition 5.5 which satisfy the ( \star )-property
and pass to the limit in (4.18). We then use the continuity of solutions in L1

\omega L
1
w;x

given by Theorem 3.3 to derive the estimate for every s < t.

Proof of Theorem 3.8. We first assume that \xi , \~\xi \in Lm+1
\omega Lm+1

x . By Theorem 3.2
we can approximate u(\cdot ; \xi ), u(\cdot ; \~\xi ) in L1

\omega ,tL
1
w;x by un, \~un as in Proposition 5.5 satisfying

the ( \star )-property. By (4.18) in Corollary 4.5 and by passing to the limit n\rightarrow \infty (upon
a subsequence) we obtain that for almost every 0 \leq s < t \leq T (including s = 0),
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\BbbE \| u(t; \xi ) - u(t; \~\xi )\| L1
w;x

 - \BbbE \| u(s; \xi ) - u(s; \~\xi )\| L1
w;x

\leq  - \BbbE 
\int t

s

\| | u(\tau ; \xi )| m - 1u(\tau ; \xi ) - | u(\tau ; \~\xi )| m - 1u(\tau ; \~\xi )\| L1
x
d\tau .

Since by Theorem 3.3 we know that u(\cdot ; \xi ), u(\cdot ; \~\xi ) \in C([0, T ];L1
\omega L

1
w;x), the same esti-

mate holds for every 0 \leq s < t \leq T . Combining this estimate with Lemma B.1, there
exists C > 0 depending only on m such that

\BbbE \| u(t; \xi ) - \~u(t; \~\xi )\| L1
w;x

 - \BbbE \| u(s; \xi ) - u(s; \~\xi )\| L1
w;x

\leq  - C
\int t

s

\BbbE \| u(\tau ; \xi ) - u(\tau ; \~\xi )\| mLm
x
d\tau ,

and if we furthermore note that\Bigl( 
\BbbE \| u(\tau ; \xi ) - u(\tau ; \~\xi )\| L1

w;x

\Bigr) m
\leq \BbbE \| u(\tau ; \xi ) - u(\tau ; \~\xi )\| mLm

x
\| w\| mLm\ast 

x
,

we finally obtain the integral inequality

\BbbE \| u(t; \xi ) - u(t; \~\xi )\| L1
w;x

 - \BbbE \| u(s; \xi ) - u(s; \~\xi )\| L1
w;x

\leq  - C\| w\|  - m
Lm\ast 

x

\int t

s

\Bigl( 
\BbbE \| u(\tau ; \xi ) - u(\tau ; \~\xi )\| L1

w;x

\Bigr) m
d\tau .

Let f(t) = \BbbE \| u(t; \xi ) - u(t; \~\xi )\| L1
w;x

. Then f satisfies the integral inequality

f(t) - f(s) \leq  - C\| w\|  - m
Lm\ast 

x

\int t

s

f(\tau )m d\tau 

for every s \leq t, and it is continuous since u, \~u \in C([0, T ];L1
\omega L

1
w;x). Hence, by Lemma

B.2 we obtain that f(t) \leq h(t), where h solves\Biggl\{ 
h\prime (t) =  - C\| w\|  - m

Lm\ast 
x
h(t)m,

h(0) = f(0).

A simple computation shows that

h(t) =

\Biggl( 
1

h(0) - (m - 1) + C\| w\|  - m
Lm\ast 

x
(m - 1)t

\Biggr) 1
m - 1

,

which, in turn, implies that

\BbbE \| u(t; \xi ) - u(t; \~\xi )\| L1
w;x

\leq C\| w\| 
m

m - 1

Lm\ast 
x
t - 

1
m - 1 .

If \xi , \~\xi \in L1
\omega L

1
w;x, we approximate with sequences (\xi n)n\geq 1, (\~\xi n)n\geq 1 in Lm+1

\omega Lm+1
x

and use (3.2) to pass to the limit.

6.3. Proofs of Proposition 3.10 and Theorem 3.12. To prove Proposition
3.10, we first prove the flow property for entropy solutions (see Corollary 6.1). This
uses the continuity of solutions in L1

\omega L
1
w;x given by Theorem 3.3 in combination with

an approximation argument in Lm+1
\omega Lm+1

x in the spirit of [DPZ14, Theorem 9.14],
which strongly relies on the weighted L1-contraction estimate (3.2). For technical
reasons, in this section we extend the time horizon to  - \infty .
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We need the following notation. For \xi \in Lm+1
x and s >  - \infty we denote by us(\cdot ; \xi )

the entropy solution to

(6.1)

\left\{     
\partial tus(t, x; \xi ) = \Delta 

\bigl( 
| us(t; \xi )| m - 1us(t; \xi )

\bigr) 
(t, x) + \sigma k(x, us(t, x; \xi )) \.\beta 

k(t),

us(s, x; \xi ) = \xi ,

us| \partial Q = 0

for t \geq s, where we have extended \beta k(t) for t < 0 by gluing at t = 0 an indepen-
dent Brownian motion evolving backwards in time. The existence and uniqueness
of entropy solutions to this equation for s = 0 are given by Theorem 3.1. The case
s \not = 0 follows analogously. To be consistent with the previous sections, we simply
write u(\cdot ; \xi ) to denote u0(\cdot ; \xi ).

We have the following useful relation.

Corollary 6.1. For every \xi \in Lm+1
x and  - \infty < s1 \leq s2 \leq t \leq T we have that

us1(t; \xi ) = us2(t;us1(s2; \xi )) in L
1
\omega L

1
w;x.

Proof. For simplicity we prove the statement for (s1, s2) = (0, s). If u is an
entropy solution on [0, T ] and \varphi \in C\infty 

c ([s, T )), which can be extended continuously
on [0, s] (taking the constant value \varphi (s)), we can choose \phi = \chi k\varphi \varrho in Definition 2.4
with

\chi \kappa (t) =

\left\{     
1, t \in [s, T ),

\kappa 
\bigl( 
t - 

\bigl( 
s - 1

\kappa 

\bigr) \bigr) 
, t \in 

\bigl[ 
s - 1

\kappa , s
\bigr] 
,

0, t \in 
\bigl[ 
0, s - 1

\kappa 

\bigr] 
to obtain that

 - 
\int T

0

\int 
Q

\eta (u)\chi \kappa \partial t\varphi (t)\varrho dxdt \leq \kappa 

\int s

s - 1
\kappa 

\int 
Q

\eta (u)\varphi (s)\varrho dxdt(6.2)

+

\int T

0

\int 
Q

\bigl[ 
\eta \prime a2

\bigr] 
(u)\chi \kappa \varphi \Delta \rho dx dt

+

\int T

0

\int 
Q

\biggl( 
1

2
\chi \kappa \varphi \varrho \eta 

\prime \prime (u)| \sigma (u)| 2\ell 2  - \chi \kappa \varphi \varrho \eta 
\prime \prime (u)| \nabla [a](u)| 2

\biggr) 
dx dt

+

\int T

0

\int 
Q

\chi \kappa \varphi \varrho \eta 
\prime (u)\sigma k(u) dx d\beta k(t).

One can prove that u(s) \in Lm+1
\omega Lm+1

x . Indeed, we can approximate u by un as in
Proposition 5.5 in L1

\omega ,tL
1
w;x, and hence for almost every (\omega , t, x) up to a subsequence,

and use (5.6) and Fatou's lemma to obtain that

sup ess
t\in [0,T ]

\BbbE \| u(t)\| m+1

Lm+1
x

\lesssim 1 + \BbbE \| \xi \| m+1

Lm+1
x

.

This estimate, together with the fact that u \in C([0, T ];L1
\omega L

1
w;x), implies that there

exists a sequence sn \rightarrow s such that u(sn, x) \rightarrow u(s, x) for almost every (\omega , x) and

sup
n\geq 1

\BbbE \| u(sn)\| m+1

Lm+1
x

\lesssim 1 + \BbbE \| \xi \| m+1

Lm+1
x

.

Then, again by Fatou's lemma, we have that

\BbbE \| u(s)\| m+1

Lm+1
x

\lesssim lim inf
n\rightarrow \infty 

\BbbE \| u(sn)\| m+1

Lm+1
x

\lesssim sup
n\geq 1

\BbbE \| u(sn)\| m+1

Lm+1
x

\lesssim 1 + \BbbE \| \xi \| m+1

Lm+1
x

,
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which implies that u(s) \in Lm+1
\omega Lm+1

x . We also have the following estimate:\bigm| \bigm| \bigm| \bigm| \bigm| \kappa 
\int s

s - 1
\kappa 

\int 
Q

\eta (u)\varphi (s)\varrho dx dt - 
\int 
Q

\eta (u(s))\varphi (s)\varrho dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \kappa 
\int s

s - 1
\kappa 

\int 
Q

(\eta (u) - \eta (u(s)))\varphi (s)\varrho dxdt

\bigm| \bigm| \bigm| \bigm| \bigm| 
\lesssim \| \eta \prime \| \infty 

\bigm| \bigm| \bigm| \bigm| \bigm| \kappa 
\int s

s - 1
\kappa 

\int 
Q

| u - u(s)| \varphi (s)\varrho dx dt

\bigm| \bigm| \bigm| \bigm| \bigm| ,
where (passing to a subsequence) the latter term converges to zero \BbbP -almost surely.
This is true since, by Theorem 3.3, u is continuous in L1

\omega L
1
w;x (thus \kappa 

\int s

s - 1
\kappa 
(\BbbE 
\int 
Q
| u - 

u(s)| w dx) dt\rightarrow 0), w is strictly positive in Q, and \phi (s) has compact support in Q.
Taking \kappa \rightarrow \infty in (6.2) (passing to a suitable subsequence) implies that u is

an entropy solution on [s, T ]. Finally, by uniqueness of entropy solutions and the
continuity in L1

\omega L
1
w;x, we conclude that u(t) coincides with us(t;u(s; \xi )) in L1

\omega L
1
w;x

for every t \in [s, T ], which completes the proof.

Proof of Proposition 3.10. To prove that the map Pt is a semigroup we need to
show that Pt+s = PsPt for every 0 < s \leq t. The argument follows [DPZ14, Proof of
Theorem 9.14]. In particular, we prove that

(6.3) \BbbE 
\bigl( 
F (u(t+ s; \xi ))

\bigm| \bigm| \scrF s

\bigr) 
= \BbbE F (us(t; \zeta ))

\bigm| \bigm| 
\zeta =u(s;\xi )

\BbbP -almost surely for every \xi \in L1
w;x and F \in Cb(L

1
w;x) (space of bounded continuous

functions from L1
w,x to \BbbR ), which implies the result by virtue of the monotone class

theorem.
We first consider \xi \in Lm+1

x . By Corollary 6.1 we have that the random variables
u(s + t; \xi ) and us(t;u(s; \xi )) coincide in L1

\omega L
1
w;x. Since u(s; \xi ) is \scrF s-measurable and

u(s; \xi ) \in Lm+1
\omega Lm+1

x (by the same argument as in the proof of Corollary 6.1), it
suffices to prove that

(6.4) \BbbE 
\bigl( 
F (us(t; \zeta 0))

\bigm| \bigm| \scrF s

\bigr) 
= \BbbE F (us(t; \zeta ))

\bigm| \bigm| 
\zeta =\zeta 0

,

\BbbP -almost surely, for every \scrF s-measurable \zeta 0 \in Lm+1
\omega Lm+1

x . If \zeta 0 is a simple random
variable, (6.4) follows easily. Otherwise, there exists a sequence of simple random

variables (\zeta 
(n)
0 )n\geq 1, such that \zeta 

(n)
0 \rightarrow \zeta 0 in Lm+1

\omega Lm+1
x as n \rightarrow \infty , which, in turn,

implies that \zeta 
(n)
0 \rightarrow \zeta 0 in L1

\omega L
1
w;x. By (6.4) we know that for every n \geq 1,

(6.5) \BbbE 
\Bigl( 
F (us(t; \zeta 

(n)
0 ))

\bigm| \bigm| \scrF s

\Bigr) 
= \BbbE F (us(t; \zeta ))

\bigm| \bigm| 
\zeta =\zeta 

(n)
0
.

Using (3.2) (with u replaced by us) we obtain the estimate

\BbbE \| us(t; \zeta (n)0 ) - us(t; \zeta 0)\| L1
w;x

\leq \BbbE \| \zeta (n)0  - \zeta 0\| L1
w;x
,

which implies that us(t; \zeta 
(n)
0 ) \rightarrow us(t; \zeta 0) in L1

\omega L
1
w;x. Since F is continuous and

bounded, the left-hand side of (6.5) converges to \BbbE 
\bigl( 
F (us(t; \zeta 0))

\bigm| \bigm| \scrF s

\bigr) 
\BbbP -almost surely

passing to a subsequence. On the other hand, the mapping L1
w;x \ni \zeta \mapsto \rightarrow \BbbE F (us(t; \zeta ))

is continuous. Indeed, for arbitrary \zeta \in L1
w;x, let (\zeta n)n\geq 1 be a sequence in L1

w;x such

D
ow

nl
oa

de
d 

09
/3

0/
20

 to
 1

29
.1

1.
76

.2
32

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4556 K. DAREIOTIS, B. GESS, AND P. TSATSOULIS

that \zeta n \rightarrow \zeta in L1
w;x. Then, for every subsequence kn \rightarrow \infty we can use (3.2) (with u

replaced by us) and the continuity and boundedness of F to find a further subsequence
mkn

\rightarrow \infty such that \BbbE F (us(t; \zeta mkn
)) \rightarrow \BbbE F (us(t; \zeta )). Using the continuity of L1

w;x \ni 
\zeta \mapsto \rightarrow \BbbE F (us(t; \zeta )) and the fact that \zeta 

(n)
0 \rightarrow \zeta 0 in L1

\omega L
1
w;x, we conclude that the right-

hand side of (6.5) converges to \BbbE F (us(t; \zeta ))
\bigm| \bigm| 
\zeta =\zeta 0

\BbbP -almost surely. Hence, we can pass

to the limit in (6.5) to obtain (6.4) for arbitrary \scrF s-measurable \zeta 0 \in Lm+1
\omega Lm+1

x . This
proves (6.3) for \xi \in Lm+1

x .
Finally, if \xi \in L1

w,x, we take any sequence \xi n \rightarrow \xi in L1
w;x such that \xi n \in 

Lm+1
x . Using the same arguments as in the previous paragraph we obtain that

\BbbE 
\bigl( 
F (u(t+ s; \xi n))

\bigm| \bigm| \scrF s

\bigr) 
\rightarrow \BbbE 

\bigl( 
F (u(t+ s; \xi ))

\bigm| \bigm| \scrF s

\bigr) 
\BbbP -almost surely (upon relabeling a

subsequence) and that the mapping L1
w;x \ni \zeta \mapsto \rightarrow \BbbE F (us(t; \zeta )) is continuous. This

implies (6.3) for \xi \in L1
w,x.

To prove that the semigroup Pt is Feller we simply note that if \xi n \rightarrow \xi in L1
w;x,

then, by (3.2) for every subsequence kn \rightarrow \infty , there exists a further subsequence
mkn

\rightarrow \infty such that u(t; \xi mkn
) \rightarrow u(t; \xi ) in L1

w;x \BbbP -almost surely. Then, by the
continuity and boundedness of F , PtF (\xi mkn

) \rightarrow PtF (\xi ).

We are now ready to prove Theorem 3.12, following [R\"oc07, Proof of Theorem
4.3.9, Proof of Lemma 4.3.11].

Proof of Theorem 3.12. Step 1. For \xi \in Lm+1
x we let \eta s(\xi ) := us(0; \xi ). By Corol-

lary 6.1, for every s1 \leq s2 \leq  - 1 we have that

\eta s1(\xi ) = us2(0;us1(s2; \xi ))

in L1
\omega L

1
w;x. By Theorem 3.8 we know that

\BbbE \| \eta s2(\xi ) - \eta s1(\xi )\| L1
w;x

\lesssim \| w\| m\ast 
Lm\ast 

x
| s2|  - 

1
m - 1 .

The last inequality implies that (\eta s(\xi ))s\leq  - 1 is a Cauchy sequence in L1
\omega L

1
w;x. Hence

there exists a random variable \eta (\xi ) \in L1
\omega L

1
w;x such that \eta s(\xi ) \rightarrow \eta (\xi ) as s\rightarrow  - \infty .

We claim that \eta (\xi ) is independent of \xi . Indeed, again using Theorem 3.8 we have
that for any \xi , \~\xi \in Lm+1

x ,

\BbbE \| \eta s(\xi ) - \eta s(\~\xi )\| L1
w;x

\lesssim \| w\| m\ast 
Lm\ast 

x
| s|  - 

1
m - 1 ,

and letting s\rightarrow  - \infty asserts our claim.
We now let \mu = \scrL (\eta ) \in \scrM 1(L

1
w;x) for \eta = \eta (0). Then \mu \in \scrM 1(L

m+1
x ) since

\BbbE \| \eta \| m+1

Lm+1
x

\leq lim inf
s\rightarrow  - \infty 

\BbbE \| \eta s(0)\| m+1

Lm+1
x

\leq sup
s\leq  - 1

\BbbE \| \eta s(0)\| m+1

Lm+1
x

,

and the last quantity is bounded by Proposition 3.6. Similarly to Definition 3.9 we
denote by Ps,t the semigroup associated to (6.1) at time t. In this notation Pt = P0,t.
Then one has the following elementary calculation:\int 

L1
w;x

P0,tF (\xi )\mu (d\xi ) = lim
s\rightarrow \infty 

P - s,0(P0,tF )(0)

= lim
s\rightarrow \infty 

P - s,tF (0) = lim
s\rightarrow \infty 

P - (t+s),0F (0) =

\int 
L1

w;x

F (\xi )\mu (d\xi )

for every F \in Cb(L
1
w;x) (bounded continuous functions from L1

w,x to \BbbR ), where we
also use the fact that Ps,t is Feller for every s < t and use as well the identities
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Ps,t = Ps+\tau ,t+\tau for every \tau \in \BbbR and Ps,\tau P\tau ,t = Ps,t for every s < \tau < t. This implies
that P \ast 

t \mu = \mu as measures on L1
w;x and hence on Lm+1

x since both P \ast 
t \mu and \mu are

supported on Lm+1
x .

Step 2. By Theorem 3.8, for every F \in Lip(L1
w;x) and \xi ,

\~\xi \in L1
w;x we have that\bigm| \bigm| \bigm| PtF (\xi ) - PtF (\~\xi )

\bigm| \bigm| \bigm| \lesssim \| F\| Lip(L1
w;x)

\| w\| m\ast 
Lm\ast 

x
t - 

1
m - 1 ,

which implies that any two invariant measures \mu and \~\mu on L1
w;x coincide. Using the

last estimate we also see that\bigm| \bigm| \bigm| \bigm| \bigm| PtF (\xi ) - 
\int 
L1

w;x

F (\~\xi )\mu (d\~\xi )

\bigm| \bigm| \bigm| \bigm| \bigm| \lesssim \| F\| Lip(L1
w;x)

\| w\| m\ast 
Lm\ast 

x
t - 

1
m - 1 ,

which completes the proof by taking the supremum over \| F\| Lip(L1
w;x)

\leq 1 and \xi \in 
L1
w;x.

Appendix A. In this appendix we prove Proposition 5.5 using Galerkin ap-
proximations as in [DG18]. We also prove Lemma A.1, which is used in the proof of
Proposition 3.6.

Proof of Proposition 5.5. We fix n \geq 1, and since n is fixed, in order to ease the
notation we drop the dependence on n and relabel \=A := An, \=\sigma = \sigma n, \=\xi := \xi n, and u :=
un. Let (ek)

\infty 
k=1 \subset H4

x \cap H2
0,x be an orthonormal basis of L2

x consisting of eigenvectors
of \Delta 2. For m = 1, 2 let us denote by H - m

x the dual of Hm
0;x equipped with the inner

product (\cdot , \cdot )H - m
x

:= (\Delta  - m\cdot ,\Delta  - m\cdot )Hm
0;x

, and let \Pi l : H
 - 1
x \rightarrow Vl := span\{ e1, . . . , el\} be

the projection operator, that is, for v \in H - 1
x ,

\Pi lv :=

l\sum 
i=1

H - 1\langle v, ei\rangle H1
0;x
ei.

Then, the Galerkin approximation\Biggl\{ 
dul = \Pi l\Delta \=A(ul) dt+\Pi l\=\sigma 

k(ul) d\beta 
k(t),

u(0) = \Pi l
\=\xi 

(A.1)

is an equation on Vl with locally Lipschitz continuous coefficients having linear growth.
Consequently, it admits a unique solution ul, for which we have

ul \in L2
\omega ,tH

1
0;x \cap L2

\omega C([0, T ];L
2
x).

After applying It\^o's formula for the function u \mapsto \rightarrow \| u\| 2L2
x
, by standard arguments we

obtain that

(A.2) \BbbE 
\int T

0

\| ul\| 2H1
0;x

dt \leq C
\Bigl( 
1 + \BbbE \| \=\xi \| 2L2

x

\Bigr) 
and that for every p \geq 2,

(A.3) \BbbE sup
t\leq T

\| ul(t)\| pL2
x
\leq C

\Bigl( 
1 + \BbbE \| \=\xi \| pL2

x

\Bigr) 
,
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where C is independent of l. In H - 1
x we have \BbbP -almost surely for every t \in [0, T ],

ul(t) = \Pi l
\=\xi +

\int t

0

\Pi l\Delta \=A(ul) ds+

\int t

0

\Pi l\=\sigma 
k(ul) d\beta 

k(s) = J1
l + J2

l (t) + J3
l (t).

By Sobolev's embedding theorem and (A.2),

sup
l

\BbbE \| J2
l \| 2

W
1
3
,4

t H - 1
x

\leq sup
l

\BbbE \| J2
l \| 2H1

t H
 - 1
x

<\infty .

By [FG95, Lemma 2.1], the linear growth of \sigma , and (A.3) we have

sup
l

\BbbE \| J3
l \| 

p

W\alpha ,p
t H - 1

x
<\infty 

for every \alpha \in (0, 12 ) and p \geq 2. By the last two estimates and (A.2) we obtain

sup
l

\BbbE \| ul\| 
W

1
3
,4

t H - 1
x \cap L2

tH
1
0;x

<\infty .

By virtue of [FG95, Theorems 2.1 and 2.2] one can easily see that the embedding

W
1
3 ,4
t H - 1

x \cap L2
tH

1
0;x \lhook \rightarrow L2

tL
2
x \cap C([0, T ];H - 2

x ) =: \scrX 

is compact. It follows that for any sequences (lq)q\geq 1, (\=lq)q\geq 1, the laws of (ulq , u\=lq )q\geq 1

are tight on \scrX \times \scrX . Let us set

\beta (t) =

\infty \sum 
k=1

1\surd 
2k
\beta k(t)ek,

where (ek)
\infty 
k=1 is the standard orthonormal basis of \ell 2. By Prokhorov's theorem, there

exists a (non--relabeled) subsequence (ulq , u\=lq )q\geq 1 such that the laws of (ulq , u\=lq , \beta )q\geq 1

on \scrZ := \scrX \times \scrX \times C([0, T ]; \ell 2) are weakly convergent. By Skorohod's representation
theorem, there exist \scrZ -valued random variables (\^u, \v u, \~\beta ), (\widehat ulq , \widehat u\=lq , \~\beta q), q \geq 1, on a

probability space (\~\Omega , \~\scrF , \~\BbbP ) such that in \scrZ , \~\BbbP -almost surely,

(A.4) (\widehat ulq , \widehat u\=lq , \~\beta q) \rightarrow (\^u, \v u, \~\beta ),

as l \rightarrow \infty , and for each q \geq 1, as random variables in \scrZ ,

(A.5) (\widehat ulq , \widehat u\=lq , \~\beta q) d
= (ulq , u\=lq , \beta ).

Moreover, upon passing to a non--relabeled subsequence, we may assume that

(A.6) (\widehat ulq , \widehat u\=lq ) \rightarrow (\^u, \v u)

for almost every (\~\omega , t, x). Let ( \~\scrF t)t\in [0,T ] be the augmented filtration of \scrG t := \sigma (\^u(s),

\v u(s), \~\beta (s); s \leq t), and let \~\beta k(t) :=
\surd 
2k( \~\beta (t), ek)\ell 2 . It is easy to see that \~\beta k, k \geq 1, are

independent, standard, real-valued \~\scrF t-Wiener processes. Indeed, they are \~\scrF t-adapted
by definition, and they are independent since \beta k are. We only have to show that they
are \~\scrF t-Wiener processes. Let us fix s < t, and let V be a bounded continuous function
on C([0, s];H - 2

x )\times C([0, s];H - 2
x )\times C([0, s]; \ell 2). For each l \geq 1 we have

\~\BbbE 
\Bigl( 
\~\beta k
q (t) - \~\beta k

q (s)
\Bigr) 
V
\Bigl( \widehat ulq | [0,s], \widehat u\=lq | [0,s], \~\beta q| [0,s]\Bigr) 

= \BbbE 
\bigl( 
\beta k(t) - \beta k(s)

\bigr) 
V
\Bigl( 
ulq | [0,s], u\=lq | [0,s], \beta | [0,s]

\Bigr) 
= 0,
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which, by using uniform integrability and passing to the limit q \rightarrow \infty , shows that
\~\beta k(t) is a \scrG t-martingale. Similarly, | \~\beta k(t)| 2  - t is a \scrG t-martingale. By continuity of
\~\beta k(t) and | \beta k(t)| 2 - t and the fact that their supremum in time is integrable in \omega , one
can easily see that they are also \~\scrF t-martingales. Hence, by L\'evy's characterization
theorem (see, e.g., [KS91, Theorem 3.16]) \~\beta k are \~\scrF t-Wiener processes.

We now show that both \^u and \v u satisfy the equation

dv = \Delta \=A(v) dt+ \=\sigma k(x, v) d\~\beta k(t).

Note that due to (A.2), we have that \^u \in L2
\~\omega ,tH

1
0;x. Let us set

\^M(t) := \^u(t) - \^u(0) - 
\int t

0

\Delta \=A(\^u) ds,

\^Mq(t) := \widehat ulq (t) - \widehat ulq (0) - \int t

0

\Pi lq\Delta 
\=A(\widehat ulq ) ds,

Mq(t) := ulq (t) - ulq (0) - 
\int t

0

\Pi lq\Delta 
\=A(ulq ) ds.

We will show that for any \phi \in H - 2
x and k \geq 1, the processes

\^M1(t) := ( \^M(t), \phi )H - 2 ,

\^M2(t) := ( \^M(t), \phi )2H - 2  - 
\int t

0

\infty \sum 
k=1

| (\=\sigma k(\^u), \phi )H - 2 | 2 ds,

and

\^M3,k(t) := \~\beta k(t)( \^M(t), \phi )H - 2
x

 - 
\int t

0

(\=\sigma k(\^u), \phi )H - 2 ds

are continuous \~\scrF t-martingales. We first show that they are continuous \scrG t-martingales.
Assume for now that \phi = \Delta 2\psi , where \psi \in Vlq . For, i = 1, 2, 3, let us also define the

processes \^M i
q,M

i
q similarly to \^M i but with \^M , \^u, \=\sigma k(\cdot ) replaced by \^Mq, \widehat ulq , \Pi lq \=\sigma 

k(\cdot )
andMq, ulq , \Pi lq\sigma 

k(\cdot ), respectively. Let us fix s < t, and let V be a bounded continuous
function on C([0, s];H - 2

x )\times C([0, s]; \ell 2). We have that

(Mq(t), \phi )H - 2 =

\int t

0

(\Pi lq \=\sigma 
k(ulq ), \phi )H - 2

x
d\beta k(s).

It follows that M i
q are continuous \scrF t-martingales. Hence,

\BbbE V
\Bigl( 
ulq | [0,s], u\=lq | [0,s], \beta | [0,s]

\Bigr) \bigl( 
M i

q(t) - M i
q(s)

\bigr) 
= 0,

which, combined with (A.5), gives

(A.7) \~\BbbE V
\Bigl( \widehat ulq | [0,s], \widehat u\=lq | [0,s], \~\beta q| [0,s]\Bigr) \Bigl( \^M i

q(t) - \^M i
q(s)

\Bigr) 
= 0.

Next, note that

\~\BbbE 
\int T

0

\bigm| \bigm| \bigm| \bigl( \Pi lq\Delta 
\=A(\widehat ulq ) - \Delta \=A(\^u), \phi 

\bigr) 
H - 2

x

\bigm| \bigm| \bigm| dt = \~\BbbE 
\int T

0

\bigm| \bigm| \bigm| \bigl( \=A(\widehat ulq ) - \=A(\^u),\Delta \psi 
\bigr) 
L2

x

\bigm| \bigm| \bigm| dt(A.8)

\leq \~\BbbE 
\int T

0

\| \^u - \widehat ulq\| L2
x
\rightarrow 0,
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where the convergence follows from (A.4) and the fact that (
\int T

0
\| \widehat ulq  - \^u\| L2

x
dt)q\geq 1 is

uniformly integrable on \Omega (which, in turn, follows from (A.2)). Hence, by (A.8) and
(A.4) we see that for each t \in [0, T ],

(A.9) ( \^Mq(t), \phi )H - 2
x

\rightarrow ( \^M(t), \phi )H - 2
x

in probability. Then, one can easily verify that \^M i
q(t) \rightarrow \^M i(t) in probability. More-

over, for every \phi \in H - 2
x and every p \geq 2, by (A.5) and (A.3), we have

sup
q

\~\BbbE | ( \^Mq(t), \phi )H - 2
x

| p = sup
q

\BbbE 
\bigm| \bigm| \bigm| \bigm| \int t

0

(\Pi lq \=\sigma 
k(ulq ), \phi )H - 2

x
d\beta k(s)

\bigm| \bigm| \bigm| \bigm| p
\lesssim \| \phi \| p

H - 2
x

\BbbE (1 + \| \=\xi \| pL2
x
).

From this, one easily deduces that for each i = 1, 2, 3 and for t \in [0, T ], M i
q(t) are

uniformly integrable. Hence, we can pass to the limit in (A.7) to obtain

(A.10) \~\BbbE V
\Bigl( 
\^u| [0,s], \v u| [0,s], \~\beta | [0,s]

\Bigr) \Bigl( 
\^M i(t) - \^M i(s)

\Bigr) 
= 0.

In addition, using the continuity of \^M i(t) in \phi , uniform integrability, and the fact that
\cup q\Delta 

2Vlq is dense in H - 2
x , it follows that (A.10) holds also for every \phi \in H - 2

x . Hence,

for every \phi \in H - 2
x , \^M i are continuous \scrG t-martingales having all moments finite. In

particular, by Doob's maximal inequality, they are uniformly integrable (in t), which,
combined with continuity (in t), implies that they are also \~\scrF t-martingales. By [Hof13,
Proposition A.1] we obtain that \~\BbbP -almost surely for every \phi \in H - 2

x and t \in [0, T ],

(\^u(t), \phi )H - 2 = (\^u(0), \phi )H - 2
x

+

\int t

0

(\Delta \=A(\^u), \phi )H - 2
x

ds+

\int t

0

(\=\sigma k(\^u), \phi )H - 2
x

d\~\beta k(s).

Note that \^u(0)
d
= \=\xi , which implies that \^u(0) \in Lm+1

x
\~\BbbP -almost surely. Choosing

\phi = \Delta 2\psi for \psi \in C\infty 
c (Q), we obtain that for almost every (\~\omega , t),

(\^u(t), \psi )L2
x
= (\^u(0), \psi )L2

x
 - 
\int t

0

\bigl( 
\nabla \=A(\^u),\nabla \psi 

\bigr) 
L2

x
ds+

\int t

0

(\=\sigma k(\^u), \psi )L2
x
d\~\beta k(s).

It follows (see [KR79]) that \^u is a continuous L2
x-valued \~\scrF t-adapted process. Hence,

\^u is an L2
x-solution of \scrE ( \=A, \^\sigma , \^\xi ) on (\~\Omega , ( \~\scrF t)t, \~\BbbP ) with driving noise ( \~\beta k)\infty k=1, where

\^\xi := \^u(0). Again, by standard arguments, for every p \geq 2 one has the estimate

\BbbE sup
t\leq T

\| \^u(t)\| p
Lp

x
+ \BbbE 

\int T

0

\int 
Q

| \^u| p - 2| \nabla \^u| 2 dxdt \leq N(1 + \BbbE \| \=\xi \| pL2
x
).

Using this, It\^o's formula (see, e.g., [Kry13]) for the function u \mapsto \rightarrow 
\int 
Q
\eta (u)\varrho dx, and It\^o's

product rule, one can see that \^u is an entropy solution of \scrE ( \=A, \^\sigma , \^\xi ) on (\~\Omega , ( \~\scrF t)t, \~\BbbP )
with driving noise ( \~\beta k)\infty k=1 and initial condition \^\xi := \^u(0). In the exact same way, \v u

is an L2
x-solution and an entropy solution of \scrE ( \=A, \=\sigma , \v \xi ) (again, on (\~\Omega , ( \~\scrF t)t, \~\BbbP )) with

driving noise ( \~\beta k)\infty k=1 and \v \xi := \v u(0). Furthermore, we have for \delta > 0
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\~\BbbP (\| \^\xi  - \v \xi \| H - 2
x

> \delta ) \leq \delta  - 1\~\BbbE \| \^\xi  - \v \xi \| H - 2
x

\leq lim inf
q\rightarrow \infty 

\delta  - 1\~\BbbE \| \widehat ulq (0) - \widehat 
u\=lq (0)\| H - 2

x

= lim inf
q\rightarrow \infty 

\delta  - 1\BbbE \| \Pi lq
\=\xi  - \Pi \=lq

\=\xi \| H - 2
x

= 0.

Hence, both \^u and \v u are entropy solutions with the same initial condition. Moreover,
by Lemma 5.3 they have the ( \star )-property (4.1). Hence, by Corollary 4.5 we conclude
that \^u = \v u. By [GK96, Lemma 1.1] we have that the initial sequence (ul)

\infty 
l=1 converges

in probability in \scrX to some u \in \scrX . Using this convergence and the uniform estimates
on ul, it is then straightforward to pass to the limit in (A.1) and see that u is indeed
an L2

x-solution.

Lemma A.1. Let u be an entropy solution of \scrE (A, \sigma , \xi ) for A(r) = | r| m - 1r. There
exists C > 0 depending only on d, k, m, and | Q| and not on T and \xi such that

sup ess
t\in [0,T ]

(t \wedge 1)
m+1
m - 1\BbbE \| u(t)\| m+1

Lm+1
x

\leq C.

Proof. Let un be the unique entropy solution of \scrE (An, \sigma , \xi ), where An(r) =
| r| m - 1r + n - 1r. It is easy to see by construction that un is an L2

x-solution (see
Definition 5.2). By It\^o's formula we see that

\BbbE \| un(t)\| m+1

Lm+1
x

= \BbbE \| \xi \| m+1

Lm+1
x

 - \BbbE 
\int t

0

\biggl( 
(m+ 1)\| \nabla umn \| 2L2

x
+

(m+ 1)m

2n
\| \nabla u

m+1
2

n \| 2L2
x

\biggr) 
ds

+ \BbbE 
\int t

0

\int 
Q

(m+ 1)m

2
| un| m - 1| \sigma (un)| 2\ell 2 dxds.

By Poincar\'e's inequality and Jensen's inequality we have\Bigl( 
\BbbE \| un\| m+1

Lm+1
x

\Bigr) 2m
m+1

\lesssim \| \nabla umn \| 2L2
x
.

From this we obtain for f(t) := \BbbE \| un(t)\| m+1

Lm+1
x

the differential inequality

f \prime (t) \leq  - C1| f(t)| 
2m

m+1 + C2f(t) + C3,

where for i = 1, . . . , 3, Ci is a positive constant which depends on d,K,m, | Q| but not
on T . Using Young's inequality we obtain that

f(t) \leq C
\Bigl( 
 - | f(t)| 

2m
m+1 + 1

\Bigr) 
,

and by a simple comparison criterion (see [TW18, Lemma 3.8]),

f(t) \leq C(t \wedge 1) - 
m+1
m - 1

for some C > 0 independent of T and f(0). The result follows if we let n\rightarrow \infty , since
un \rightarrow u in L1

\omega ,tL
1
w;x.

Appendix B.

Lemma B.1. For every m \geq 1 there exists C > 0 such that\bigm| \bigm| \bigl( | u| m - 1u - | v| m - 1v
\bigr) \bigm| \bigm| \geq C| u - v| m

for every u, v \in \BbbR .
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Proof. Let f(z) = | z| m - 1z, z \in \BbbR . Without loss of generality, we can assume that
u - v > 0, which, by monotonicity, implies that f(u) - f(v) = | u| m - 1u - | v| m - 1v. We
write

f(u) - f(v) =

\int u

v

d

dz
f(z) dz = m

\int u

v

| z| m - 1 dz.

We distinguish among the cases u, v \geq 0, u, v \leq 0, and u \geq 0 \geq v.

Case u, v \geq 0. By a change of variables and the monotonicity of d
dz f on [0,\infty )

we have that

f(u) - f(v) =

\int u - v

0

d

dz
f(z + v) dz \geq 

\int u - v

0

d

dz
f(z) dz = (u - v)m.

Case u, v \leq 0. By symmetry we get

f(u) - f(v) =

\int  - v

 - u

d

dz
f(z) dz.

Then, similarly to the first case, we observe that

f(u) - f(v) =

\int  - (v - u)

0

d

dz
f(z  - u) dz \geq 

\int  - (v - u)

0

f(z) dz = (u - v)m.

Case u \geq 0 \geq v. We first assume that - 1
2 (u - v) \leq v \leq 0. In this case u \geq 1

2 (u - v),
and we get the bound

f(u) - f(v) \geq 
\int 1

2 (u - v)

0

d

dz
f(z) dz =

1

2m
(u - v)m.

We now assume that v \leq  - 1
2 (u - v). Then

f(u) - f(v) \geq 
\int 0

 - 1
2 (u - v)

d

dz
f(z) dz =

1

2m
(u - v)m.

The above assertions complete the proof.

Lemma B.2. Let f, h : \BbbR \rightarrow \BbbR be continuous functions such that for every s \leq t,\Biggl\{ 
f(t) - f(s) \leq  - C

\int t

s
| f(\tau )| m - 1f(\tau ) d\tau ,

h(t) - h(s) =  - C
\int t

s
| h(\tau )| m - 1h(\tau ) d\tau 

for some C > 0. Then, provided f(0) \leq h(0), we have that f(t) \leq h(t) for every
t \geq 0.

Proof. Let h\varepsilon (t) be the unique continuous solution of\Biggl\{ 
h\prime \varepsilon (t) =  - C| h\varepsilon (t)| m - 1h\varepsilon (t) + \varepsilon ,

h\varepsilon (0) = h(0).

We show that for every t > 0 and \varepsilon \in (0, 1) we have that f(t) \leq h\varepsilon (t). The result is
then immediate if we pass to the limit \varepsilon \rightarrow 0.
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Assume for contradiction that there exists t > 0 such that f(t) > h\varepsilon (t). Using
the continuity of f and h\varepsilon and the fact that f(0) \leq h(0) we may assume that there
exist s < t\ast \leq t such that f(s) = h\varepsilon (s) and f(\tau ) > h\varepsilon (\tau ) for every \tau \in (s, t\ast ]. This
implies that for every \tau \in (s, t\ast ],

h\varepsilon (\tau ) - h\varepsilon (s) < f(\tau ) - f(s) \leq  - C
\int \tau 

s

| f(\=\tau )| m - 1f(\=\tau ) d\=\tau .

Multiplying the last inequality by (\tau  - s) - 1 and passing to the limit \tau \rightarrow s, we obtain
that

 - C| h\varepsilon (s)| m - 1h\varepsilon (s) + \varepsilon = h\prime \varepsilon (s) \leq  - C| f(s)| m - 1f(s),

which is a contradiction since f(s) = h\varepsilon (s). This completes the proof.
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