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ABSTRACT

Acoustic analysis of sleep breathing sounds using a smartphone at

home provides a much less obtrusive means of screening for sleep-

disordered breathing (SDB) than assessment in a sleep clinic. How-

ever, application in a home environment is confounded by the prob-

lem that a bed partner may also be present and snore. This paper

proposes a novel acoustic analysis system for snorer diarisation,

a concept extrapolated from speaker diarisation research, which al-

lows screening for SDB of both the user and the bed partner using

a single smartphone. The snorer diarisation system involves three

steps. First, a deep neural network (DNN) is employed to estimate

the number of concurrent snorers in short segments of monaural au-

dio recordings. Second, the identified snore segments are clustered

using snorer embeddings, a feature representation that allows dif-

ferent snorers to be discriminated. Finally, a snore transcription is

automatically generated for each snorer by combining consecutive

snore segments. The system is evaluated on both synthetic snore

mixtures and real two-snorer recordings. The results show that it is

possible to accurately screen a subject and their bed partner for SDB

in the same session from recordings of a single smartphone.

Index Terms— Snorer diarisation, sleep-disordered breathing,

deep neural network embeddings, LSTM.

1. INTRODUCTION

The most prevalent forms of sleep-disordered breathing (SDB) are

snoring, caused by a partial collapse of the upper airway during

sleep, and obstructive sleep apnea (OSA) due to a complete collapse.

Polysomnography (PSG) is the current gold standard for diagnosing

SDB, but it is obtrusive, time-consuming and expensive [1, 2, 3, 4].

It requires the patient to sleep in a laboratory for a whole night, while

multiple sensors attached to them measure physiological parameters

such as oxygen saturation and respiratory effort [5]. The reliabil-

ity and consistency of this test has been questioned because of the

“first-night effect” [6] – due to limited movement and discomfort

from wearing the sensors, and the psychological effects of being ob-

served, sleep in a laboratory during the first night presents “more

wakefulness, less total sleep time, and a lower sleep efficiency in-

dex” [7, p. 246]. Despite this, most clinical sleep evaluations are

restricted to one night due to the costs involved. Improving acces-

sibility to SDB diagnosis and treatment is, therefore, one of the key

challenges that sleep medicine is currently facing [1].

Acoustic analysis of breathing sounds using a smartphone offers

an unobtrusive and inexpensive alternative to screening for SDB.

Previous studies have mainly focused on detecting snore events in

audio recordings of subjects sleeping on their own in a controlled
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condition (e.g., in a sleep clinic). Dafna et al. [1] used features

such as total energy, periodicity, higher-order spectral statistics and

duration with an AdaBoost classifier. Nonaka et al. [8] exploited

auditory image modelling (AIM) features, and a logistic regression

classifier. Emoto et al. [2] detected low intensity respiratory events

using a subject-independent deep neural network (DNN). Amiripar-

ian et al. [9] estimated the location of obstruction in the upper airway

from snore events using a support vector machine (SVM) with fea-

tures generated by a convolutional neural network (CNN). Romero

et al. [10] proposed a DNN system using bottleneck features for ro-

bust detection of SDB events with a n-gram “language model” to

better model the sequence of SDB events.

Applying acoustic analysis of breathing sounds in a natural sleep

environment (e.g., in a bedroom at home) must deal with various lev-

els of interfering noise and room acoustics. In particular, the breath-

ing sounds of the bed partner is a main source that can negatively

impact upon the performance of the acoustic analysis system, due

to the proximity to the microphone. With a single smartphone, the

system needs to distinguish the breathing sounds of both snorers, in

order to correctly diagnose SDB for each individual. This situation

resembles that of speaker diarisation [11], which aims to identify

“who speaks when” in a multi-speaker audio recording. However,

the current task has some particular constraints. First, speaker diari-

sation systems generally employ acoustic beamforming with a mi-

crophone array. Some studies have also attempted speaker diarisa-

tion using single-channel audio recordings, e.g., the deep clustering

approach [12, 13], but in general the microphone is not in alignment

with all the speakers. In contrast, in the SDB diagnosis task a sin-

gle smartphone is used and typically the smartphone is positioned

on a bedside table, resulting in an arrangement of both snorers and

the phone in a straight line. This arrangement makes separation of

snorers’ breathing sounds more challenging. Second, for speaker

diarisation the speakers are usually aware of each other speaking,

and thus there is less cross-talk and the main task is to identify the

speaker. In comparison, two snorers do not consciously interact, and

overlapping breathing sounds are more likely to occur.

To address the challenges faced in designing a smartphone-

based solution for assessing SDB at home, we propose a novel

single-channel approach to snorer diarisation which can handle in-

terfering snore sounds from the bed partner. First, the number of

concurrent snorers in each acoustic segment is estimated. Next,

segments containing a single snorer are clustered based on snorer

embeddings, which enable different snorers to be discriminated.

Finally, an automatic transcription is generated for each snorer by

combining adjacent snore segments. Such a framework allows the

screening of both snorers for SDB during the same session.

The remainder of this paper is organised as follows. Section 2

describes the snorer diarisation system and the data used to develop

it. Section 3 presents the evaluation framework. The results are dis-

cussed in Section 4 and concluding remarks are made in Section 5.
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Fig. 1. System diagram of the proposed snorer diarisation system.

2. SYSTEM DESCRIPTION

An overview of the proposed snorer diarisation system is given

in Fig. 1. The system takes as input a single-channel sleep audio

recording containing two snorers, and generates an automatic tran-

scription of snore events for each snorer. This is carried out by

two subsystems: (i) snorer count estimation, and (ii) clustering of

single-snorer events. The first subsystem divides the audio recording

into non-overlapping 250 ms segments and estimates the number of

snorers present in every segment: 0 if there are no snore events, 1 if

there are snore events that do not concurrently occur, and 2 if there

are concurrent snore events. Then, the identified single-snorer seg-

ments are passed to the clustering subsystem which extracts snorer

embeddings from the segments using a DNN framework. The snorer

embeddings are a feature representation that enables different snor-

ers to be clustered based on their similarity scores. After clustering,

the single-snorer segments are combined with the 0- and 2-snorer

segments to generate snore event transcriptions for each snorer. In

this way, the proposed snorer diarisation system does not require

separation of each subject’s breathing sounds.

2.1. Snorer count estimation

The single-channel snore mixtures are first divided into non-

overlapping segments of 250 ms. The short-time Fourier transform

(STFT) is computed with a frame rate of 10 ms and a frame size of

25 ms using a Hann window. Therefore, each segment consists of 25

frames of STFT magnitude feature vectors. The feature vectors are

log-compressed before being standardised with zero means and unit

variances with respect to the training dataset.

We treat snorer count estimation as a classification problem, and

therefore use a DNN in this subsystem. Two DNN architectures are

investigated. The first DNN is a fully-connected dense network. The

STFT features of all the 25 frames within a segment are flattened as

input to the network. The hidden layers consist of three fully con-

nected dense layers. Each layer has 512 sigmoid activation units

with a 50% dropout rate. The second network is a bidirectional long

short-term memory (BLSTM) system. As shown in Fig. 2, it em-

ploys three BLSTM layers with 30, 20 and 40 units, respectively,

followed by a max-pooling layer. A similar architecture has proven

successful in speaker count estimation [14]. For both networks, the

output layer is a dense layer with three softmax activation units, one

for each of the “classes”: 0, 1 and 2 snorers.
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Fig. 2. The BLSTM architecture for snorer count estimation.

Both neural networks were developed using TensorFlow [15].

They were trained with a learning rate of 0.001, a batch size of 128

segments, a dropout rate of 50%, and categorical cross-entropy as

the loss function. These hyperparameters were set heuristically ini-

tially, and then optimised using a validation dataset. 25 epochs were

required to achieve convergence.

2.2. Clustering of snore events

The 0- and 2-snorer segments identified by the snorer count estima-

tion step are directly included in the transcription for both snorers,

whereas the 1-snorer segments are passed to the clustering subsys-

tem for allocation of a snorer. Clustering of 1-snorer segments is

achieved by first extracting snorer embeddings with a deep neural

network. Snorer embeddings can be seen as a learned feature repre-

sentation (similar to bottleneck features [10]) that distinguish one

snorer from another. There are in total 41 snorers in the dataset

used in this study. As illustrated in Fig. 3, the neural network for

extracting the snorer embeddings consists of one layer of 512 long

short-term memory (LSTM) units, followed by a dense layer of 128

linear units and an output layer of 41 softmax activation units, one

for each of the snorers. The input to the network is also the log-

compressed STFT magnitude features, as used in the snorer count

estimation step. During training, the objective of the network is to

classify the 41 snorers in the training data. At testing time, the output

softmax layer of the trained network is discarded, and the snorer em-

bedding is the output of the last hidden layer. The embeddings are

then used as features for clustering. Similar techniques have been

shown to be effective for speaker verification using speaker embed-

dings [16].
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Fig. 3. The LSTM network for snorer embedding extraction.

The LSTM neural network was trained with a learning rate of

0.001, and a batch size of 128. Batch normalisation was applied af-

ter each layer except for the last one. Categorical cross-entropy was

used as the loss function. Using a validation dataset, convergence

was reached with 30 epochs. We also investigated a standard DNN

architecture similar to one used for speaker recognition [16]. It re-

places the LSTM layer described above with four fully connected

layers of 512 sigmoid activation units, and batch normalisation is

applied to the output of each of these layers. The input features are

the flattened log-compressed STFT magnitudes.

Snorer embeddings are then obtained from the last hidden layer

for snorer clustering. Five snorer embeddings for each snorer in the
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evaluation set are used for snorer enrolment, which correspond to

one or two snore events each. These five embeddings per snorer are

used as the reference embeddings. Clustering is done by computing

the average similarity score (i.e., cosine similarity) between a given

snore segment and the reference embeddings of each snorer. The

segment is assigned to the snorer with the largest similarity score:

ŝ = argmax
s

1

n

n∑

i=1

f⊤f(si)

‖f‖ ‖f(si)‖
(1)

where ŝ is the snorer that the test segment is assigned to, f is the

embedding of the test segment, s is one of the snorers in the mixture,

and f(si) is the reference embedding i ∈ [1, 5] of snorer s. Finally,

an automatic transcription is obtained for each snorer by combining

consecutive snore segments. An output example is shown in Fig. 4.

2.3. Alternative enrolments

Ideally, the reference embeddings should be extracted from real

snore recordings of each snorer. In practice, obtaining such enrol-

ment snore sounds may not be always possible. This section inves-

tigates two alternative snorer enrolment methods: (i) using speech

sounds from the subject, and (ii) using snore sounds simulated by

the subject while awake.

Previous studies have investigated the correlation between

speech and SDB. Fiz et al. [17] studied the harmonics of vowels

vocalised by healthy individuals and those with OSA, and found

differences in vocalisation between the two groups. Robb et al. [18]

analysed the formant frequencies and bandwidths of prolonged

vowels uttered by subjects with and without OSA, and reported

lower formant values and wider formant bandwidth for the OSA

group in comparison with the healthy one. Fernandez et al. [19]

created a speech corpus of OSA and healthy Spanish-speaking

subjects, and described differences in nasalisation between both

groups. Glodshtein et al. [20] used features extracted from vowel and

nasal phonemes to distinguish between OSA and healthy Hebrew-

speaking subjects. Botelho et al. [21] used features computed from

read speech, elongated vowels, and spontaneous speech to classify

between OSA and healthy Portuguese-speaking individuals. These

studies suggest that enrolling snorers using speech is plausible, as

speech and SDB are correlated. We therefore propose to use a

read sentence that highlights relevant vowel and nasal phonemes for

snorer enrolment. An example of such sentences is: “why women

and men are on my main ammonium moon”.

If only one of the snorers is available to produce the enrolment

recordings, a similarity score threshold can be used in the clustering

step. Specifically, clustering can be done by computing the average

similarity score between a given 1-snorer segment and the reference

embedding from the enrolled snorer. A 1-snorer segment is assigned

to the enrolled snorer if the similarity score is above a threshold op-

timised on the validation dataset, and to the other snorer otherwise.

3. EXPERIMENTS AND EVALUATION

3.1. Synthetic snore mixtures

The manually annotated sleep breathing sound corpus from our pre-

vious study [10] was used to generate synthetic two-snorer mixtures.

The corpus consists of audio recordings from six snorers (50 minutes

per snorer), collected with a smartphone in domestic environments.

The signal to noise ratio (SNR) of the recordings is relatively low

as they were recorded using smartphones that are designed for close

talking. An adaptive noise suppression algorithm [1] was applied

and a bandpass filter (20 Hz – 6 kHz) was further employed to atten-

uate low and high frequency noise that might be present. All record-

ings were normalised to the same root mean square (RMS) level be-

fore mixing. Since snore recordings often contain large portions of

silence, only the non-silence portions were considered for comput-

ing the RMS level. Three positive SNRs were used: 5 dB, 10 dB or

20 dB to simulate the scenario where a smartphone is usually placed

on a bedside table next to one of the snorers.

For snorer count estimation, we mixed every possible pair of au-

dio recordings from different snorers. Four snorers were used for

training and the remaining two snorers were split between valida-

tion (48%) and testing (52%). The training dataset included 76,800

(250 ms long) segments extracted for each class, totalling 16 hours.

The validation and test datasets contained 9,600 segments for each

class (2 hours). The labels were automatically generated from the

manual annotations of snore events.

For snore event clustering, a large number of snorers was needed

to learn the embeddings that can discriminate between snorers.

There are in total 44 snorers in the entire database [10]. We selected

41 snorers for training the embedding extraction network. For each

snorer, 3,000 snore segments of duration 250 ms were extracted ac-

cording to automatically generated annotations. Among them, 2,400

segments were used for training and 300 segments were used for val-

idation and testing. The 41 snorers used to develop this subsystem

were different from the two snorers used to evaluate the complete

snorer diarisation system (i.e., the task is “snorer-independent”).

3.2. Real snore mixtures

In addition to the synthetic snorer mixtures, we collected real two-

snorer sleep audio recordings using a smartphone in a domestic bed-

room. Annotating two-snorer sleep audio recordings is a complex

task as one has to assign each snore event to one (or both) of the

snorers. Given the variability of breathing sounds and the subjectiv-

ity in the annotation process, a proper reference is difficult to obtain



Table 1. Results for the proposed snorer diarisation systems.

STANDARD DNN LSTM

Test Data Synthetic Mixtures Real Mixtures Synthetic Mixtures Real Mixtures

Enrolment Real Snore Real Snore Sim. Snore Speech Real Snore Real Snore Sim. Snore Speech

Precision 74.86% 54.80% 49.38% 55.04% 71.30% 52.11% 51.44% 51.34%
Sensitivity 67.63% 66.81% 60.52% 67.46% 67.68% 59.00% 58.13% 58.35%
Specificity 89.95% 92.47% 91.52% 92.47% 87.95% 92.58% 92.49% 92.44%
Accuracy 83.10% 89.38% 87.79% 89.46% 81.73% 88.54% 88.36% 88.34%
F-measure 71.06% 60.22% 54.39% 60.62% 69.44% 55.34% 54.58% 54.62%
Segment DER 16.90% 10.62% 12.21% 10.54% 18.27% 11.46% 11.64% 11.66%

Event DER 20.52% 51.67% 56.67% 49.17% 20.99% 49.17% 50.83% 50.83%

from single channel audio recordings alone. For this reason, dur-

ing the recording session, two-channel recordings were additionally

made with microphones placed on the bedhead close to each snorer.

In this way a proper reference could be obtained to manually anno-

tate the real two-snorer sleep audio recordings.

3.3. Evaluation metrics

The performance of the snorer diarisation system was evaluated at

both segment-level and event-level. Segment-level evaluation allows

the computation of the precision, sensitivity, specificity, F-measure

and the segment-level diarisation error rate (DER):

DERsegment =
FP + FN

reference segment count
(2)

where FP and FN are the false positives and the false negatives, re-

spectively. This provides information on the quality of the segmen-

tation, which is relevant if the time spent snoring is to be reported by

the system. Event-level evaluation is achieved by merging consec-

utive segments with the same snorer count into a single event, and

aligning these events with the reference transcription. Since there are

only two kinds of events (i.e., snore and non-snore), no substitutions

are observed. The event-level DER takes into account the insertion

and deletions errors, and is defined as:

DERevent =
insertions + deletions

reference event count
(3)

4. RESULTS AND DISCUSSION

The subsystems for snorer count estimation and clustering of snore

events attained an average sensitivity of 74% and 80%, respectively,

when evaluated separately. Table 1 presents the results produced by

the proposed snorer diarisation systems. For synthetic snore mix-

tures, both the standard DNN system and the LSTM system per-

formed well using real snores as enrolment data, achieving a speci-

ficity (true negative rate) above 88%. This shows that the systems are

able to effectively discriminate snore from non-snore events. The

overall performance of the standard DNN system is slightly better

than the LSTM system, which is likely due to the limited amount of

data available to train the systems, i.e., more complex network archi-

tectures require a greater amount of data than standard architectures.

When evaluated on real snore mixtures, using real snoring as

enrolment data, the systems achieved significantly lower precision,

which suggests the classifier generated many false positives. This

shows a limitation of the proposed systems, as they were trained

only on the synthetic mixtures, which introduces a mismatch be-

tween the training data and the test data. The large difference in

event DERs could be due to the number of snore events in the audio

data. The audio recordings used to generate the synthetic mixtures

contain a large amount of snore events, whereas the real two-snorer

audio recordings contain fewer snore events, so the number of false

positives increases.

Enrolment using real snore sounds from individual snorers may

not be convenient in practice. We investigated two alternatives: (i)

asking the patient to simulate snoring while awake, and (ii) using

speech of the patient for enrolment. Initial analysis shows that there

are clear differences in the acoustic characteristics between a real

and a simulated snore produced by the same subject. With respect to

real snores, the average duration of simulated snores was increased

by 42%, the average pitch was decreased by 53%, and the aver-

age spectral centroid was increased by 62%. Enrolment with speech

sounds would ideally require the snorer embedding extractor net-

work (Section 2.2) to be trained with both real snoring and speech.

In this way, the network could learn a vocal tract embedding. How-

ever, the results show that, even for a snorer embeddings obtained

only from real snores, it is possible to cluster 1-snorer events by

providing a simulated snore or speech signal for enrolment with the

same performance as using real snore sounds.

Although the snorer diarisation system that we introduce here re-

sembles a speaker diarisation system, it is worth noting some impor-

tant differences. First, speaker diarisation systems do not normally

take into account overlapping speech for evaluation [22], whereas

our system does consider concurrent snoring. This is because, unlike

a conversation [23] where speakers are aware of each other speak-

ing, there could be a significant number of snores that overlap during

sleep. Second, our system assumes that there is a maximum of two

snorers, while in speaker diarisation systems the maximum number

of speakers is not known. Third, speaker diarisation systems typi-

cally output a single transcription for all the speakers. In contrast, the

proposed snorer diarisation system produces a separate transcription

for each snorer, in order to assess both snorers in the same session.

5. CONCLUSIONS

This paper has introduced the problem of single channel snorer diari-

sation, which arises when screening for SDB in a home environment

where both a patient and their bed partner may be present. We have

described a solution to this problem by applying deep learning to

overcome the challenges posed by single channel sleep audio record-

ings. Our proposed solution does not require separation of each sub-

ject’s breathing sounds, and allows two people to be screened for

SDB in the same session.

Currently the snore count estimation and the clustering stages

are trained separately and employed in sequence. Future work will

investigate if the two stages can be more tightly coupled and opti-

mised within an unified framework. We also intend to use this sys-

tem as a component in a system for OSA monitoring and diagnosis.
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