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Abstract

This paper describes the system that we sub-

mitted for SemEval-2018 task 10: capturing

discriminative attributes. Our system is built

upon a simple idea of measuring the attribute

word’s similarity with each of the two seman-

tically similar words, based on an extended

word embedding method and WordNet. In-

stead of computing the similarities between

the attribute and semantically similar words

by using standard word embeddings, we pro-

pose a novel method that combines word and

context embeddings which can better measure

similarities. Our model is simple and effective,

which achieves an average F1 score of 0.62 on

the test set.

1 Introduction

Capturing discriminative attributes is a novel task,

which is very different from classical semantic

tasks that model similarities in semantics. The

task aims to recognise semantic differences be-

tween words. Traditional semantic similarity eval-

uation tasks were designed for evaluating the qual-

ity of word representations based on the fact that

words with similar semantics will be close to each

other in vector space. Recent state-of-the-art dis-

tributed semantic models (Ling et al., 2015; Bo-

janowski et al., 2017) inspired by the success of

word2vec (Mikolov et al., 2013) gave good per-

formance in these similarity measure tasks. Nev-

ertheless, how to capture discriminative attributes

between semantically similar words is still a chal-

lenge for traditional word embedding methods, be-

cause these methods are designed to capture simi-

lar semantics.

We have two observations for the nature of

the task and the provided data: (1) only limited

data is available for model training; (2) the in-

puts of the model are merely isolated words them-

selves, which lack context information for apply-

ing complex models. Therefore, we propose a

novel framework that differentiates two semanti-

cally similar words with the attribute word by us-

ing their word and context embeddings. We ex-

perimented with both Continuous Bag of Words

(CBOW) and Skip-gram, demonstrating that using

the combination of word and context embeddings

outperforms using word embeddings alone.

The contribution of this work can be sum-

marised as follows. We examine word and con-

text embeddings in CBOW and Skip-gram, show-

ing that using both word and context embeddings

can better measure the co-occurrence of two words

in sentences than simply using word embeddings.

Hence our similarity measure can recognise the

discriminative attributes of two semantically simi-

lar words more accurately.

2 System Description

Our system is trained based on word and context

embedding features as well as WordNet features

(Fellbaum, 1998). Before introducing our frame-

work in detail, we first introduce the two key tech-

nical parts of our framework, i.e., context embed-

ding and WordNet.

2.1 Context embeddings

In contrast to simply using traditional word em-

beddings which model semantic similarities based

on contextual similarities, we consider using both

word and context embeddings. Word and context

embeddings are the vectors of target words and

context words in CBOW and Skip-gram. Using

them together can model the co-occurrence of at-

tribute words and distinguished words in a sen-

tence, which is useful in predicting whether the at-

tribute word can distinguish two semantically sim-

ilar words.

Take the Skip-gram model as an example. Skip-

gram uses a neural network with a single hidden
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layer of neurons. Given a target word, the objec-

tive function is to maximize the probability of pre-

dicting each context word (several words before

and after the target word in a training sentence)

(Rong, 2014):

argmax p(wc|wt) (1)

where wt is a target word in a training sentence,

wc is a context word of wt, appearing within the

same sentence.

During every training epoch on each context

word, the weight matrices before and after the hid-

den layer will be updated. A row vector in the ma-

trix before the hidden layer is a traditional word

embedding vt, as the vector is updated when the

corresponding word wt is in the target word po-

sition. A column vector in the matrix after the

hidden layer is defined as context embedding vc,

as the column vector is updated when the cor-

responding word wc is in the context word po-

sition. Each word has two vectors, vt and vc,

as each word can be a target word or a context

word of other target words. Some popular toolkits,

e.g., gensim word2vec (Řehůřek and Sojka, 2010),

abandon Skip-gram’s context embeddings vc after

training, as experimental research (Nalisnick et al.,

2016) proves that simply using vt or vc (IN-IN or

OUT-OUT in the original paper) for two function

or type similar words to measure their similarity

yields higher scores.

Actually, the conditional probability in the ob-

jective function in Eq. 1 can be expanded as:

p(wc|wt) =
exp (vt · vc)∑

i∈|V | exp (vt · vi)
(2)

where V is the vocabulary of the training set, the

dot product vt · vc in numerator computes the sim-

ilarity between the target word vector and the con-

text word vector. The denominator is to normalise

the similarity into a probability. Thus, given a tar-

get word, training the whole model involves up-

dating the matrices before and after the hidden

layer to maximize the probability of predicting the

context word. This is similar to maximizing the

similarity between the target word embeddings vt
and context word embeddings vc. It means that

if we can reuse this trained similarity measure, to

compute e.g., cosine similarity, then we will get a

much better result. In other words, using both the

word and context embeddings of two words that

frequently appeared within each other’s contexts

will result in a better similarity measure, which

may be incorporating the co-occurrence informa-

tion of the two words.

CBOW can be considered as the reverse of

Skip-gram. Given a context, the target is to maxi-

mize the probability of predicting the target word

appearing in the context. Later, we will examine

both CBOW and Skip-gram’s word and context

embeddings in our model.

2.2 Word definition in WordNet

We also introduce features based on word sense

definitions in WordNet (Fellbaum, 1998), consid-

ering the differences between the definitions of

two semantically similar words. The two words

may be similar in semantics, but different in def-

initions. An eligible discriminative attribute word

may have high possibility to appear within one

of the two word definitions, rather than both of

them. For example, ears can distinguish corn and

broccoli, as in WordNet, ears occurs in the defi-

nition of corn as “tall annual cereal grass bear-

ing kernels on large ears: widely cultivated in

America in many varieties; the principal cereal

in Mexico and Central and South America since

pre-Columbian times”, rather than broccoli’s defi-

nition that “plant with dense clusters of tight green

flower buds”. We will also capture such characters

to distinguish two words.

2.3 Hypothesis and framework

Our first hypothesis is that an attribute word wA

can distinguish two semantically similar words w1

and w2, if the attribute word co-occurs much more

frequently with one word than the other in the cor-

pora. In vector space, the attribute word can be

closer to a distinguished word than the other one.

Our second hypothesis is that if wA can distin-

guish w1 and w2, wA may appear within one of

the definitions of w1 and w2 in WordNet.

The framework of our model can be summa-

rized as: (1) we firstly train word embeddings vt

and context embeddings vc on a Wikipedia dump.

(2) Given a triple (w1, w2, wA), we then com-

pute wA’s cosine similarities with w1 and w2, and

the difference in their similarities, which are used

as three input features in the following classifi-

cations. For example, given the context embed-

dings of w1 and w2 and the word embedding of

wA, we compute Feature 1: cosine(vw1

c , v
wA

t );
Feature 2: cosine(vw2

c , v
wA

t ); and Feature 3:

|cosine(vw1

c , v
wA

t ) − cosine(vw2

c , v
wA

t )|, respec-
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1 cosine(w1, wA)
2 cosine(w2, wA)
3 |cosine(w1, wA)− cosine(w2, wA)|
4 binary variable, indicating if wA appears in the

WordNet definitions of w1

5 binary variable, indicating if wA appears in the
WordNet definitions of w2

Table 1: Feature descriptions.

tively. (3) Next, we introduce two binary features

to indicate whether wA appears in any sense def-

initions of w1 and w2 in WordNet (Feature 4 and

5), respectively. (4) We train a random forest clas-

sifier with the above five features (see Table 1) to

classify if the attribute word wA can distinguish

two semantically similar words w1 and w2.

3 Experimental Settings

Data. The data was provided by the organizers

of SemEval 2018 Task 10: Capturing Discrimi-

native Attributes1. There are 17,501, 2,722 and

2,340 triples (w1, w2, wA) in training, validation

and testing sets, respectively. All the words in the

triples are nouns. Note that the discriminative at-

tribute words wA in the given dataset are selected,

because they represent the visual attribute of one

of two semantically similar words. For example,

red can differentiate apple and banana, because

visually, apple is red, while banana is yellow. The

task does not consider other discriminative fea-

tures, such as sound and taste. So, using image

features may take advantages in this dataset, how-

ever, semantic features can also capture invisible

discriminative attributes.

Word and context embedding. We first it-

eratively train 300 dimensional word and context

embeddings based on CBOW and Skip-gram with

a Wikipedia dump2 for 3 epochs respectively, set-

ting a context window of 5 words before and after

the target word. Words with frequency less than 5

in the Wikipedia are ignored. The down sampling

rate is 10−4.

Based on CBOW and Skip-gram, we test all

possible combinations of word and context em-

beddings to compute cosine similarities. The first

combination is context embeddings of the two se-

mantically similar words w1 and w2, and word

embeddings of the attribute word wA. In Table 2

1https://competitions.codalab.org/

competitions/17326
2https://dumps.wikimedia.org/enwiki/

20170920/

and 4, this approach is represented as vw1
c v

w2
c v

wA
t .

The second v
w1
t v

w2
t v

wA
c uses word embeddings of

w1 and w2, and context embeddings of wA. The

third v
w1
c v

w2
c v

wA
c is simply context embeddings of

w1, w2 and wA. The fourth v
w1
t v

w2
t v

wA
t is simply

word embeddings of w1, w2 and wA.

4 Results

We cast the challenge task as a supervised classi-

fication problem. We first examine which combi-

nation of word and context embeddings and which

training method (CBOW or Skip-gram) is optimal

in this task. In this step, we only use Feature 1-3

(see Table 1) to classify the triple (w1, w2, wA).

As can be seen in Table 2, both the CBOW

based methods that use word and context embed-

dings yield the highest average F1 of 0.55 in the

validation set. Skip-gram based models generally

perform worse than CBOW based models, but us-

ing Skip-gram word embeddings of w1 and w2

and context embeddings of wA also outperforms

the word embedding based model in the validation

set. The experiments running on the test set show

similar trends that word and context embedding

based models outperform word embedding based

models. Such results demonstrate that using word

and context embeddings together can better dis-

tinguish two semantically similar words with an

attribute word, than simply using standard word

embeddings. The results also support our first hy-

pothesis that if the attribute word frequently ap-

pears in one word’s context than the other one, it

can distinguish the two words.

We also examine WordNet definition features

individually. As shown in Table 3, simply using

Feature 4-5 cannot classify the triple accurately.

The F1 score of setting positive label as 1 is very

low on the validation set (F1=36%). This is for

the reason that an eligible discriminative attribute

word cannot always associate with the definitions

of one of two semantically similar words. So, sim-

ply using such features cannot identify discrimina-

tive words precisely.

Finally, we combine both similarity and Word-

Net features together to address this challenge.

There is no significant difference between CBOW

based v
w1
c v

w2
c v

wA
t and v

w1
t v

w2
c v

wA
c in the vali-

dation set in terms of average F1. We select

v
w1
c v

w2
c v

wA
t as the winner combination of word

and context embeddings, because this approach

has closer F1 scores, when setting different la-
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setup
positive=1 positive=0

average F1
P R F1 P R F1

validation

CBOW

v
w1

c v
w2

c v
wA
t 0.56 0.46 0.51 0.54 0.64 0.59 0.55

v
w1

t v
w2

t v
wA
c 0.57 0.45 0.50 0.55 0.66 0.60 0.55

v
w1

c v
w2

c v
wA
c 0.50 0.37 0.43 0.50 0.63 0.56 0.49

v
w1

t v
w2

t v
wA
t 0.50 0.30 0.37 0.50 0.70 0.58 0.48

Skip-gram

v
w1

c v
w2

c v
wA
t 0.54 0.38 0.45 0.52 0.68 0.59 0.52

v
w1

t v
w2

t v
wA
c 0.55 0.47 0.51 0.54 0.62 0.58 0.54

v
w1

c v
w2

c v
wA
c 0.52 0.33 0.40 0.51 0.70 0.59 0.49

v
w1

t v
w2

t v
wA
t 0.53 0.41 0.46 0.52 0.64 0.57 0.52

test

CBOW

v
w1

c v
w2

c v
wA
t 0.54 0.56 0.55 0.63 0.62 0.63 0.59

v
w1

t v
w2

t v
wA
c 0.54 0.53 0.53 0.62 0.63 0.63 0.58

v
w1

c v
w2

c v
wA
c 0.50 0.47 0.49 0.59 0.62 0.61 0.55

v
w1

t v
w2

t v
wA
t 0.49 0.39 0.44 0.58 0.67 0.62 0.53

Skip-gram

v
w1

c v
w2

c v
wA
t 0.52 0.50 0.51 0.61 0.63 0.62 0.56

v
w1

t v
w2

t v
wA
c 0.52 0.56 0.54 0.62 0.59 0.60 0.57

v
w1

c v
w2

c v
wA
c 0.50 0.43 0.46 0.59 0.65 0.62 0.54

v
w1

t v
w2

t v
wA
t 0.51 0.51 0.51 0.60 0.61 0.61 0.56

Table 2: Experimental results by using word and context embeddings (Feature 1-3).

setup
positive=1 positive=0

average F1
P R F1 P R F1

WordNet
validation 0.66 0.24 0.36 0.53 0.87 0.66 0.51
test 0.66 0.26 0.37 0.60 0.89 0.71 0.54

Table 3: Experimental results by using WordNet definition features (Feature 4-5).

setup
positive=1 positive=0

average F1
P R F1 P R F1

CBOW+WordNet
validation v

w1

c v
w2

c v
wA
t +WN 0.57 0.53 0.55 0.56 0.59 0.57 0.56

test v
w1

c v
w2

c v
wA
t +WN 0.58 0.60 0.59 0.66 0.65 0.65 0.62

Table 4: Final results by using CBOW word and context embeddings, and WordNet features (Feature 1-5).

bels (1 or 0) as the positive label. Thus, in the

final submission, we use CBOW trained context

embeddings of w1 and w2, and word embeddings

of wA to compute similarity features. We identify

whether an attribute word wA can distinguish w1

and w2 by using the above similarity features and

WordNet definition features together. Although

word and context embedding based similarity fea-

tures are much more effective than WordNet fea-

tures, by introducing WordNet features, the model

further improves its performance, achieving 62%

F1 on the test set (Table 4). WordNet definitions

are also supportive features in this task.

Error analysis. We found that a significant por-

tion of failures appear in those examples that the

textual associations of the attribute words and the

semantically similar words are not always discrim-

inative. E.g., given a triple, (sons, father, young),

our model failed in identifying young as a discrim-

inative attribute, because young has been widely

used to describe sons and father in the text (e.g.,

young sons and a young father). In this case, our

word co-occurrence based method is suboptimal.

5 Conclusion

In this paper, we extended traditional word em-

bedding methods (CBOW and Skip-gram) to dis-

tinguish two semantically similar words using an

attribute word. In contrast with simply using tra-

ditional word representations, using both context

and word embeddings can better model the co-

occurrence between the two similar words and

their discriminative attribute word. If the at-

tribute word frequently co-occurs with one of the

similar words more than another one within the

same sentences, then the two semantically sim-

ilar words can be distinguished by the attribute

word. By using CBOW word and context embed-

ding based similarity features and simple WordNet

based word sense definition features, our model

performs an average F1 of 62% on the test set.
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