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Abstract: The plane with the maximum variance of the resolved shear stress is taken as the 

critical plane. Two algorithms are used along with the maximum variance method (MVM) to 

determine the orientation of the critical plane. The maximum variance of the normal stress on the 

potential critical planes is calculated to determine the one experiencing the maximum extent of 

fatigue damage. A new multiaxial cycle counting method is proposed to count cycles on the 

critical plane. The Modified Wöhler Curve Method is used to assess fatigue damage. About two 

hundred experimental results were collected from the technical literature to validate the 

approaches being proposed. The results show that the improved design technique being proposed 

is successful in assessing fatigue damage under variable amplitude multiaxial cyclic loading. 
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NOMENCLATURE 

b Fatigue strength exponent 

b0 Shear fatigue strength exponent 

c Fatigue ductility exponent 

c0 Shear fatigue ductility exponent 

,x y
C  Covariance between signal x and y 

E Young’s modulus 

f The ratio between the frequencies of the axial loading and torsional loading 

G Hessian matrix  

m Mean stress sensitivity index 

R Notch radius 

S Material constant 

ρ Loading non-proportionality factor 

σ-1 Fully reverse axial endurance limit 
'

f  Fatigue strength coefficient 

σn,max Maximum stress perpendicular to the critical plane 

σn,m Mean value of the stress normal to the critical plane. 

σx Normal stress component 
'

f  Fatigue ductility coefficient △εn Range of the strain normal to the critical plane 

τ-1 Fully reverse torsional endurance limit 

τa  The amplitude of shear stress relative to the critical plane 

'

f  Shear fatigue strength coefficient 

q (t) Resolved shear stress on the critical plane 

τxy Shear stress component  

'

f  Shear fatigue ductility coefficient 

γa The amplitude of shear strain relative to the critical plane 

max  Range of shear strain on the critical plane 
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1 Introduction 

Mechanical structures, such as aero engines and steam turbines, usually undergo multiaxial 

variable amplitude (VA) fatigue loading where the amplitude and mean value of the load history 

change with time1-2. For several decades, a large number of researchers worldwide have focused 

their attention on the development and validation of fatigue life analysis methods suitable for 

estimating damage under complex/multiaxial constant amplitude (CA) loading3-6. As a result, 

numerous approaches and theories have been proposed to estimate multiaxial fatigue lifetime, for 

instance, critical plane based methods7-9, stress invariants based methods10 and mesoscopic 

mechanical approaches11. Besides, attention has also been paid to predict the fatigue lifetime 

under multiaxial VA cyclic loading. Generally speaking, there are two strategies to assess fatigue 

lifetime under VA cyclic loading. The first one is the frequency domain method and the second is 

the time domain method12-13. In the first case, the Fourier transform is applied to obtain the stress 

power spectral density (PSD) function which is critical for the frequency domain method. The 

empirical models, such as Dirlik’s model14, Bendat’s model15 or Rice’s model16, are used to 

estimate the probability density function of the stress amplitude (PS). It should be noted that 

there is only one auto-power spectral density function under uniaxial VA fatigue loading while 

there are six auto-power spectral density functions and 30 cross-spectral density functions under 

multiaxial VA fatigue loading17. An equivalent PSD is usually adopted to estimate the PS under 

multiaxial VA fatigue loading. As for the time domain methods, there are three crucial elements 

for predicting the fatigue lifetime under complex VA cyclic loading18. The first one is to adopt a 

cycle counting method to discretize continuous load history into several loading cycles so that 

the peak and valley values of each loading cycle can be identified. The second one is to select a 

proper multiaxial fatigue damage parameter that can be used to evaluate the fatigue damage of 

each cycle. The third one is to quantify fatigue damage by employing a specific cumulative rule, 
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such as the linear damage cumulative rule (LDCR) proposed by Palmgren and Miner19-20. There 

are several kinds of uniaxial cycle counting methods as reviewed in Ref. [21]. A widely used 

method is the Rain-Flow cycle counting method (RCCM) which was firstly proposed by 

Matsuishi and Endo in 196822. The physical basis of RCCM lies in the memory characteristic 

and the stress-strain hysteresis loop of metallic materials. 

The entire loading history needs to be recorded before using the RCCM proposed by 

Matsuishi and Endo22 because the loading history should be rearranged to reconstruct a new 

loading history which starts from the maximum stress. Downing et al.23 reformulated the RCCM 

to be able to gather the real-time loading spectrum and count the associated loading cycles 

online. Moreover, the modified RCCM can reduce both memory consumption and computing 

time consumption.  

At present, the cycle counting methods under uniaxial random loading are well established 

and widely used in a practical sense. In contrast, the cycle counting methods under multiaxial 

random fatigue loading are not yet well developed. There are two reasons that can explain this, 

and the first is that only one signal channel is used under uniaxial random loading, while at least 

two signal channels need to be managed simultaneously under multiaxial random fatigue 

loading. The second is that, as far as the critical plane concept is concerned, both the magnitude 

and direction of the shear stress on critical planes change periodically, which makes it more 

complicated to count cycles under multiaxial random fatigue loading. 

Bannantine and Socie24 combined the RCCM and the critical plane method to perform the 

cycle counting in terms of stresses and strains on the critical plane. However, this method can 

only be applied to post-process proportional VA load histories. Bannantine et al.24 regarded the 

plane with the maximum fatigue damage as the critical plane by calculating the fatigue damage 

of all potential critical planes. The selected fatigue damage parameter depends on the failure 
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modes of materials. The SWT fatigue damage parameter25 and the FS7 fatigue damage parameter 

are respectively used for Mode I and Mode II dominated crack initiation. The two fatigue 

damage parameters can be expressed as follows: 
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where △εn and σn, max are respectively the range of normal strain and the maximum normal stress 

on the critical plane. γa is the amplitude of shear strain on the critical plane. '

f  and '

f  are 

respectively fatigue strength coefficient and fatigue ductility coefficient, '

f  and '

f  are 

respectively shear fatigue strength coefficient and shear fatigue ductility coefficient. b and c are 

respectively fatigue strength exponent and fatigue ductility exponent, b0 and c0 are respectively 

shear fatigue strength exponent and shear fatigue ductility exponent. 

Wang and Brown26-28 proposed a cycle counting method for non-proportional VA fatigue 

loading. The relative value of the Von-Mises strain is taken as the counting parameter. Besides, 

to consider the influence of non-proportional loading, they26 proposed a fatigue damage 

parameter under non-proportional cyclic loading. They assumed that fatigue damage is only 

related to the value of the normal stress between adjacent turning points of the shear strain on the 

critical plane, but their relative position is assumed to be unimportant. Once the maximum shear 

strain changes its direction, the history effect of the normal strain is erased. Therefore, the 

normal stress range between adjacent turning points of the shear strain and the amplitude of 

shear strain is used to define the well-known Wang and Brown’s fatigue damage parameter: 
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                    (2) 

where max  is the range of shear strain on the critical plane, S is a material fatigue constant,

n,m  is the mean value of stress normal to the critical plane, and '  is the effective Poisson's 
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ratio which can be determined according to the deformation theory. 

Since the direction of the normal stress on the critical plane is fixed, Carpinteri et al.29 

defined the normal stress on the critical plane as the main channel and the shear stress on the 

critical plane as the auxiliary channel. Carpinteri et al.29 assumed that there is a deflection angle 

δ30 between the critical plane and the weighted average direction of the maximum principal 

stress. The angle δ30 is expressed as: 
2

-1

-1

3
=45 1-

2






  
   
   

                                (3) 

where σ-1 and τ-1 are the fully reverse axial fatigue limit and the torsional fatigue limit, 

respectively. 

Langlais et al.31 proposed a multiaxial rainflow algorithm which makes a slight 

modification of the uniaxial standards. The recorded loading point could be discarded during the 

counting procedure for two reasons: 1) when the newest point defines a new peak in the same 

direction as the previous or 2) when a cycle is finished. Dong et al.32 proposed a Path-Dependent 

Maximum Range (PDMR) for performing fatigue evaluation of engineering components under 

variable-amplitude and arbitrary multi-axial conditions, which can recover conventional rainflow 

cycle counting results exactly under uniaxial conditions. Anes et al.33 implemented the Stress 

Scale Factor (SSF) virtual cycle counting method based on the SSF equivalent shear stress early 

proposed by Anes et al.34. Portugal et al.35 conducted a cycle counting method to predict the VA 

fatigue life of Rolling Contact Fatigue (RCF), which includes two channels, one is the maximum 

value of the normal stress vector during the entire loading history and the other is the shear stress 

based on the minimum circumscribed circle approach36. Wang et al.37 proposed two multiaxial 

cycle counting methods based on the RCCM and range cycle counting methods for uniaxial 

loading. The critical plane is determined by a weight function method37. Lu et al.38 applied the 

energy-based fatigue damage parameter to assess the low-cycle fatigue damage under random 
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VA loading. The idea to assess the VA fatigue damage is to divide the irregular loading path into 

several regular loading paths38. 

Susmel et al.18,39-42 defined the plane experiencing the maximum variance of the resolved 

shear stress as the critical plane, where the RCCM can be easily used to count the cycles since 

the resolved shear stress is a one-dimensional stress quantity. Both the stress-based MVM39 and 

the strain-based MVM42 were proposed and checked against a large number of experimental 

results coming from testing plain and notched specimens under multiaxial VA fatigue loading. 

In this paper, two types of algorithms (Newton method and conjugate gradient method) are 

used to implement the maximum variance method (MVM) and improve the original numerical 

solution proposed in Ref [43]. The maximum variance of normal stress is proposed to select, 

amongst all the potential critical planes, the material plane experiencing the maximum fatigue 

damage. A new multiaxial cycle counting method is then formulated by taking the resolved shear 

stress on the critical plane as the main channel and the normal stress on the critical plane as the 

auxiliary channel. Finally, the accuracy and reliability of these improved design approaches were 

checked against a large number of experimental data collected from literature. 

2 The modified MVM  

2.1 Introduction of MVM to determine the critical plane 

The variance is an important concept in mathematical statistics44-46. Consider two periodic 

signals, x(t) and y(t), that change over time. The mean value of signal x(t) is defined as follows: 

0

1
( )

T

E x x t dt
T （ ）=                             (4) 

The variance of the periodic signal x(t) is defined as follows: 

    2 2

0

1
( ) ( ) ( ) ( )

T

V x E x t E x x t E x dt
T

  （ ）=                     (5) 

The equivalent amplitude of the periodic sinusoidal signal x(t) can be calculated as follows: 
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2 ( )
a

x V x=                             (6) 

The covariance between x(t) and y(t) is: 

         ,

0

1
( ) ( ) ( ) ( ) = ( ) ( ) ( ) ( )

T

x y
C E x t E x y t E y x t E x y t E y dt

T
     =         (7) 

The variance is used to characterize the dispersion of random signals. A small variance 

means that the data of a random signal is highly centralized  in respect to the mean value.  

The fatigue damage is closely  related with the variance of stress under uniaxial cyclic 

loading. For complex cyclic loading history, Susmel40,43 assumed that the critical plane is the 

plane experiencing the maximum variance of the resolved shear stress. Consider a point O under 

complex random cyclic loading. The stress tensor of point O is σij(t). The global coordinate 

system O-xyz is shown in Figure1 (a). An arbitrary plane △ with normal unit vector n passes 

through the point O. A new local right-hand coordinate system O-abn could be defined if the axis 

a lies in the plane O-xy. The definition of angle θ and   is shown in Figure1 (a). The unit 

vectors of the coordinate system O-abn can be expressed as follows: 
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n a b           (8)

 

An arbitrary direction q lies on the plane △ and passes through the point O in Figure1 (b). 

The angle between direction q and axis a is defined as α. The unit vector q is: 

cos sin +sin cos cos

cos cos sin cos sin    

sin sin

x

y

z

q

q

q

    
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(a)                        (b) 

Figure 1 The illustration of global coordinate system O-xyz and local coordinate system O-abn 

The normal stress n (t)  and the resolved shear stress q (t)  along the direction q on the 

plane △ are expressed as: 
T

n ij(t) ( ) = (t)

x xy xz x

x y z xy y yz y

xz yz z z

n

t n n n n

n

  
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According to the definition in Eq. (5), the variance of the resolved shear stress q (t)  is: 
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where C is the covariance matrix of matrix s which is shown as follows:  
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where  2
0
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= ( ) ( )
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i i i
V t E dt
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0

1
= ( ) ( ) ( ) ( )

T

i j i i j j
C t E t E dt
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        . More details and 

derivation process of Var ( )
q

t    can be found in Ref [43]. 

2.2 The MVM of normal stress on the critical plane 

How to select the critical plane from several potential planes bearing the global maximum 

variance of resolved shear stress? The idea is to construct the variance of normal stress on these 

potential planes, like the variance of the resolved shear stress. The variance of signals is 

positively correlated with the amplitude of signals according to the definition in Eq. (6). The 

variance of normal stress is expressed as: 
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                         (17) 

The mean value of normal stress σn,m is defined as follows: 
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,m1,m

,m2,m

3,m ,m

m

4,m ,m

5,m ,m

6,m ,m

=

x

y

z

xy

xz

z

s

s

s

s

s

s










  
  
  
  
  
  
  
  
     

s                          (19) 

where σi,m is the stress mean value of the stress component σi. 

According to Eq. (6), Eq. (18)-(19), the maximum stress on the planes can be expressed as: 

 T

,max ,m= 2
n a n m

       d C d d s
              (20) 

In order to determine the critical plane, the maximum normal stresses need to be calculated 

on these potential planes. The potential plane with the maximum normal stresses is the critical 

plane. 

It is worth noting that the covariance matrix C in Eq. (15) only depends on the loading 

history and can be regarded as a constant matrix to search the plane with the maximum variance 

of resolved shear stress. The key to determine the critical plane with the maximum variance of 

the resolved shear stress q (t)  is to search the maximum value of Eq. (15). A so-called gradient 

ascent method was used in Ref. [43] to find the maximum value of Eq. (15), but the iterative step 

of the algorithm in Ref. [43] is constant which makes the calculation time-consuming and the 

iteration hard to reach convergence. Two kinds of advanced gradient ascent methods are used to 

modify the algorithm proposed in Ref. [43]. One is the Newton method47 and the other is the 

conjugate gradient method48, which are introduced in detail in Appendix 1. 

3 A new multiaxial cycle counting method 
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It is necessary to consider at least two channels in the cycle counting method under 

multiaxial fatigue loading. It has been proven that the critical plane approach is an effective and 

useful theory to evaluate the fatigue life under complex cyclic loading31,40,49,50. Therefore, it is 

reasonable to regard the normal stress and the shear stress on the critical plane as two channels in 

the multiaxial cycle counting. The normal stress is a one-dimensional vector whose direction is 

perpendicular to the critical plane. However, the shear stress is a two-dimensional vector that 

rotates on the critical plane. The value and direction of the shear stress on the critical plane 

change during complex cyclic loading. It is easy to count the normal stress on the critical plane 

while it is difficult to count the shear stress on the critical plane. It is worth noting that the 

resolved shear stress is a one-dimensional vector in Figure 1(b)43,40. Therefore, it is very 

convenient to regard the normal stress and the resolved shear stress on the critical plane as two 

channels to count the multiaxial VA fatigue loading. Besides, the shear stress is the driving force 

of crack initiation. It is reasonable to regard the resolved shear stress on the critical plane as the 

main channel and take the normal stress on the critical plane as the auxiliary channel in the 

multiaxial cycle counting.  

Luo et al.4 collected a large number of experimental data to evaluate the accuracy and 

applicability of different multiaxial fatigue damage parameters. The results showed that the 

Susmel’s multiaxial fatigue parameter51-53 based on the critical plane theory is the best to assess 

the fatigue life under multiaxial cyclic loading. Susmel’s parameter is: 

 eq 1 1 / 2
a

                               (21) 

 0 lim= min ,                               (22) 

n,max n, n,

0 =
a m

a a

m  


 


                       (23) 

1

lim

1 1

=
2 -




 


 
                            (24) 
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where σ-1 and τ-1 are fully reversed uniaxial fatigue limit and fully reversed torsional fatigue 

limit, respectively. m is the mean stress sensitivity index which can be determined by test. τa and 

σn,max are the amplitude of shear stress and the maximum normal stress on the critical plane, 

respectively.  

According to the test in Ref. [22]–[24] and Ref. [54], only the normal stress contribution 

between the cycles of the maximum shear stress is effective to enhance fatigue crack initiation. 

Once the cycle of the maximum resolved shear stress is different, the effect of the normal stress 

disappears. Besides, the relative position of the excursion of the normal stress between the cycles 

of the resolved shear stress can not affect fatigue damage. 

The process of this new multiaxial cycle counting method is shown in Figure 2 where the 

critical plane is determined through the MVM of resolved shear stress and the MVM of normal 

stress. The resolved shear stress history and normal stress history on the critical plane could be 

regarded as two channels to count the multiaxial VA fatigue loading, and the resolved shear 

stress is the main channel. Firstly, the resolved shear stress on the critical plane is counted 

according the modified RCCM proposed by Dong et al.32. The amplitude and the cycles of the 

resolved shear stress are recorded. Then, the excursion of the normal stress between the cycles of 

the resolved shear stress is recorded. The amplitude of resolved shear stress and the maximum 

normal stress on the critical plane are the main parameters in Susmel’s multiaxial fatigue damage 

parameter according the Eq. (21-24) which can be used to assess the fatigue damage of each 

cycle. 

An example is listed to further explain the new cycle counting method in Figure 3. The first 

step is to calculate the stress components on the critical plane by MVM. S1 in Figure 3(a) is the 

original stress history of normal stress and resolved shear stress on the critical plane. The second 

step is to discard the points which are not the peak or the valley for both channels, like the point 
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9 in Figure 3(b). The third step is to take the resolved shear stress as the main channel and count 

the cycles of the resolved shear stress by RCCM. Then, get the maximum normal stress between 

the counted cycles of the resolved shear stress in Figure 3(c). The fourth step is to discard the 

points of resolved shear stress which has been counted and remain all the normal stress history 

on the critical plane. Repeat the third step until all the cycles of the resolved shear stress are 

counted, like in Figure 3(d).  



 

15 

Stress tensor σij(t)

MVM of normal stressMVM of shear stress

Determine the critical plane with the  

maximum resolved shear stress amplitude

Normal stress history σn(t) on critical plane

Shear stress history τq(t)  on critical plane

Loading history

Discard the points that are not the valley or the 

peak for both normal and shear stress history

Take the shear stress as the main channel

 Take the normal stress as the auxiliary channel

Apply the rainflow cycle counting menthod on the shear 

stress channel. Get  a series of shear stress cycles, like 

the peak τ(ti) and the valley τ(tj)

Get the maximum normal stress on 

critical plane  between  time ti and tj 

σn,max(tij)=max{σn(t)} t∈[ti,tj]

Fatigue damage parameter for each cycle

τeq(tij)=τa(tij)+(t-1-f-1/2)[σn,max(tij)/τa(tij)]

Linear cumulative damage law

i
cr

i

n
D

N
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Figure 2 The process of the new multiaxial cycle counting method 
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(a) Original normal stress and resolved shear stress history on the critical plane 

τq σn
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S2  

(b) Discard the point 9 which is not the peak or valley for both resolved shear stress and normal 

stress 

τq σn

(△τa3, σn4)
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S3

△τa3=(τq3-τq4)/2  

(c) Apply the rainflow cycle counting method to count the resolved shear stress cycle and get the 

maximum normal stress between the two points of the resolved shear stress 
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τq σn

(△τa4, σn4)
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△τa4=(τq1-τq2)/2
 

(d) Discard the point 2 and point 3 of the resolved shear stress and remain all the loading history 
of normal stress. Then repeat S3 

τq σn

(△τa5, σn8)
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S5

△τa5=(τq8-τq7)/2

 

(e) Repeat S4 until all the cycles of resolved shear stress are counted. 

τq σn

(△τa5, σn6)

0    1     2     3     4     5     6     7     8     9     10 Time

S
tr

es
s 

S6

△τa6=(τq5-τq0)/2

 

(f) Repeat S5 until all the cycles of resolved shear stress are counted. 

Figure 3 An example of the new multiaxial cycle counting method 

4 Experimental data collection and model verification  

4.1 Experimental data collection 

The complex variable amplitude fatigue test data for six different kinds of metallic materials 

are collected to verify the new method. The mechanical properties and the fatigue properties of 
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these materials are summarized in Table 1. It should be noted that the specimens made of 

2020-T455, XC1856 and 39NiCrMo357 are smooth while the specimens made of C4039, TC458 and 

En842 are notched specimens. The shape of the smooth specimens is cylindrical. The dimensions 

of the notched specimens are shown in Figure 4. The experimental multiaxial VA loading history 

of these materials is reported in Appendix 2. More details about these fatigue tests are introduced 

in the literature.  

The fatigue life of multiaxial notches can be evaluated by combining the fatigue strength 

reduction factor Kf with the multiaxial nominal stress, which was proposed by Lazzarin and 

Susmel in 200352. Lazzarin and Susmel52 assumed that there is a linear relation between the 

multiaxial fatigue strength reduction factor Kf and the loading non-proportionality factor ρ 

defined in Eq. (23). The predicted lives using Kf and ρ are in good agreement with experimental 

lives for notched specimens under multiaxial cyclic loading. The linear relation is expressed as 

follows: 

f 1 1( )K a b                              (25) 

where ρ is the loading non-proportionality factor which can represent the degree of 

non-proportionality for multiaxial loading. ρ equals to one for uniaxial fatigue loading and ρ 

equals to zero for torsional fatigue loading. Parameters a1 and b1 can be calculated by testing two 

notched specimens under reversed uniaxial fatigue loading and reversed torsional fatigue loading 

respectively. Assuming that the fatigue strength reduction factor is Kf1 under reversed uniaxial 

fatigue loading and fatigue strength reduction factor is Kf2 under reversed torsional fatigue 

loading. The expressions of parameters a1 and b1 in Eq.(25) are deduced: 

1 f1 f2

1 f2

= -

=

a K K

b K
                           (26) 

The parameters a1 and b1 in Eq. (25) for six materials are listed in Table 2. 

Table 1 The mechanical properties and the fatigue properties of metallic materials 
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Materials E/GPa σb/MPa σ-1/MPa τ-1/MPa m 

2020-T455 73 545 168.0 120.0 *** 

XC1856 210 520 310.0 179.0 *** 

39NiCrMo357,59 206 856 367.5 265.0 *** 

C4039 209 850 292.8 231.7 0.19 

TC458 108.4 945.2 248.3 192.4 *** 

En842 210 701 223.3 179.6 0.24 

Note: *** means that the fatigue loading is symmetrical. 

Table 2 The parameters a1 and b1  

Materials Notch radius R/mm a1 b1 

C4039 

0.225 0.83 1.76 

1.2 0.71 1.52 

3 0.46 1.39 

TC458 1 0.59 1.81 

En842 

1.5 0.66 1.61 

3 0.47 1.45 

6 0.26 1.36 
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(a) The notched specimens made of C40[39] 
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(b) The notched specimens made of TC4[58] 
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(c) The notched specimens made of En8[42] 

Figure 4 The dimensions of notched specimens  

4.2 Model verification 

The Modified MVM of the resolved shear stress and the normal stress are used to determine 

the direction of the critical plane for both plain and notched specimens under complex variable 

amplitude cyclic loading. Then, the new multiaxial cycle counting method is applied to count the 

values of Susmel’s multiaxial damage parameter. In the end, the sum of all the fatigue damage is 

cumulated by Miner’s LDCR. The range of critical damage Dcr is from 0.02 to 5 which can be 

accurately determined by a large number of fatigue experiments. Sonsino et al.60-62 suggest the 
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Dcr is 0.37 for aluminum and 0.27 for steel to ensure the safety of the designed structure. The 

comparison between experimental life and predicted life for plain specimens is shown in Figure 

5. The comparison between experimental life and predicted life for notched specimens is shown 

in Figure 6. Most of the predicted lives of plain specimens fall within 2-time error band and all 

the predicted lives of plain specimens fall within 4-time error band. The predicted lives of 

notched specimens are more dispersed than that of smooth specimens due to the limitation of the 

nominal stress approach. Nevertheless, most of the predicted lives of notched specimens fall 

within 4-time error band according to Figure 6. It should be noted that the f in Figure 6 (h) 

represents the ratio between the frequencies of the axial loading and torsional loading. 
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Figure 5 The comparison between experimental life and predicted life for plain specimens  
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Figure 6 The comparison between experimental life and predicted life for notched specimens  

5 Conclusions 

(1) The Newton method and the conjugate gradient method are introduced to modify the MVM 

which is proposed to define the critical plane as the one bearing the maximum variance of 

resolved shear stress. 

(2) Several planes undergo the maximum variance of resolved shear stress. The maximum 

variance of the normal stress on these potential planes is constructed to define the plane with 

the maximum normal stress as the critical plane. 

(3) A new multiaxial cycle counting method is proposed to count the cycles under complex 

variable amplitude fatigue loading based on the test conducted by Jordan54 and Wang et 

al.26-28. 

(4) Nearly two hundred sets of test data of six different kinds of metallic materials are collected 

to verify the new multiaxial cycle counting method. Experimental results indicate that the 

methods proposed can accurately evaluate the fatigue life for both plain and notched 

components under complex variable amplitude cyclic loading. 
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Appendix 1 The Newton method and the conjugate gradient method 

Eq. (15) is a ternary function which can be rewritten as follows: 

Var ( ) ( , , )
q

t f                              (A1.1) 

The illustrations of the Newton method and the conjugate gradient method to iteratively 

search the local maximum value are shown in Figure A1.1 and Figure A1.2 respectively. The 

Newton method uses the Hessian matrix which consists of the second-order partial derivatives of 

the multivariate function. The expression of the Hessian matrix in Eq. (A1.1) is: 

2 2 2

2

2 2 2
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    
      

G                       (A1.2) 

In essence, the Newton method is second-order convergent while the gradient ascent 

method is first-order convergent. So, the convergent rate of the Newton method is very fast due 

to the second-order partial derivative, but it is not easy to calculate the inverse matrix G-1 of the 

Hessian matrix G in some cases. The conjugate gradient method is a typical conjugate direction 

method. Each searching direction is mutually conjugate, and these search directions are only the 

combination of the gradient direction and the searching direction of the last iteration. Therefore, 

the storage is small and the calculation is convenient and easy. The k is a variable in Figure A1.1 

and Figure A1.2, and we can know that the function g(k) is a one-variable function. The function 

g(k) reaches the maximum value when k is equal to kn. ε is a small value that controls the 

accuracy of the critical plane in Figure A1.1 and Figure A1.2. The first step of Figure A1.1 and 

Figure A1.2 is to get different initial values where the local maximum value can be searched. 

There are many local maximums, but some of them are global maximums. In other words, 

several planes bear the maximum variance of the resolved shear stress. The plane with the 

maximum normal stress is the critical plane among these potential planes.  
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The process of Newton's method and conjugate gradient method can be easily achieved 

through the programming in the software Matlab. The accuracy of the numerical solution 

depends on the value ε. The tension-torsional fully reversed cyclic loadings are used as examples 

to further explain these algorithms. The computing times of three algorithms are summarized in 

Figure A1.3 where the first number is the ratio between the normal stress σx and the shear stress 

τxy and the second number is the phase in the abscissa. For example, ‘1-45°’ means that the 

ratio between the normal stress σx and the shear stress τxy is 1 and the phase is 45°. The mean 

values of the computing time under these cyclic loading to determine the critical plane are listed 

in Table  where the conjugate gradient method is the fastest one to search the critical plane. 

Table A1.1 The mean values of the computing time (unit: s) 

Loading paths The algorithm in Ref. [43] Conjugate gradient method Newton method 

Proportional loading 520.0 11.9 95.7 

Non-proportional loading 713.9 12.3 111.8 
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Figure A1.1 The illustration of the Newton method  
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Figure A1.2 The illustration of the conjugate gradient method  
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Figure A1.3 The computing times of three algorithms 

Note: ‘1-45°’ in abscissa means that the ratio between the normal stress σx and the shear stress 

τxy is 1 and the phase is 45°for tension-torsional cyclic loading. 
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Appendix 2 Multiaxial variable fatigue loading history 

2.1 Multiaxial variable fatigue loading history of 2020-T4 

Table A2.1 Multiaxial constant amplitude fatigue loading 

No. Loading type σa (MPa) τa (MPa) 

A 
Uniaxial tension-compression 

250 0 

B 350 0 

C 
Pure torsion 

0 144.3 

D 0 167 

E 

Proportional 

158.1 111.8 

F 177 102.2 

G 248 143 

H 30° Proportional 158 120 

I 
45° Proportional 

158 125 

J 248 143.2 

K 60° Proportional 158 132 

L 

90° Proportional 

177 102.2 

M 158.1 139.1 

N 244 157.2 

O 250 144.3 

P 250 125 

Table A2.2 Multiaxial variable amplitude fatigue loading 

Multiaxial variable amplitude 

fatigue loading 
Composition of spectrum 

VL1_TC4 D-O-I-A 

VL2_TC4 A-P-H-E-M-K-O-I 

VL3_TC4 D-L-J-G-B-N-F-H 

VL4_TC4 
O-D-G-M-H-F-G-H-O-H-M-N-J-E-K-F-G-G-K-A-F-N-B-B 

-B-B-B-I-F-J-P-O-A-B-B-B-B-B-B-B-B-B-B-N-O-B-B-B 

VL5_TC4 
L-C-A-C-I-G-C-D-B-N-D-P-B-B-G-O-L-I-P-B-D-C-M-P-D 

-K-L-I-A-L-C-H-M-P-D-A-H-C-I-J-K-H-D-E-F-D-L-O-G-I 

VL6_TC4 
O-M-B-B-B-B-B-F-G-E-L-A-M-I-I-B-B-B-B-B-I-H-A-P 

-H-G-P-I-B-B-B-B-B-J-D-O-P-P-H-O-M-A-H-G-D-K-J-O-L-A 

VL7_TC4 
E-B-B-B-B-B-E-P-B-B-B-B-B-G-D-K-N-N-F-L-O-G-M-A- 

P-O-L-E-F-G-I-D-B-B-B-B-B-H-L-J-O-H-M-O-P-D-I-B-B-B 

Note: The multiaxial variable amplitude fatigue loadings of 2020-T4 are based on the multiaxial 

constant amplitude fatigue loadings in Table A2.1 

2.2 Multiaxial variable fatigue loading history of XC18 
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Figure A2.1 Multiaxial variable fatigue loading No. VL1_XC18 
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Figure A2.2 Multiaxial variable fatigue loading No. VL2_XC18 
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Figure A2.3 Multiaxial variable fatigue loading No. VL3_XC18 

2.3 Multiaxial variable fatigue loading history of 39NiCrMo3 
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Figure A2.4 Multiaxial variable fatigue loading No. VL1_39NiCrMo3 

2.4 Multiaxial variable fatigue loading history of C40 
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Figure A2.5 Multiaxial variable fatigue loading No. VL1_C40 

2.5 Multiaxial variable fatigue loading history of TC4 
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Figure A2.6 Multiaxial variable fatigue loading No. VL1_TC4 
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Figure A2.7 Multiaxial variable fatigue loading No. VL2_TC4 
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Figure A2.8 Multiaxial variable fatigue loading No. VL3_TC4 
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Figure A2.9 Multiaxial variable fatigue loading No. VL4_TC4 
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Figure A2.10 Multiaxial variable fatigue loading No. VL5_TC4 
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Figure A2.11 Multiaxial variable fatigue loading No. VL6_TC4 

2.6 Multiaxial variable fatigue loading history of En8 
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Figure A2.12 Multiaxial variable fatigue loading No. VL1_En8 

 


