
This is a repository copy of Trees and Forests in Nuclear Physics.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/161384/

Version: Published Version

Article:

Carnini, Marco and Pastore, Alessandro orcid.org/0000-0003-3354-6432 (2020) Trees and
Forests in Nuclear Physics. Journal of physics g-Nuclear and particle physics. pp. 1-23.
ISSN 0954-3899

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Journal of Physics G: Nuclear and Particle Physics

GUIDE • OPEN ACCESS

Trees and forests in nuclear physics
To cite this article: M Carnini and A Pastore 2020 J. Phys. G: Nucl. Part. Phys. 47 082001

View the article online for updates and enhancements.

This content was downloaded from IP address 79.74.111.127 on 17/07/2020 at 10:43

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 (22pp) https://doi.org/10.1088/1361-6471/ab92e3

Trees and forests in nuclear physics

M Carnini1 and A Pastore2,3

1 Features Analytics, Rue de Charleroi 2, 1400 Nivelles, Belgium
2 Department of Physics, University of York, Heslington, York, Y010 5DD, United

Kingdom

E-mail: marco.carnini@features-analytics.com and alessandro.pastore@york.ac.uk

Received 24 February 2020, revised 7 May 2020

Accepted for publication 13 May 2020

Published 8 July 2020

Abstract

We present a simple introduction to the decision tree algorithm using some

examples from nuclear physics. We show how to improve the accuracy of the

classical liquid drop nuclear mass model by performing feature engineering

with a decision tree. Finally, we apply the method to the Duflo–Zuker model

showing that, despite their simplicity, decision trees are capable of improving

the description of nuclear masses using a limited number of free parameters.

Keywords: statistical methods, machine learning, nuclear mass models, binding

energy, decision tree

S Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, there has been an enormous growth of new statistical tools for data science

[1, 2]. Although these methods are extremely powerful to understand complex data and detect

novel patterns, they are still rarely adopted by the nuclear physics community. Only a few

groups are currently pioneering the applications of these methods to the field. These topics

have been recently discussed in a series of workshops on information and statistics in nuclear

experiment and theory (ISNET). Recent developments in this field are documented in the asso-

ciated focus issue published in Journal of Physics G [3]. The aim of this guide is to illustrate an

algorithm used widely in data analysis. Similarly to our previous guide on bootstrap techniques

3Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons

Attribution 4.0 licence. Any further distribution of this work must maintain attribution

to the author(s) and the title of the work, journal citation and DOI.

0954-3899/20/082001+22$33.00 © 2020 The Author(s). Published by IOP Publishing Ltd Printed in the UK 1

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

[4], we present the decision tree starting from very basic models, then finally apply it to more

realistic problems, like improving models for nuclear mass predictions.

Decision trees are already implemented within major experimental collaborations, such as

MiniBooNE, to improve the performances of particle detectors [5, 6], but they are not yet

widely used in low energy nuclear physics, where they could help to analyse both experimental

data [7] and theoretical models.

Following the notation and terminology of Leo Breiman’s paper Statistical Modelling: the

Two Cultures [8], we want to investigate a process f that transforms some input X into an output

Y. That is to say, f is a function:

f : X→ Y, (1)

where the input X can be quite general, from images to a table of data, while the output Y can

be a discrete or continuous set. In the first case we speak of a classification problem, in the

latter of a regression problem.

Rather than focussing on investigating the fine details of the process f with many restrictive

assumptions (an approach that is named data model culture in [8]), we consider f as a black

box mapping X to Y and we try to approximate it. That is, we give up trying to investigate all

the fine details of f and we focus on finding a representation (or approximation) f̃ for f. f̃ is

called a model and it is a function with the same domain X of the process f and codomain Ŷ:

f̃ : X→ Ŷ. (2)

The process f̃ depends on variables (usually named features), parameters (coefficients that can

be learnedwith the algorithm) and hyper-parameters, that are set before training themodel (and

thus are not learned).Wewill present an extended discussion on how to select the features of the

model to improve performances in section 2.3. Another goal for the feature selection process

is to reach a representation as parsimonious as possible.

Since ‘all models are wrong, but some are useful’ [9], it is necessary to introduce a definition

of what a goodmodel looks like in order to pick the best one out of a set of possible candidates.

Or in other terms, we need to assess how faithfully f̃ represents the process f. Mathematically,

the goal for training a model f̃ is to minimise a particular scoring function, sometimes improp-

erly called ‘a metric’. Without loss of generality, we are considering only the minimisation

problem: changing the sign of a scoring function to be maximised reduces the problem to a

minimisation task.

For example, a natural choice for the scoring function is the mean squared error (MSE) or

variance, that is the difference between the predicted value (Ŷ) and the observed, experimental

data (Y) [10]:

MSE(Y, Ŷ) =
1

N

N
∑

i=1

(Yi − Ŷi)
2. (3)

It is worth noting that this is not the only option and within the machine learning literature we

encounter other scoring functions as the logarithmic mean squared error (MSLE):

MSLE(Y, Ŷ) =
1

N

N
∑

i=1

(loge(1+ Yi)− loge(1+ Ŷi))
2, (4)

2

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

or the median absolute error [10]:

MedAE(Y, Ŷ) = median(|Y1 − Ŷ1|, . . . , |YN − ŶN |). (5)

Different scoring functions correspond to different modelling choices and the importance

we assign to specific sub-sets of the database. The use of MedAE would be more appropriate

to obtain a model that is robust to outliers: a few poorly described experimental points will not

alter significantly the performances. In the current work, we have chosen the mean standard

error (or equivalently its square root, RMS) which is the default in most libraries. Given the

high accuracy of measurements in nuclear physics, especially for masses as discussed here, we

do not need to worry about possible outliers in our data sets and MSE therefore represents a

reasonable choice.

Another important aspect in building a model is the decision on the tradeoff required

between model performances and explainability. That is, the choice between (possibly) bet-

ter performances with the chosen scoring and easier explanations of the model in plain

language. Among the regressors usually considered to be explainable are linear regression

and decision trees. However, some recent research allows explaining (although approxi-

mately) even the results from algorithms deemed black-box, such as neural networks, or such

as gradient boosting in explainable models like linear regression [11] and simple decision

trees [12].

In this guide, we chose to illustrate decision trees because they retain explainability, they do

not rely on the assumption of linearity nor on the linear independence of the features and they

are not significantly affected by monotonic transformations (no input data scaling is required,

nor monotonic transformations like taking the logarithm or the square of one variable). Also,

decision trees are the key elements in building other regressors like Random Forests [13] or

Xgboost [14] that usually perform better with regard to scoring.

Last but not least, an important aspect of modelling is the balance between the complexity

of the chosen model and the generality of the results. As an analogy, it is useful to consider

the problem of approximating N experimental distinct points using a polynomial. A complex

polynomial of degree N will be able to describe perfectly the data. Whenever some new data

are added, the perfect description will (in general) no longer be true. A correct assessment of

the performance of a regressor should be performed on unseen data, i.e. data that were not used

during the training.

A commonpractice to estimate the performanceon unseen data is the k-fold cross validation,

with k ∈ N. In essence, the data are permuted and then separated in sets of size k with each

subset (fold) roughly of the same cardinality. The model is then trained on k− 1 subsets and

validated on the subset not used while training. As an extreme case, when k = N− 1, all data

but one are used for training and the performancesare assessed on only one datum. This scheme

is called ‘leave-one out validation’ [15].

In the following sections, we will illustrate the behaviour of decision trees using some

nuclear mass models. The article is organised as follows: in section 2, we provide an intro-

duction to what a decision tree is, using very simple examples. In section 3, we introduce the

nuclear models to which we will apply the decision trees. The results of our work are presented

in section 5 and we illustrate our conclusions in section 5. In the supplementarymaterial (avail-

able online at [stacks.iop.org/JPhysG/47/082001/mmedia]),we provide the Python script used

to perform the calculations. The script has been structured in the same way as the current guide

to facilitate its usage4.

4We provide an HTML version of the material at the web address https://mlnp-code.github.io/mlnp/

3

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

2. Decision tree

With a decision tree, the function f : X→ Y is approximated with a step function with n steps

as

f̃ =

n
∑

i=1

αiI(Ωi), (6)

with Ωi ⊆ X, X ⊂ R
d where d is the number of features, I(Ωi) is the indicator function:

I(Ωi) =

{

1 x ∈ Ωi

0 x /∈ Ωi

(7)

and Ωi are half-planes in R.

Any measurable function can be approximated in terms of step functions [16], thus the

approximation is justified as long as the function f is expected to be measurable. That is, using

enough step functions we can approximate any measurable function.

Each step function required to build the model f̃ (the tree) is called a leaf , thus the num-

ber of leaves of the model corresponds to the number of step functions employed.In order to

determine the optimal values for the αi and Ωi of equation (6), one should provide a split-

ting criterion; for example, being an extreme value (maximum or minimum) for a given

function L. Here, we decide to minimise the L
2 norm of the difference between f and f̃ ,

that is:

L = ‖ f − f̃‖2. (8)

This function should be chosen to approximate the scoring function selected; then determining

the extremes of L guarantees that we have optimised the desired scoring function. Since in this

guide we chose as a scoring function the MSE, a natural choice for the splitting criterion is the

L
2 norm of equation (8); we will use it through all the following examples.

We are going to focus on the CART algorithm as presented in [1, 17]. Calculating all the

possible splits for all the features to get the optimal f̃ as in equation (6) is computationally

unfeasible for large data sets. For this reason, a greedy approximation is used for training the

decision tree: at every iteration of the algorithm, a local optimal split is selected. This is a

heuristic approach and there is no guarantee of converging to the global optimum.

At the first step of the algorithm, all the possible splits for all the features are explored and

the best split (that minimises L) is selected. Then, all the data are split between the two leaves
(a leaf for each half-plane). Then, for every leaf, the procedure is iterated until a stopping

criterion is reached. There are many different stopping criteria: a leaf can not be further split

if it contains only one observation or if all the features are constant. However, the training is

usually stopped as a modelling choice to avoid poor performance on unseen data (overfitting):

once a given number of leaves or a maximum depth (that is, a maximum number of splits

between the root and any leaf) are reached, the algorithm stops. Alternatively, leaves are not

split if they contain fewer than a specified number of observations. In this process, some of

the features may have never been used; in this case, they are irrelevant to the model and their

absence from the input will make no difference.

In the next subsections, we provide some examples of how a decision tree operates, by

showing artificially simple examples of trees with few features and very few leaves that can be

easily understood. The more realistic cases will be illustrated in section 3.

4

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 1. The full dots represent the original data set, while the line represents the
approximating function f̃ . See text for details.

2.1. A single variable example

As a first example, we illustrate the first iteration of a decision tree, splitting the data (a single

feature) into only two leaves. We build an example training set Xtr defined as the union of two

sets X1 and X2. X1 contains random points uniformly distributed in [0, 0.5] and analogously X2

with points in (0.5, 1]. Notice that X1 ∩ X2 = ∅. In this case, there is only one feature, so d = 1.

In this example as well as in the following one, we will directly code the necessary steps to

obtain the desired solution; the more advanced reader can skip these two cases to section 2.3

where an existing library is used.

For the images through f of X1 (X2), here named Y1 (Y2), we use a Gaussian distri-

bution with mean 0 (1) and a variance of 0.05 (0.1). The training set is illustrated in

figure 1. All figures presented in this article have been realised with the Python [18] library

matplotlib [19].

By construction, the data set can be fully described using a decision tree with only two

leaves, that is:

f̃ = α0I(Ω1)+ α1I(Ω2). (9)

By visually inspecting the data shown in figure 1, we notice that the current data belong to two

groups and a single split along the x axis will be enough to describe them. In more advanced

examples, the number of leaves will be selected algorithmically. To train a decision tree means

to determine the function given in equation (9), in such a way that

L = ‖ f − α0I(Ω1)− α1I(Ω2)‖2, (10)

is minimal. L is equivalent to equation (3) apart from a global scaling factor. The sets Ω1 and

Ω2 are defined as

Ω1 = {x|x � x∗},

Ω2 = {x|x > x∗}.

5

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 2. Evolution of the L norm defined in equation (10) as a function of the splitting
point x∗. See text for details.

It is easy to prove that the constant which best approximates (in terms of L2 norm) a set of

values is the average of the values, x̄.

The optimal value for x∗ (0.5) is obviouswhen the generating process for the data is known,

but how do we determine it when f is not known? The answer is reported in figure 2, where we

plot L as a function of x∗. The optimal value x∗ is the one that minimises L.
For this particular case we obtained x∗ = 0.493, α0 = 0.003 and α1 = 1.007. More details

for reproducing the results are provided in the supplementary material. Thus the decision

tree reads:

f̃ =

{

0.003 if x � 0.493

1.007 if x > 0.493.
(11)

Following these simple steps, we have built a model f̃ that is able to provide a reasonable

description of the main structure of the data, i.e. we recognise that the data are separated in

two groups. This is represented by the solid line in figure 1. We say that this tree has two leaves

since we have separated the data into two subgroups. Notice that the MSE is not exactly equal

to zero since there was some noise in the generated data.

2.2. A two variables example

We now consider a slightly more complex problem with two variables x1, x2. The aim of this

example is to familiarise with the concept of multiple splits to treat a complex problem via

simple operations. As in the previous case, we will apply the basic steps to explicitly build a

decision tree. We generate a new set of data points as:

X = {(x1, x2)|x1 ∼ U(0, 1), x2 ∼ U(0, 1)} , (12)

with response:

Y =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

10.0 {(x1, x2) ∈ X|x1 � 0.5} ,

1.0 {(x1, x2) ∈ X|x1 > 0.5, x2 � 0.5} ,

0.0 {(x1, x2) ∈ X|x1 > 0.5, x2 > 0.5} .

(13)

6

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 3. Graphical representation of the data set X defined by equation (12). The
squares correspond to Y = 10, the dots Y = 1 and the triangles to Y = 0. The solid line
corresponds to the first optimal split, the dotted line to the second split performed by the
decision tree. See text for details.

Graphically, we represent this data set in figure 3. The data are clearly clustered (by con-

struction) in three regions of the x1, x2 plane. The aim of the current example is to illustrate

how to perform successive splits to correctly identify these regions.

We apply a two-step procedure:firstly, we separate the data along the x1 direction. Following

the procedure highlighted in the previous example, we create a model in the x1 direction of the

form

f̃ = α0I(Ω1)+ α1I(Ω2).

We now perform a systematic calculation of the L norm looking for the value x∗ that leads to

its minimal value. We refer to the supplementary material for details. We find x∗ = 0.482 as

the value for dividing the plane. By observing the data, we see that there is no gain by adding

further splits in this direction. We will come back to this aspect in the following sections. We

can further refine the model by adding an additional separation along the x2 direction. The

procedure follows the same steps as before and we find that x∗ = 0.495. The result is reported
in figure 3.

An important quantity for analysing the model and for assessing the importance of its input

variables is an estimate of the feature importance. This is particularly relevant for the ensemble

methods that rely on decision trees: while with a single decision tree the role of the features

is obvious once the tree is visually represented (see for example figure 4), it is unpractical to

represent all of the decision trees in a random forest (there may be thousands). Also, a feature

may participate multiple times in different trees, so a definition of importance should take this

into account.

Starting from figure 4, we want to assess the importance of the features to the building of

the decision tree. We recall here that by features we mean the variable of the model. In this

particular example, we have considered x1, x2 as a natural choice, but one could also consider

other combinations: x1, x2, x1 + x2, x1/x2, We refer the reader to section 2.4 for a more

detailed discussion.

7

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 4. Decision tree with two variables obtained using thescikit-learnpackage
[10] for the data set reported in figure 3.

Following reference [10], we calculate the feature importance in the followingway: for each

split s in the tree, we calculate the weighted impurity decrease as

Ns

N

(

I −
Ns,R

Ns

IR −
Ns,L

Ns

IL

)

. (14)

N is the total number of observations,Ns is the number of observations at the current node,Ns,L

is the number of samples in the left leaf and Ns,R is the number of samples in the right leaf.

I represents the impurity (in our case, MSE), with the subscripts having the same meaning as

before.

By inspecting figure 4, we observe that for the first split there are in the current node

(the root of the tree) as many observations as the total, that is N = Ns = 100. The initial

impurity (MSE) is 22.782, Ns,R = Ns,L = 50, right impurity is 0, left impurity 0.25. Thus we

obtain

100

100
×

(

22.782−
50

100
× 0−

50

100
× 0.25

)

≃ 22.657.

For the second split, we get:

50

100
×

(

0.25−
24

100
× 0−

26

100
× 0.0

)

≃ 0.125.

Normalising the total weighted variation to 1, we obtain that the column x1 has importance

equal to 99.5% for the model, while x2 has an importance of 0.5%. If the variables entered in

different splits, the relative importance would be summed.

Estimating feature importance is fundamental for improving the quality of the model: by

discarding irrelevant features, i.e. features that are not reducing the impurity in the tree, more

parsimonious models can be trained. This is especially useful for models involving hundreds

(or thousands) of features. For example, anticipating the results of the following section, we see

that in figure 10, a simpler model could be obtained using only 6 features instead of 9. When-

ever features are generated for improving the model, a critical assessment of their relevance

should be performed.

After these examples that were easily implemented with a few lines of code, in the next

sections (and for realistic problems, in terms of the number of features and the number of

possible leaves) we are going to rely on existing libraries.

8

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 5. Graphical representation of the data set (X, Y): on the left panel the Cartesian
coordinates are used while on the right panel the data are represented in polar form. The
triangles correspond to Y = 1 and the dots to Y = 0. The solid lines represent the cuts
done to reproduce the data.

2.3. A two variables example (revisited)

In this section, we make use of the function DecisionTreeRegressor from the Python

package scikit-learn to determine the structure of the tree, using all default hyper-

parameters apart from the number of leaves. For the sake of simplicity, we still consider x1, x2
as features of the model and we also impose the number of leaves to be three. In more advanced

examples, we will let it be a free parameter.

In this case, contrary to the previous example, we do not need to decide if the split along

the x1 direction happens before the one along the x2 or vice-versa: all possible splits on the

available data for all features are explored with the algorithm.

The algorithm used to perform such a split can be represented as in figure 4 using the

scikit-learnpackage [10], but an analogous result could have been obtained usingR [20],

and the libraries rpart [21] for model training and rpart.plot [20] for visualisation.

The visualization of a scikit-learn tree consist of a series of boxes counting basic

information: the value of the variable at which the separation takes place, but also the mean

value of the data (named value) and the impurity (MSE in our example). It also provides infor-

mation concerning the amount of data grouped in each leaf. In this case, the tree has a total of

three leaves. As the MSE is zero (thus, minimal) on each leaf, adding extra splits to the model

would not lead to any real gain in the description of the data, but it would only increase the

model complexity.

2.4. The importance of feature engineering

In the previous examples, we have approximated the data using simple step functions; although

this choice is mathematically justified, the problem is that the approximation may lead to

a single observation per leaf, with the result that the generalisation on unseen data may be

unsatisfactory.

To overcome the problem and possibly to make the models easier to explain, it is important

to explore the data and apply convenient transformations on the input variable for the model

that may highlight some patterns.We consider as an example the case of a two variable data-set

9

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Table 1. Evolution of MSE with the number of leaves of
the tree for the data set shown in figure 5.

MSE leaves

0.278 2

0.073 3

0.164 4

0.042 5

0.222 6

0 7

obtained as follow:

X = {(x1, x2)|x1 ∼ U(0, 1), x2 ∼ U(0, 1)} , (15)

where the response is chosen as

Y =

{

1.0
{

(x1, x2) ∈ X|x21 + x22 � 1
}

0.0
{

(x1, x2) ∈ X|x21 + x22 > 1
}

.
(16)

In the left panel of figure 5, we illustrate the data points using Cartesian coordinates. By using

DecisionTreeRegressor, we build a series of decision trees as a function of the number

of leaves. In table 1, we report the MSE of the tree for various number of leaves.

From the table, we see that the lowest MSE is given by a seven-leaves tree. This tree is

quite complex, with leaves containing only 2 or 4 observations. For illustrative purposes let us

consider the case with 3 leaves, which corresponds toMSE = 0.073. The splits are performed

along the x1 direction at x∗ = 0.742 and along the x2 direction at x∗ = 0.979. The result is

reported using solid and dashed lines in the left panel of figure 5.

By inspecting the data, we realise that by applying a unitary transformation from Cartesian

to polar coordinates:

x1 = ρ sin θ, (17)

x2 = ρ cos θ, (18)

we can highlight a very specific structure in the data. The result of such a transformation is

illustrated in the right panel of figure 5. Using these new variables in the model obviously

helps the performances: using a single split, i.e. a tree with two leaves, we obtain a total MSE

of zero using fewer leaves and with features that are easier to understand. Only one feature is

relevant (ρ), so while the possible splits on the other features are explored with the algorithm,

they are irrelevant and do not play any role in the model. Notice that by construction, there is

only radial dependence and no dependency on the phase. Thus we obtain a more parsimonious

model by applying features engineering.

2.5. Random forests

We conclude this section on decision trees by introducing the concept of a random forest

(RF). following [1, 13, 22], we define an RF as an ensemble of decision trees. The first step

for training an RF is to use bagging, also named bootstrap aggregating [23, 24]. Given a

training set Xtr, a uniform sampling with replacement is performed, obtaining two data sets:

one containing the sampled data (with repetitions), X1 and one containing the data that were

10

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

never sampled, named out-of-the-box (OBB), X2. X2 contains roughly one-third of the initial

observations.

In fact, given a numberN of observation, assuming no repetitions in the data, the probability

for a datum of not being extracted at the ith draw is simply pi = 1− 1
N
. Thus the probability

of not being extracted after N draws, having replacement and assuming all the draws to be

independent, is:

p=

M
∏

i=1

pi =

(

1−
1

N

)N

−−−−→
N→∞

1

e
≈

1

3
. (19)

The second step of the RF algorithms consists of selecting a random subset of the features

of X1. The number of features used is an adjustable hyper-parameter of the algorithm;with [10]

for example, the user provides the fraction in (0, 1) out of the total number of features that will

be used for each tree. A decision tree is then built on X1 using only the selected features and

the performances are estimated on X2. In [10] the procedure is fully automatic and many trees

can be trained in parallel, but the estimation on X2 is not performed by default (but the option

can be activated). Repeating the bagging and the tree training for a number T of trees (another

adjustable hyper-parameter) and averaging the response Ŷ over the ensemble of predictions, a

random forest is obtained.

The bagging and the random selection of features are tools to inject noise in the train-

ing data. The noise can be reduced by averaging on the response of each tree and this

empirically improves the performance of the regressor [13, 23]. For the theoretical reasons

why the performances are better after injecting some noise in the system, the reference is

[13].

Intuitively, the trees in the forest should not all provide the same response, otherwise averag-

ing on all the trees would be of no benefit. Consider for example the dataset X of equation (12):

if all the trees are trained on the same data with the same input features, then they will

all provide the same output and the random forest will be equivalent to a single decision

tree.

A reason that made random forests very popular is that they can be trained on data sets with

more features than observations without prior feature selection, a characteristic that made then

a relevant tool, for example, for gene expression problems in bioinformatics. For more details,

see [25].

3. Nuclear mass models

Before applying the decision tree to a more realistic case, we now introduce the nuclear mod-

els we are going to study. According to the most recent nuclear mass table [26], more than

2000 nuclei have been observed experimentally. To interpret such a quantity of data, several

mass models have been developed over the years [27] with various levels of accuracy. For

this guide, we selected two simple ones: the Bethe–Weizsäcker mass formula [28] based on

the liquid drop (LD) approximation and the Duflo–Zuker [29] mass model. The reason of

this choice is twofold: the models contain quite different physical knowledge about the data,

for example, the lack of shell effects in LD case, but they are relatively simple and not CPU

intensive, thus giving us the opportunity to focus more on the statistical aspects of the current

guide.

11

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 6. Residuals (expressed in MeV) obtained using the liquid drop model (left
panel) and the DZ10 model (right panel).

3.1. Liquid drop

Within the LD model, the binding energy (B) of a nucleus is calculated as a sum of five terms

as a function of the total number of neutrons (N) and protons (Z) as

BLD
th (N, Z) = avA− asA

2/3 − ac
Z(Z − 1)

A1/3
− aa

(N − Z)2

A

− δ
mod(Z, 2)+mod(N, 2)− 1

A1/2
, (20)

where A = N+ Z. The set of optimal parameters have been tuned in reference [4]. These

parameters are named volume (av), surface (as), Coulomb (ac), asymmetry (aa) and pairing

(δ) and they refer to specific physical properties of the underlying nuclear system [28].

3.2. Duflo–Zuker

The Duflo–Zuker [29] is a macroscopic mass model based on a generalised LD plus the shell-

model monopole Hamiltonian and it is used to obtain the binding energies of nuclei along the

whole nuclear chart with quite a remarkable accuracy. The nuclear binding energy for a given

nucleus is written as a sum of ten terms as

BDZ10
th = a1VC + a2(M + S)− a3

M

ρ
− a4VT + a5VTS + a6s3

− a7
s3

ρ
+ a8s4 + a9d4 + a10VP. (21)

We defined 2T = |N− Z| and ρ = A1/3
[

1− 1
4

(

T
A

)2
]2

. The ten different contributions can be

grouped into two categories: in the first one we find terms similar to the LDmodel as Coulomb

(VC), symmetry energy (VT,VTS) and pairing VP. The other parameters originate from the

averaging of shell-model Hamiltonian. See [30] for more details. The model described in

equation (21) is usually referred as DZ10 and its parameters have been recently tuned in [31].

Within the literature, it is also possible to find other versions with extra parameters [32], but

we will not consider them here for the sake of simplicity.

In figure 6, we illustrate the behaviour of the residuals E(N, Z) obtained with the two mass

models i.e. the difference between the empirical data and the models predictions. We assume

12

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 7. Evolution of the MSE as a function of the number of leaves. The dot
corresponds to the absolute minimum. See text for details.

that nuclear data [26] have negligible experimental error compared to the model and we dis-

card all data having an uncertainty larger than 100 keV. This is a reasonable assumption

to be made since the typical discrepancy between models and data is usually one or two

orders of magnitude larger than the experimental errors [27]. See discussion in [4] for more

details.

In each panel of figure 6, we also provide the root mean square (RMS) deviation σ. We

thus see that DZ10 is roughly one order of magnitude more accurate in reproducing data than

the simple LD. The detailed analysis of these residuals has been already performed in [4, 31]

showing that they do not have the form of a simple white noise, but they contain a degree of

correlation.

4. Results

We apply the decision tree to the case of nuclear data. Using the same notation adopted in the

previous examples, the input X is now a matrix with 3 columns N, Z,A while the response Ŷ is

the residual.

As specified before, the goal is to minimise the RMS on unseen data or, in other words,

learning without overfitting. While it appears obvious that a tree with only one leaf, which

means replacing all the values of Y with the average Y , or with as many leaves as there are

observations are not very useful, determining the optimal value for the number of leaves is not

straightforward. The approach is empirical: experimenting with a reasonable set of values for

the number of leaves and pick the best results according to the cross-validation.

With only one adjustable hyper-parameter like the maximum number of leaves, exploring

the parameter space is straightforward: all the possible values are tested, with a cost of M

cross-validated models, whereM is the number of possible values for the number of leaves. In

our example, exploring trees with a maximum number of leaves between 2 and 500 implies

cross-validating forM = 499 models.

On the other hand,with regressorswithmany adjustable parameters, as for exampleXgboost

[14], exploring the hyper-parameter space is more challenging. For example, with 10 hyper-

parameters, exploring M values for each of them means exploring a grid with 10M points. In

this case, it is better to use dedicated libraries [33].

As a first application, we train a simple decision tree over the residuals of the LD model

as shown in the left panel of figure 6. In figure 7, we illustrate the evolution of the MSE as a

13

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 8. Decision tree for LD model using only three features N,Z,A. See text for
details.

function of the number of leaves. For sake of clarity we truncated the figure to 50 leaves, the

full plot can be found in the supplementary material.

From figure 7, we notice that the optimal number of leaves is four. The structure of the tree

is reported in figure 8. By inspecting the splits of the data, we notice that the main feature

of the data is associated with the neutron number N. The tree splits the nuclei in super-heavy

(A > 219) and non-super-heavy. Then it further splits into very neutron-rich and not. Finally,

the tree separates out the remaining nuclei into two groups: light and heavy.

Having the optimal tree, we now translate it into a simple code. Here we use Fortran, but

any other computer language can be used with no difficulty.

Using the previous code, we now calculate the nuclear binding energies as

Bth = BLD
th + Btree, (22)

14

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 9. Improved decision tree for LD model using feature engineering. For the sake
of clarity and readability, the impurity (MSE) was omitted.

Figure 10. Relative importance of the features (reduction in impurity normalised) in
the liquid drop model. The features N/A, Neven and Zeven (equal to 1 if N or Z is even
and 0 otherwise) were not used in the model and as a consequence they have zero
importance.

where Btree represents the binding energy calculated with the decision tree. By comparing the

predicted masses obtained with equation (22) with the experimental ones, we obtain an RMS

of σC,tr = 2.467 MeV. This is what is called training error, which is the RMS between the

response and the predictions of the model trained on all data. A more conservative estimation

15

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 11. Graphical representation of the splits done by the decision tree illustrated in
figure 9 on the Segré chart of nuclei. The various zones correspond to the energy correc-
tions expressed in MeV derived from the decision tree to the LD model as a function of
N, Z.

that should be preferred is the validation error on unseen data, i.e the RMS estimated on data

that were not used during the training. In this case, σC,val = 2.925 MeV.

It is possible to further improve on this result, by using feature engineering as discussed

previously. To this respect, we provide some additional information to the tree: A, N− Z, N/Z,
Z/A, Z/N The full list of features can be seen from figure 10. By inspecting equation (20),

we observe that these features are already used to build the LD model and as such we help the

decision tree to identify new patterns in the data. It is worth noting here that other features may

be used instead, but a monotonic transformation of existing features (like A1/3 if we are using

A) will provide little to no performance improvement. See for example [34] for an empirical

discussion of the topic. Identifying patterns into the data is of great help since it may lead (in

complex cases) to better solutions.

In figure 9, we report the structure of this new tree. The optimal number of leaves is 9. By

implementing this tree into a simple numerical code, as done previously and applying it to the

LD residuals we obtain a slight improvement. The total RMS over the entire nuclear chart now

falls to σC,tr = 2.069 MeV (on unseen data, σC,val = 2.881 MeV).

Although the decision tree performs less well (in terms of RMS) than a more complex

neural network [35], we can still use it to identify possible trends in the data set. By inspect-

ing figure 10, we observe that not all the 9 features have been used to build the code. In

figure 10, we illustrate the relative importance of the features of the LD model, calculated

using equation (14). We see that the proton fraction Z/A is more important than the individual

number of neutrons and protons. It is interesting to note that the decision tree is not affected by

even/odd nuclei. This may imply that either the simple pairing term in equation (20) is enough

to grasp the odd–even staggering, or the granularity required to the tree is too high, leading to

a number of leaves comparable with the number of data points, or other features can surrogate

the odd–even features. We also observe that in this tree the total number of nucleons A and

the proton fraction Z/A are as important or more than the number of neutrons N. This clearly

explains why the performances of this new tree have improved compared to the one given

in figure 8. A detailed understanding of the trend in the data would require a more in-depth

analysis and so we leave it for future investigations.

In figure 11, we present a graphical illustration of the energy corrections found by the

decision tree for the different nuclei along the Segré chart. This figure is an alternative way

to represent the various leaves shown in figure 9. We observe that we have 6 major splits

16

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 12. Decision tree for DZ10 model given in equation (21). For the sake of clarity
and readability, the impurity (MSE) was omitted.

along the valley of stability where we find light, medium-heavy and heavy nuclei. The lat-

ter are then still separated into 4 smaller groups. The other cuts occur along the region of

proton-rich and neutron-rich, thus the edges of the chart. From this general overview, we

may conclude that the residuals of the LD model are quite homogeneous (only two separa-

tions) along the valley of stability up to medium-heavy nuclei. Outside this range, the num-

ber of splits increase since the tree identifies a larger variation in the data. This may imply

some missing physics in the model (choice of features) for these particular regions of the

chart.

Having seen how the decision tree works for a schematic model as LD, we now apply it to

the more sophisticated DZ10. We adopt the same features as shown in figure 10 to obtain the

best performances. Since the structure of the residuals is different there is no a priori reason to

use such features, but for the sake of simplicity of the current guide, we keep them the same.

For the DZ10 model, the optimal tree has now 11 leaves and it is illustrated in figure 12.

As discussed previously, the tree can be easily translated into a small numerical code using a

simple structure.

In figure 13, we illustrate the importance of the features used to build such a tree. It is

interesting to observe that themost important feature is the charge dependenceand the isovector

dependence of the model (N− Z). By comparing with figure 10, we observe that the relative

17

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 13. Relative importance of the features (reduction in impurity normalised) in the
DZ10 model. As before, the features N/A, Neven and Zeven (defined as in the caption of
figure 10) were not used in the model, has zero importance in the model and can thus be
discarded.

Figure 14. Graphical representation of the splits done by the decision tree illustrated in
figure 13 on the Segré chart of nuclei. Corrections to the DZ10 model as a function of
N, Z.

importance of the features strongly depends on the model. In particular, four features of nine

turned out not to be relevant during the optimisation of the tree. We could further simplify

the tree by reducing the features used or exploring new ones. This investigation goes beyond

the scope of the present guide since we are only interested in illustrating how the algorithm

works.

We implement such a tree within a simple Fortran code. See appendix A for details. With

such a code, we calculate the new binding energies as

Bth = BDZ10
th + Btree. (23)

The global RMS drops to σC,tr = 0.471 MeV (σC,val = 0.569 MeV). The improvement on the

binding energies is not as good as the one obtained [31] using a more complex neural network,

but the model we produced is far simpler. It is worth noticing that the final model given in

equation (23) is fully specified by 43 parameters (the 10 original parameters from the DZ10

models, the 7 pairs describing the variable and the value to split on, the 9 values of the response

18

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Figure 15. Normalised histograms comparison between residues with and without the
tree correction.

Table 2. Here, σM is the original model RMS, σC,tr is the RMS
once the corrections are added σC,val the RMS on unseen data (with
corrections).

Model σM σC,tr σC,val Improvement

Liquid drop 2.936 2.467 2.925 16.0%

Liquid drop with features 2.936 2.070 2.881 29.5%

DZ10 with features 0.572 0.471 0.569 17.6%

on each leaf). This number is comparable with most nuclear mass models [36–39], which

perform similarly to equation (23).

As done previously for the LD model, we represent in figure 14 the splits of the tree given

in figure 12. We see that the most important cuts take place along Z. This was also the most

important feature of the model as shown in figure 13. Interestingly, using the decision tree we

have identified a large area in the residuals corresponding to the medium-heavy neutron-rich

nuclei for which the correction is very small. On the contrary, the same mass range, but on the

proton-rich side, requires a much more significant energy correction. This may be a symptom

of poor treatment of the isovector channel in the model.

In figure 15, we represent the comparison between the original residuals obtained with

DZ10 model and the improved one using the decision tree. The histogram has been nor-

malised. We see that the new residuals are now more clustered around the mean value,

although we see that there are still some heavy tails that we have not been able to elimi-

nate. We have checked the normality of the residual using the standard Kolmogorov Smirnov

test [40] and we can say that the residuals are not normally distributed with a 95% confi-

dence, thus showing there is still some signal left in the data that we have not been able to

grasp.

We conclude this section by summarising the impact of decision trees on the residuals of the

various mass models and different features used in the calculations. The results are reported in

table 2. We observe that using feature engineering, we have been able to reduce the RMS of

the LD model by ≈30%. Adopting the same features for the DZ10 model, we have improved

the global RMS by ≈ 18%.

It is worth noting that the numbers given in table 2 are strictly dependent on the features we

used to build the trees. Different choices would lead to different numbers.

19

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

5. Conclusion

In this guide,we have illustrated awell-knowndecision tree algorithmby providingvery simple

and intuitive examples. We have also shown the importance of analysing the data to improve

the performances of the method.

We have applied the decision tree to the case of two well known nuclearmass models: liquid

drop and Duflo–Zuker. In both cases, using a small number of leaves (9 and 11 respectively),

we have been able to improve the global RMS of themodels by 29.5% and 17.6%, respectively.

More consistent improvements have been obtained in the literature using neural networks [31,

41, 42], but using a larger set of adjustable parameters.

We have also illustrated how to represent graphically the decision tree to better highlight the

regions of the splits: this allows us to identify possible patterns in the data-set and eventually

use them to improve the original model. By analysing the importance of the features, it is then

possible to identify possible missing structure in the model.

Finally, we have also illustrated how to translate the decision tree into a simple numerical

code that could be easily added to existing ones to calculate nuclear masses.

Acknowledgements

We thank M Shelley for helping us with this guide. We also thank the two anonymous

referees for their precious comments. This work has been supported by STFC Grant No.

ST/P003885/1.

Appendix A. Decision tree: pseudo-code

For completeness, we provide here a possible translation of the decision tree into a Fortran

code.

20

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

Notice that a decision tree is formed by a simple sequence of conditional statements and the

example given here can be easily ported to any other used computer language.

ORCID iDs

A Pastore https://orcid.org/0000-0003-3354-6432

References

[1] Friedman J, Hastie T and Tibshirani R 2009 The Elements of Statistical Learning: Data Mining,
Inference, and Prediction (New York: Springer)

[2] Mehta P, Bukov M, Wang C-H, Day A G, Richardson C, Fisher C K and Schwab D J 2019 Phys.
Rep. 810 1–124

[3] Ireland D G and Nazarewicz W 2015 J. Phys. G: Nucl. Part. Phys. 42 030301
[4] Pastore A 2019 J. Phys. G: Nucl. Part. Phys. 46 052001
[5] Roe B P, Yang H-J, Zhu J, Liu Y, Stancu I and McGregor G 2005 Nucl. Instrum. Methods Phys.

Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 543 577
[6] Yang H-J, Roe B P and Zhu J 2005 Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom.

Detect. Assoc. Equip. 555 370
[7] Bailey S 2017 New analytical techniques for the investigation of alpha clustering in nuclei PhD

Thesis University of Birmingham
[8] Breiman L 2001 Stat. Sci. 16 199
[9] Box G E 1976 J. Am. Stat. Assoc. 71 791
[10] Pedregosa F et al 2011 J. Mach. Learn. Res. 12 2825–30
[11] RibeiroMT, Singh S andGuestrin C 2016 Proc. of the 22nd ACMSIGKDD Int. Conf. on Knowledge

Discovery and Data Mining (San Francisco, CA, USA 13–17 August 2016) pp 1135–44

21

J. Phys. G: Nucl. Part. Phys. 47 (2020) 082001 M Carnini and A Pastore

[12] Boz O 2002 Proc. of the 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
KDD ’02 (New York: Association for Computing Machinery) pp 456–61

[13] Breiman L 2001 Mach. Learn. 45 5
[14] Chen T and Guestrin C 2016 Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining KDD 16 (New York: Association for Computing Machinery) pp 785–94
[15] Lachenbruch P A and Mickey M R 1968 Technometrics 10 1
[16] Maderna C and Soardi P M 1985 Lezioni di Analisi Matematica (Milan: CLUED)
[17] Breiman L, Friedman J H, Olshen R A and Stone C J 1983 Classification and Regression Trees

(London: Chapman and Hall)
[18] Van Rossum G and Drake F L Jr 1995 Python Tutorial (Amsterdam: Centrum voor Wiskunde en

Informatica Amsterdam)
[19] Hunter J D 2007 Comput. Sci. Eng. 9 90
[20] Milborrow S 2019 rpart.plot: plot ‘rpart’ models: an enhanced version of ‘plot.rpart’ r package

version 3.0.8 https://CRAN.R-project.org/package=rpart.plot
[21] Therneau T and Atkinson B 2019 rpart: recursive partitioning and regression trees r package version

4.1-15 https://CRAN.R-project.org/package=rpart
[22] Louppe G 2014 arXiv:1407.7502
[23] Efron B 1979 Ann. Stat. 7 1
[24] Breiman L 1996 Mach. Learn. 24 123
[25] Okun O and Priisalu H 2007 Random forest for gene expression based cancer classification: over-

looked issues Proc. of the 3rd Iberian Conf. on Pattern Recognition and Image Analysis, Part II
pp 483–90

[26] Wang M, Audi G, Kondev F, Huang W, Naimi S and Xu X 2017 Chin. Phys. C 41 030003
[27] Sobiczewski A and Litvinov Y A 2014 Phys. Rev. C 89 024311
[28] Krane K S et al 1987 Introductory Nuclear Physics (New York: Wiley)
[29] Duflo J and Zuker A 1995 Phys. Rev. C 52 R23
[30] Mendoza-Temis J, Hirsch J G and Zuker A P 2010 Nucl. Phys. A 843 14

[31] Pastore A, Neill D, Powell H, Medler K and Barton C 2020 Phys. Rev. C 101 035804

[32] Qi C 2015 J. Phys. G: Nucl. Part. Phys. 42 045104

[33] Komer B, Bergstra J and Eliasmith C 2019 Automated Machine Learning: Methods, Systems,
Challenges eds F Hutter et al (Berlin: Springer International) pp 97–111

[34] Heaton J 2017 arXiv:1701.07852

[35] Utama R, Piekarewicz J and Prosper H 2016 Phys. Rev. C 93 014311

[36] Liran S and Zeldes N 1976 At. Data Nucl. Data Tables 17 431

[37] Möller P, Myers W, Swiatecki W and Treiner J 1988 At. Data Nucl. Data Tables 39 225
[38] Goriely S, Chamel N and Pearson J 2009 Phys. Rev. Lett. 102 152503
[39] Wang N and Liu M 2011 Phys. Rev. C 84 051303
[40] Barlow R J 1993 Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences vol

29 (New York: Wiley)
[41] Utama R and Piekarewicz J 2017 Phys. Rev. C 96 044308
[42] Neufcourt L et al 2018 Phys. Rev. C 98 034318

22

	Trees and forests in nuclear physics
	1. Introduction
	2. Decision tree
	2.1. A single variable example
	2.2. A two variables example
	2.3. A two variables example (revisited)
	2.4. The importance of feature engineering
	2.5. Random forests

	3. Nuclear mass models
	3.1. Liquid drop
	3.2. Duflo–Zuker

	4. Results
	5. Conclusion
	Acknowledgements
	Appendix A. Decision tree: pseudo-code
	ORCID iDs
	References

