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Abstract: Maize (Zea mays L.) from the Algerian Sahara was adapted to arid conditions and has

been used for food and feed. The objective of this work was to assess the potential value of Saharan

maize for saccharification and nutritive value under drought conditions. Eighteen maize populations

from the Algerian Sahara were evaluated under drought and control conditions and representative

samples of those populations were taken for nutrients and saccharification analyses. The evaluation

of saccharification was made in one Spanish trial under drought and control conditions. Differences

among Algerian populations for nutritive value were significant for starch and ash, but not for

lipids and proteins. Drought-reduced saccharification yield and differences among populations were

significant for saccharification potential under drought conditions, and for saccharification yield

under both drought and control conditions. The Algerian populations PI527465 and PI542689 had

high grain starch and low ash, PI527469 and PI527474 had a balanced nutritional value, and PI527475

and PI542683 had low grain starch and moderately high ash. Besides high nutritional value, the

drought-tolerant population PI542683 had high saccharification under drought conditions. Most

agronomic traits had no significant effects on saccharification, and some grain nutrients affected

saccharification and agronomic performance. Therefore, improving the nutritive value of grain and

saccharification of stover, while maintaining agronomic performance, could be feasible, attending to

the weak interactions between them.

Keywords: Zea mays L.; nutrients; saccharification; Algerian landraces

1. Introduction

Maize (Zea mays L.) has been used mainly for feed and secondarily for food and as a source of

biomass for renewable energy [1]. As the average harvest index of maize is 0.5, half of the biomass

can be used for nutrition and half for bioenergy under standard conditions, but some factors, such as

stresses, can alter the potential value of maize for diverse uses [1].

Drought is the main stress for maize worldwide [2,3]. Consequently, drought tolerance should be

a major objective of breeding programs. Sources of drought tolerance have been reported in tropical

environments [3] and we have identified semitropical Algerian maize populations from the Sahara as
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potential sources of drought tolerance for temperate environments [4–6]. However, the adaptation of

photoperiod-sensitive varieties from lower latitudes to temperate areas is another limiting factor.

Breeding maize for food or feed requires the improvement of the nutrient balance because maize

and most cereals have low proportion and deficiencies of proteins and lipids [7]. Maize grain contains

about 72% starch, 10% protein, and 4% lipid [8] and provides about 15% of the world’s protein and

20% of the world’s calories [9]. Starch is the primary carbohydrate of maize, and sugars range from 1%

to 3% [10]. Ash contains minerals and heavy metals.

Plant sugars, starch, and cellulose can be used for bioethanol production. Cellulosic ethanol

derived from fast-growing C4 grasses has become the preferred alternative, as it is the greatest

depository of renewable energy. With the potential to generate a major source of lignocellulosic

biomass, maize has been postulated as an outstanding model for studying the complex cell wall

network, and also as a model to optimize crop breeding strategies in bioenergy grasses. Maize

stover, the residue left after harvesting the grain, is the largest and readily available substrate for

lignocellulosic feedstock [11–15]. In this way, double exploitation of the crop could be achieved.

The conversion of starch to ethanol is more straightforward than the digestion of lignocellulose as

a renewable carbon substrate [12]. However, there is an increasing rejection of the use of food for

fuel [16], which has moved the focus from maize grain towards lignocellulosic biomass as a source

of bioenergy. Therefore, substituting starch as a substrate for ethanol production by lignocellulose is

convenient due to its abundance, low requirements of inputs, low greenhouse gas emissions, and large

net energy outputs [17].

Algerian maize germplasm from subtropical areas exhibited high phenotypic and genetic diversity

and wide adaptation to temperate regions [4,18]. Moreover, Cherchali et al. [19] identified heterotic

patterns between Algerian maize populations and heterotic groups from northern and southern Spain,

and with the US Corn-Belt Dent. Based on the reported variability of Algerian maize populations,

we decided to assess the potential value of that germplasm for feed and food, and also as a source

of biomass for renewable energy under drought conditions. Furthermore, we analyzed if selection

for higher nutritive value could affect agronomic performance, and if selection for better agronomic

performance could affect the saccharification value. The expected growing area of the potentially

improved released varieties includes the Mediterranean area, as the populations were representative

of the genetic diversity available in Spain and Algeria and the agronomic evaluations were made in

both countries.

2. Materials and Methods

Eighteen open-pollinated Algerian maize populations were evaluated along with EPS14(FR)C3,

included as a check from the dry Spain, and EPS13(FR)C3, as a check from the humid Spain, under both

drought and control conditions, following a randomized complete block design with three replications,

in 2016 and 2017 in Algiers and northwestern Spain [20]. Experimental plots were 6 m2 and around

60,000 plants m−2. The drought and control field experiments were adjacent in each location. Previous

analyses showed that the soil of Algerian experimental fields had 23% clay, 33% silt, 42% sand, and

2% organic matter. The Spanish field of 2016 was sandy-loam with pH = 5.9, organic matter 6.5%,

and P, K+ and Mg2+ 16, 248, and 124 mg kg−1 respectively. In 2017, the Spanish field was sandy-loam

with pH = 5.6, organic matter 5.6%, and P, K+, and Mg2+ 128, 220, and 60 mg kg−1, respectively.

Previous crop in all cases was maize and fertilization followed the recommendations of the respective

agricultural services for each environment.

Eleven populations representing the geographic distribution of that collection were chosen for

analyses of nutrients (Table 1), whereas 6 populations representing the diverse response to drought

stress [20] were chosen for saccharification analyses.
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Table 1. Nutritive value 1 (%) of eleven Algerian maize populations and one Spanish check.

Population Starch Ash Lipids Proteins

EPS13(FR)C3 76.82 c 1.97 ab 6.23 a 14.98 a
PI527465 78.71 a 1.56 b 6.12 a 13.61 a
PI527467 77.83 abc 1.62 b 5.95 a 14.61 a
PI527469 77.04 abc 1.78 ab 6.48 a 14.70 a
PI527470 77.91 ab 1.66 b 6.01 a 14.42 a
PI527472 77.38 abc 1.76 ab 6.24 a 14.62 a
PI527473 77.31 bc 1.80 ab 6.58 a 14.31 a
PI527474 77.20 abc 1.71 ab 6.27 a 14.82 a
PI527475 76.56 bc 1.73 ab 6.68 a 15.02 a
PI527478 76.96 abc 2.17 a 5.81 a 15.06 a
PI542683 75.77 bc 1.80 ab 6.38 a 16.06 a
PI542689 78.41 abc 1.62 b 5.80 a 14.17 a

1 Means followed by the same letter within the same column were not significantly different, according to the LSD
method at p = 0.05.

These populations were sown the 26th of April 2016 at Algiers (36◦47’ N, 2◦03’ E, altitude

32 m a.s.l.), a sub-humid region of the north of Algeria with 690 mm of annual rainfall, under control

and drought conditions. Control blocks received 600 mm from sowing to post-flowering, while only

200 mm were applied under drought conditions. Algerian trials were harvested at the end of August.

For checking adaptation to temperate conditions, a second trial was sown in Pontevedra (Latitude

42.40◦ N and Longitude 8.63◦ W) the 4th of May 2016 under rainfall conditions, and a third one the

23rd of May 2017 in Xinzo de Limia (Latitude 42.07◦ N and Longitude 7.73◦ W) in the province of

Ourense under control and drought (without irrigation) conditions. Spanish trials were harvested

at the beginning of October. Grain samples from the original seed were used for analyzing nutritive

composition on starch, proteins, lipids, and ash in the Laboratorio Agrario e Fitopatolóxico de Galicia

following the official methods of the Spanish administration [21,22] (BOE 17 February 2000; BOE

2 March 1995).

Saccharification analyses were carried out using samples obtained under both drought and control

conditions in 2017 from Xinzo de Limia field trial. At harvest time, five to eight plants were collected,

ears were removed and the plant stover sample was chopped, pre-dried at 35 ◦C in a forced air camera,

and then dried at 60 ◦C in a stove. Finally, dry stover samples from each plot were grounded in a Wiley

mill with a 0.75 mm screen. Saccharification assays were performed as described in Gomez et al. [23].

Briefly, ground material was weighed into 96-well plates, each well contained 4 mg of each sample

either as four replicates; and processed using a high-throughput automated system (Tecan): samples

were pre-treated with 0.5 M NaOH at 90 ◦C for 30 min, washed four times with 500 µL sodium acetate

buffer and finally subjected to enzymatic digestion (Celluclast 2, 7 FPU/g) at 50 ◦C for 9 h. The amount of

released sugars was assessed against a glucose standard curve using the 3-methyl-2-benzothiazolinone

hydrozone method. Saccharification potential was obtained for the whole plant without ear samples.

Saccharification yield was obtained by multiplying dry biomass per plot by saccharification potential.

Analyses of variance were performed for each trait, being the sources of variation environments,

treatments (well-watered and drought stress), populations, repetitions, and their interactions.

Treatments, populations, and the treatment × population interaction were considered fixed effects

while any other effect or interaction was considered random. Mean comparisons were made with the

LSD method at p value = 0.05. All analyses were carried out with the statistical program SAS [24].

In order to investigate the possible effects of grain nutrients and agronomic traits on saccharification

potential and saccharification yield, multiple regression analyses were made with saccharification

potential and saccharification yield under drought and control conditions, as dependent variables, and

the agronomic traits published by Maafi et al. [20] and grain nutrients, individually, by using the Proc

Reg procedure of SAS [24] with a stepwise method (p value = 0.15). Furthermore, the possible effects

of nutrients on plant development were also assessed by performing multiple regression analyses
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with grain nutrients as independent variables and agronomic traits from all the environments as

dependent variables.

3. Results

3.1. Identifying Promising Algerian Populations in Relation to Grain Nutritional Composition

Differences among maize populations were significant for starch and ash, but were not significant

for lipids and proteins. Starch was lowest (76.82%) for EPS13(FR)C3 and highest (78.71%) for PI527465,

followed by PI527470. Ash was lowest for PI527465, PI527467, and PI542689, and highest (2.17%) for

PI527478. Proteins varied from 13.61 for PI527465 to 16.06% for PI542683, and the value of the Spanish

check EPS13(FR)C3 was 14.98%. For lipids, the variation was between 5.80, for PI542689, and 6.68% for

PI527475. The Spanish check had a lipid content of 6.23%.

3.2. Identifying a Saccharification Use of the Stover under Stressed Conditions

Drought and control conditions were not significantly different for saccharification potential, but

varieties were significantly different for saccharification potential under drought conditions (Table 2).

Under drought stress, saccharification potential was higher for the Spanish check EPS13(FR)C3 than

for the Algerian populations PI527473 and PI527467, and for PI542683 than for PI527467. PI542683 had

also high grain yield under drought conditions [20]. The two populations with lowest saccharification

potential, PI527467 and PI527473, had high grain yield and PI527467 had also high early vigor and

grain and biomass yield under drought conditions. PI542685 had only a reduction of 4% from

control to drought conditions, indicating that this population was not sensibly affected by drought for

saccharification potential.

Table 2. Saccharification 1 in six Algerian maize populations and two Spanish checks under drought

and control conditions.

Control Conditions Drought Conditions

Population
Per Unit Dry
Matter (nmol

Sugar mg−1 h−1)

Yield (mmol Sugar
ha−1 h−1)

Per Unit Dry
Matter (nmol

Sugar mg−1 h−1)

Yield (mmol Sugar
ha−1 h−1)

EPS13(FR)C3 78.46 a 372.3 bc 89.64 a 359.5 a
PI542683 75.91 a 464.7 bc 85.75 ab 302.3 ab
PI542685 86.73 a 1025.6 a 83.08 ab 237.6 ab

EPS14FRC3 69.56 a 282.8 c 80.81 abc 313.4 ab
PI527472 80.76 a 470.6 bc 77.45 abc 303.1 ab
PI542684 68.45 a 609.4 b 77.28 abc 310.2 ab
PI527473 88.09 a 318.0 bc 72.57 bc 167.8 b
PI527467 79.13 a 419.8 bc 65.64 c 173.9 b

1 Means followed by the same letter within the same column were not significantly different, according to the LSD
method at p = 0.05.

Saccharification yield was significantly lower (42.6%) under drought (271.0 mmol sugar ha−1 h−1)

than under control (472.4 mmol sugar ha−1 h−1) conditions, and there was a significant population

× environment rank interaction. All populations except the check from dry Spain [EPS14(FR)C3]

reduced saccharification yield from control to drought conditions. The reduction of saccharification

yield was lowest for EPS13(FR)C3 (3.4%) and highest for PI542685 (76.8%). The northern Spanish

check EPS13(FR)C3 had the highest saccharification yield under drought conditions, though several

populations were not significantly different, particularly PI542685 and PI542683. Therefore, the

population PI542685 could be a promising material in relation to bioethanol use and, as we previously

mentioned, performs nicely in control and stresses conditions.
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3.3. Effects of Agronomic Traits and Grain Nutrients on Saccharification

Multiple regression analyses with the data from Xinzo de Limia in 2017 showed that none

of the agronomic traits has significant effect on saccharification potential under control conditions,

while under drought conditions biomass moisture had a negative effect, being R2 = 0.81 (p = 0.0989).

Concerning saccharification yield, under control conditions, the model for agronomic traits was

significant: Saccharification yield = −132.82 + 92.03 × Dry biomass, being R2 = 0.89 (p = 0.0004) for

dry biomass; and under drought conditions ear height had a positive effect (R2 = 0.24 (p = 0.0559)),

and ears per plant a negative effect [R2 = 0.76 (p = 0.1271)]. The inconsistency of the effects under

control and drought conditions might be due to the weaknesses of the effects. Nevertheless, the results

show that most agronomic traits had no significant effects on saccharification potential; except for the

negative effect of biomass moisture under drought conditions.

Concerning the effects of grain nutrients, multiple regression analyses showed that the

saccharification potential under control conditions was positively affected by grain lipids [R2 = 0.37

(p = 0.0541)], and negatively by proteins [R2 = 0.58 (p = 0.1330)]. Under drought conditions, the model

for saccharification potential was significant: Saccharification potential = −125.26 + 79.49 × Ash +

6.80 × Proteins, being R2 = 0.80 (p = 0.0410) for ash and R2 = 0.17 (p = 0.0646) for proteins. In the

multiple regression analyses for saccharification yield under control conditions, grain nutrients had

no significant effects; and under drought conditions, grain ash had a positive effect, being R2 = 0.55

(p = 0.1493).

3.4. Effects of Grain Nutrients on Plant Development

The regression analyses for investigating possible effects of grain nutrients on plant development

in all the environments pointed out the following significant models:

i. For early vigor under drought stress: Early vigor = 31.15 − 0.39 × Starch, R2 = 0.33 (p = 0.0491).

ii. For pollen shedding under control conditions: Pollen shedding = 61.10 − 17.26 × Ash − 3.88 ×

Lipids + 4.12 × Proteins, R2 = 0.27 (p = 0.0875) for ash, 0.32 (p = 0.0284) for proteins; and 0.11

(p = 0.1243) for lipids.

iii. For plant height under control conditions: Plant height = 636.75 − 7.00 × Starch, R2 = 0.34

(p = 0.0468); and plant height under drought stress: Plant height = 878.82 − 11.29 × Starch,

R2 = 0.65 (p = 0.0016).

iv. For ear height under control conditions: Ear height = 279.20 − 4.52 × Starch − 60.08 × Ash +

15.11 × Proteins, R2 = 0.34 (p = 0.0450) for proteins, 0.33 (p = 0.0142) for ash; and 0.08 (p = 0.1435)

for starch; and ear height under drought stress: Ear height = 569.31 − 7.63 × Starch, R2 = 0.58

(p = 0.0041).

v. For grain yield under drought stress: Grain yield = −2.81 + 0.79 × Lipids, R2 = 0.34 (p = 0.0479).

vi. For grain moisture under control conditions: Grain moisture = 27.65 − 8.23 × Ash, R2 = 0.40

(p = 0.0277).

Summarizing, grain starch has significant negative effects on early vigor and plant height under

drought and control conditions. Ash has significant negative effects on days to pollen, ear height, and

grain moisture under control conditions. Lipids had significant positive effects on grain yield under

drought stress. Finally, proteins had significant positive effect ear height under control conditions.

4. Discussion

Differences among maize populations were significant for starch and ash. Nutrients’ values were

close to the reported mean starch content for maize [8,25]. Besides having high starch content, PI527470

was drought tolerant based on grain yield [20]. Ash values were also close to the reported mean

ash content for maize [8,25]. PI527467 had also high early vigor and grain and biomass yield under

drought conditions [20], and PI527478 was drought tolerant based on grain and biomass yield, plant
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height, and biomass moisture. The differences between mean nutrient percentage in our study and the

mean values reported by Inglett [8] could be explained by the lower grain yield of these populations

compared to cultivated varieties. Protein values were higher than the reported mean protein content

for maize [8,25]. PI527465 was not outstanding for drought tolerance [20], while PI542683 had high

grain yield under drought conditions [20]. Most of the lipid values were also higher than the reported

mean lipid content for maize [8,25]. PI542689 was not selected as drought tolerant, while PI527475 had

tall plants and low biomass moisture under drought conditions [20].

Drought had no significant effect on saccharification potential. PI542683 had also high grain

yield under drought conditions [20]. The two populations with lowest saccharification potential had

high grain yield and PI527467 had also high early vigor and grain and biomass yield under drought

conditions. PI542685 was not sensibly affected by drought for saccharification potential.

The effectiveness of the saccharification process relies on the accessibility of the fermentable

sugars by the hydrolytic enzymes, which is determined by the degree of lignification and cell wall

crosslinking mediated by hydroxycinnamates [11]. Besides the effects on the agronomic performance

of the crop as could be the negative impact in total dry biomass; drought stress also provokes changes

in cell wall composition [26,27], hence, affecting total saccharification efficiency. These changes in cell

wall performance were previously related to increases or decreases of cell wall polysaccharides and

lignin [28–32].

The effects of drought upon cell wall behavior depend on the crop, tissue under study, or the

method used to obtain either the cell walls biochemical composition or its saccharification potential, as

for example, one particular feedstock pre-treatment. Emerson et al. [30] quantified the drought effect on

corn stover obtaining an increase in extractable components and a decrease in cellulose, hemicellulose,

esterified p-coumaric acid content and lignin that was correlated with greater degradability. Similarly,

van der Weijde et al. [32] observed in miscanthus reductions in cellulose and cell wall content, and an

increase in hemicellulosic polysaccharides, and reported improvements on sugar release efficiency.

Even though cell walls with these characteristics could be presented as a strategy to improve sugar

release, the effect of drought on dry biomass affects the total saccharification yield requiring a greater

amount of dry biomass to produce the same bioethanol as in control conditions [30].

The saccharification potential values found for these Algerian varieties were higher than

previous results shown for temperate varieties [33]. PI542685 had a low reduction of saccharification

under drought conditions and was considered drought-tolerant based on biomass production [20].

Saccharification yield was lower under drought than under control conditions, and there was a

significant population × environment rank interaction. Most populations reduced saccharification

yield from control to drought conditions, and the reduction was highest for PI542685, probably due

to the limited adaptation of this last population [20]. The population PI542685 was considered a

promising material in relation to bioethanol production and, as we previously mentioned, performed

nicely in control and stresses conditions.

Even though the significance of the effects was small, the regression analyses showed that

saccharification yield was affected positively by dry biomass under control conditions, whereas

saccharification potential was significantly affected by grain ash and proteins under drought stress. In

relation to the first significant effect, it makes sense that a higher dry matter content was related to

saccharification yield taking into account that as dry matter increased, more cellulose material was

available, and thereby more sugars were potentially extractable.

Concerning the effects of nutrients in agronomic performance, grain starch had significant negative

effects on early vigor and plant height under drought and control conditions. Ash had significant

negative effects on days to pollen, ear height, and grain moisture under control conditions. Lipids

had significant positive effects on grain yield under drought stress. Finally, proteins had significant

positive effect ear height under control conditions.

Altogether, there was significant diversity among Algerian populations for nutritive value and

saccharification potential or yield, as expected based on previous studies about phenotypic and
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genotypic diversity [4,18,19]. The Algerian populations PI527465 and PI542689 had high starch and low

ash. PI527469 and PI527474 had a balanced nutritional value. PI527475 and PI542683 had low starch

and moderately high ash. Furthermore, PI542683 had as well high saccharification potential under

drought conditions. In addition, as previously mentioned, the population PI542685 was a promising

material for bioethanol production under stress conditions.

Most agronomic traits had no significant effects on saccharification; except for dry biomass, which

increased, as expected, the saccharification yield. Furthermore, grain nutrients affected saccharification,

though the only significant effect was for grain ash under drought stress. The effects of grain nutrients

on agronomic traits indicated that increasing grain starch reduced agronomic performance. Increasing

grain ash improved earliness at flowering and reduced ear height. Finally, grain lipids also improved

grain yield under drought conditions.

5. Conclusions

From the present characterization, we concluded that (i) PI527465 and PI542689 had high energetic

value, and PI527469 and PI527474 had balanced nutritional value, (ii) in addition to high nutritional

value, the drought-tolerant population PI542683 had high saccharification under drought conditions,

(iii) most agronomic traits had no significant effects on saccharification, (iv) some grain nutrients

affected saccharification and agronomic performance, and (v) improving nutritive value of grain

and saccharification of stover, while maintaining agronomic performance, was considered feasible,

attending to the weak interactions between them.
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