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ABSTRACT

The  aim  of  this  study  was  to  substitute  part  of  soybean  phospholipid  (SPC)  with

hydrogenated soybean phospholipid (HSPC) in curcumin-loaded liposomes (Cur-LP), in order

to further enhance stability and release performances of curcumin. When the SPC/HSPC mass

ratio changed from 10:0 to 5:5, vesicle size, encapsulation efficiency and alkali resistance of

curcumin increased, although a small decrease in centrifugal stability was observed. Salt

stability became worse as more HSPC was used (3:7 and 0:10). Owing storage at 4 °C and

25 °C, Cur-LP at a SPC/HSPC mass ratio of 5:5 performed well considering vesicle size, lipid

oxidation and curcumin retention. These vesicles displayed also the best sustained-release

performance in simulated digestion, attributed to the tighter lipid packing in membranes as

indicated by fluorescence probes, DSC and FTIR. This study can guide the development of a

Cur-LP product with improved shelf-life stability by using HSPC.

KEYWORDS: Liposomes; Curcumin; Hydrogenated Phospholipid; Stability
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1. Introduction

Poor stability is the major drawback for liposomes formed by natural unsaturated

phospholipids, especially when encapsulating nutraceuticals. This instability is mainly

attributed to lipid oxidation and vesicles aggregation (Huang, Chung, & Wu, 1998). The double

bonds in fatty acid chains of unsaturated phospholipids disturb the molecular packing and cause

interspaces in the hydrophobic region of liposomal membranes, which increases the membrane

fluidity (Grit & Crommelin, 1993). To solve this problem, cholesterol and phytosterol are

employed in the preparation of traditional liposomes to stabilize the liposomal vesicles and

improve their encapsulation efficiency by reducing the bilayers fluidity in the liquid crystalline

phase (Sulkowski, Pentak, Nowak, & Sulkowska, 2005; K. D. Tai, Liu, He, Ma, Mao, Gao, et

al., 2018). Nonetheless, this does not solve the oxidation problem of unsaturated phospholipids,

which limits the shelf-life stability of liposomes. In recent years, antioxidants such as α-

tocopherol (Sahari, Moghimi, Hadian, Barzegar, & Mohammadi, 2017), quercetin (Frenzel &

Steffen-Heins, 2015) and vitamin E (Amiri, et al., 2018) were tried to be embedded into

liposomes. Although a considerable antioxidant effect was achieved in liposomes, this protocol

might induce some molecular interaction between the antioxidant and the main embedded

bioactive compounds. For example, promising bioactive nutrients and auxiliary agents such as

protein (Wang & Wang, 2015) and polysaccharide (Caddeo, Diez-Sales, Pons, Carbone, Ennas,

Puglisi, et al., 2016) strongly interact with polyphenols, which decreases their antioxidant

effect in liposomes and renders the preparation process more complicated as well.

Compared with unsaturated phospholipids, saturated or hydrogenated ones exhibit higher

phase transition temperatures, and gel-phases with a lower membrane fluidity can be formed

at or below human body temperature. It contributes to the stability of the bioactive compound

encapsulated in liposomes. Huang et al. found that adding HSPC effectively reduced lipid

oxidation in haemoglobin-loaded liposomes (Huang, Chung, & Wu, 1998). Apart from a few
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studies about liposomes prepared by hydrogenated phospholipids alone in field of medicine,

little research has been carried out from a food perspective. Sebaaly et al. prepared eugenol

(Sebaaly, Greige-Gerges, Stainmesse, Fessi, & Charcosset, 2016) and essential oil (Sebaaly,

Jraij, Fessi, Charcosset, & Greige-Gerges, 2015) liposomes by non-hydrogenated and

hydrogenated phospholipids, respectively. Of these, non-hydrogenated phospholipids

liposomes displayed improved loading capacity. However, a better encapsulation efficiency

(34.6%) of nisin Z in hydrogenated phospholipid liposomes was obtained, compared with

liposomes contained a high percentage of unsaturated phospholipids (Laridi, Kheadr, Benech,

Vuillemard, Lacroix, & Fliss, 2003). Chen et al. confirmed that a greater HSPC content leads

to the higher phase transition temperature of liposomes, due to the longer alkyl chain and

stronger chain-chain van der Waals interactions (Chen, Liang, Wang, Yokoyama, Chen, &

Zhong, 2018). It is worth noting that the cost of hydrogenated phospholipids is much higher

than that of unsaturated ones, which make it unrealistic to prepare liposomes using

hydrogenated phospholipids alone in food processing.

In our previous study, curcumin-loaded liposomes (Cur-LP) have been successfully

prepared by unsaturated phospholipids naturally extracted (Tai, Rappolt, He, Wei, Zhu, Zhang,

et al., 2019). The physicochemical stability, encapsulation efficiency and bioavailability were

significantly improved as more β-sitosterol was incorporated into the liposomes. Nevertheless,

an unsatisfying phospholipid oxidation in these liposomes still displayed soon afterwards.

Thus, the objective of this study was to investigate the usage of hydrogenated phospholipids in

the manufacturing of more stable Cur-LP, which could prolong the availability of encapsulated

curcumin. At present, most reported studies about Cur-LP only concentrate on usage of

hydrogenated phospholipids alone, e.g., an ultrasound-assisted supercritical antisolvent method

was  established  (Jia,  Song,  Gai,  Zhang,  &  Zhao,  2016),  which  proves  the  feasibility  of

preparing Cur-LP with HSPC. But it is not suitable for application in the current food industry
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due to the special high costs involved. Further, Chaves et al. studied the curcumin proliposomes

with different phospholipids compositions, who found that curcumin loading in proliposomes

prepared by HSPC mixed with some non-hydrogenated phospholipids was higher than that in

samples formed by HSPC only (Chaves & Pinho, 2019).

In  contrast  to  Chaves’  research  about  powdery  Cur-LP,  our  study  tries  to  reveal  the

influence of HSPC content on stability and digestive release property of liquid-crystalline

phase based Cur-LP. In our study, vesicle characteristics were determined by vesicle size, zeta-

potential, polydispersity index (PDI) and morphology. A series of stability tests was conducted,

such as centrifugal, salt and pH stability. Storage stability under refrigerated (4 °C) and room

temperature (25 °C) conditions was closely monitored in terms of vesicle size, lipid oxidation

and curcumin retention. Fluorescence probe, differential scanning calorimeter (DSC) and

Fourier transform infrared spectroscopy (FTIR) were applied to measure the molecular

ordering in liposomal membranes, which is closely related with liposomal stability. The in vitro

release performance during simulated digestion was finally evaluated to verify the application

potential of Cur-LP containing some HSPC.

2. Materials and methods

2.1 Materials and chemicals

Non-hydrogenated soybean phospholipid (SPC) Lipoid S100 (94% soybean

phosphatidylcholine, 3% lysophosphatidylcholine, 0.1% phosphatidylethanolamine, 0.5% N-

acyl-phosphatidylethanolamine, 0.1% phosphatidylinositol, 2% water, 0.2% ethanol) was

purchased from Lipoid GmbH (Ludwigshafen, Germany). Hydrogenated soybean

phospholipid (HSPC, 97% 1,2-distearoyl-sn-glycero-3-phosphocholine) was purchased from

Advanced Vehicle Technology Pharmaceutical Co., Ltd (Shanghai, China). Curcumin (˃ 95%)

was obtained from Hebei Food Additive Co., Ltd (Hebei, China). Cholesterol was purchased
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from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). The fluorescent probe, 1,6-

diphenyl-1,3,5-hexatriene (DPH, 98%), mucin from porcine stomach (M2378), pepsin from

porcine gastric mucosa (P7125), pancreatin from porcine pancreas (P1750) and bile salts were

purchased from Sigma-Aldrich (St. Louis MO, USA). Dimethyl sulfoxide (DMSO, 99%) was

purchased from Xilong Scientific Co., Ltd (Guangzhou, China). All other reagents used were

analytical grade without further purification.

2.2 Preparation of curcumin-loaded liposomes

Curcumin-loaded liposomes (Cur-LP) was prepared by the thin film hydration method

illustrated in our previous study with some modifications (K. Tai, et al., 2019). Briefly, soybean

phospholipid, cholesterol and curcumin (40:8:1, w/w/w) were adequately dissolved into

anhydrous methanol. The soybean phospholipid contained SPC and/or HSPC, the

concentration of total soybean phospholipids was fixed at 10 mg/mL, of which the investigative

mass ratios of SPC/HSPC are 10:0, 7:3, 5:5, 3:7 and 0:10, respectively. Whereafter, the solution

was transferred into a round-bottom flask and methanol was vacuum-removed under rotary

evaporating at 50 °C. The thin lipid film inside the surface of the flask was hydrated with

phosphate buffered saline (PBS, 0.05M, pH 7.0) to form a crude curcumin-loaded liposomes

suspension. A micro-fluidizer (M-110EH30, Microfluidic Corp, Newton, MA, USA) operated

for 3 cycles at 150 MPa was used to decrease the liposomal vesicle size. All freshly prepared

liposomes were stored in a refrigerator at 4 °C for further analysis.

2.3 Liposomes characterization

The mean vesicle size, zeta potential, polydispersity index (PDI) and size distribution

were determined by dynamic light scattering (DLS) using a Malvern Zetasizer Nano-ZS90

(Malvern Instruments Ltd., Malvern, UK) equipped with a 633 nm He/Ne laser at a detector

angle of 90°. The prepared Cur-LP were diluted (10-fold) with 0.05 M PBS in order to avoid

multiple scattering that could affect the accuracy of the DLS-measurements. For size
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measurement, the diluted suspension was transferred into disposable polystyrene cuvettes with

a path length of 10 mm. Refractive index was set to 1.490. The zeta potential was obtained

from the electrophoretic mobility of the vesicles. Folded capillary cell were used for the

measurements.  PDI  represents  the  width  of  vesicle  size  distribution  ranging  from 0  to  1,  of

which  PDI  ≤ 0.1  is  considered  to  be  highly  monodispersed,  values  of  0.1-0.4  and  ˃ 0.4  are

considered to be moderately and highly poly-dispersed, respectively (Bhattacharjee, 2016).

Each sample was carried out in triplicate at 25 °C and each measurement needs 2 min of

equilibration before starting.

The encapsulation efficiency (EE) and loading capacity (LC) of curcumin was measured

by UV-1800 spectrophotometer (Shimadzu, Japan). Liposomes were centrifuged at 15000 × g

for 1 h (3K15 refrigerated versatile centrifuge, Sigma Laborzentrifugen GmbH, Germany) to

remove the free or absorbed curcumin on the surface of the vesicles. The sediment was re-

dispersed in buffer and centrifuged three times to remove the unembedded curcumin as much

as possible. The sediment was adequately disrupted by methanol to release the encapsulated

curcumin, which was detected by absorbance at 428 nm based on full wavelength scanning.

The content of curcumin was then calculated from a calibration curve. Cur-LP was used to

measure the gross amount of curcumin in the samples. EE and LC of curcumin were calculated

using the following equations:

EE(%)=
Amount of  encapsulated curcumin

Total amount of curcumin
×100 (1)

LC(%)=
Amount of  encapsulated curcumin

Total amount of curcumin, phospholipids and cholesterol
×100 (2)

2.4 Field emission scanning electron microscope (FE-SEM)

The microstructure of liquid and lyophilized liposomes was observed by FE-SEM

(SU8020, Hitachi Ltd, Japan). For liquid samples, SEM samples were prepared by dropping

diluted liposomes onto the silicon wafer followed by air-drying and gold sputtering. The
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lyophilized samples were directly adhered to the silicon wafer before gold sputtering, which

avoids the influence of charging under electron beam. The thickness of gold layer is about 10

nm. SEM images were captured at an accelerating voltage of 3 kV.

2.5 The fluidity of liposomal bilayer membranes

The fluidity of liposomal membranes was measured by fluorescence spectrometer (F-

7000, Hitachi, Japan) according to the protocol applied in a previous study (K. Tai, et al., 2019).

The inclination degree of DPH penetrated into hydrophobic region of liposomal membranes is

readily affected by adjacent phospholipid molecules moving laterally. Thus, the fluidity of

liposomal membranes is reflected by polarization of DPH, which is also independent of probe

concentration. Liposomes diluted (10-fold) with 0.05 M PBS were mixed with DPH solution

(2 μM in dimethyl sulfoxide) at a volume ratio of 5:1. The mixture was incubated in the dark

for  60  min  at  room  temperature.  For  investigating  the  change  of  membrane  fluidity  with

temperature, the samples were thermally equilibrated in a water bath at different temperatures

ranging from 25-80 °C for 10 min before measurement. Samples were excited with vertically

polarized light (360 nm), and the emission intensities were recorded at 430 nm. The bandwidth

was set to 5 nm for both the exciting and emitting light beam. The steady state polarization (P)

of DPH was calculated using the following equations:

P= ൫I0,0-G×I0,90൯ ൫I0,0+ G×I0,90൯ൗ (3)

G= I90,0 I90,90⁄ (4)

where I0,0, I0,90, I90,0, I90,90 are fluorescence intensities of emitted light (exciting light) polarized

to exciting light (emitted light) in parallel (0) and vertical (90), respectively. G is the grating

correction coefficient. The fluorescence intensity of DPH in aqueous is basically ignored.

2.6 Differential scanning calorimetry (DSC)

The phase transition temperature (Tm) and enthalpy (ΔH) of Cur-LP were obtained from
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DSC thermograms. Briefly, transferring accurately-weighted mass of freeze-dried samples into

aluminium pans, which was subsequently sealed with a lid. Heating sample was operated by

DSC Q200 (TA Instruments Inc., New Castle, Delaware, USA) at rate of 10 °C/min from 25 to

80 °C under nitrogen gas flow (50 mL/min). An empty aluminum crucible was used as a

reference. All DSC curves were base-line corrected and fitted with a sum of Gaussian

distributions using the software Origin 9.0 (Origin Lab Inc., Northampton, MA, USA).

2.7 Stability study

2.7.1 Accelerated stability analysis

The accelerated stability of liposomes was evaluated by multi-sample analytical centrifuge

LUMiSizer® (L.U.M  GmbH,  Berlin,  Germany),  which  traces  instability  phenomena  by

recording the evolution of transmission profiles for test tubes with the dispersions in terms of

time and position. The continuous instability process characterized by vesicle migration and

sedimentation would be accelerated during centrifugation. All liposome formulations were

subjected to centrifugation at 2300 × g for 1 h. A total of 360 profiles were recorded in intervals

of 10 s.

2.7.2 Salt stability

In view of the common usage of salt in food products, the stability of liposomes in salt

solutions with diverse concentrations is important to know. Undiluted Cur-LP formulation was

mixed  with  NaCl  solutions  at  a  volume ratio  of  1:9.  The  final  concentration  of  NaCl  in  the

mixed solution varied in the range of 100-1000 mM. Vesicle size of treated liposomes was

measured after 1 h of incubation at room temperature. Extent of change in vesicle size (ΔDz)

was calculated using the following equation:

∆Dz(%) =
Vesicle size after incubation-vesicle size initially prepared

Vesicle size initially prepared
×100 (5)
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2.7.3 pH stability

To  determine  the  pH  sensitivity  of  curcumin  and  pH-driven  deformation  of  liposomal

membranes, Cur-LP was subjected to an alkaline environment (pH= 8.0, 9.0, 10.0, 11.0 and

12.0). The pH of PBS was respectively adjusted to pre-set values using NaOH solution. Then,

undiluted Cur-LP samples were mixed with PBS at a volume ratio of 1:9. All mixtures were

incubated at room temperature for 1 h followed by measuring the amount of curcumin retained

in the liposomes by absorbance. The retention degree of curcumin (%) was calculated using

following equation:

Retention	(%)=
Ct

C0

×100 (6)

where Ct and C0 are the concentration of curcumin remained in samples after treatment and in

freshly prepared samples, respectively.

2.7.4 Storage stability

15 mL of freshly prepared liquid Cur-LP were transferred and sealed into 20 mL brown

glass bottles. The storage temperatures were controlled at 4 °C and 25 °C, respectively. Vesicle

size, lipid oxidation and retention of curcumin were monitored at scheduled time intervals

during three weeks storage. The method of vesicle size measurement is described in Section

2.3.

The thiobarbituric acid reactive substances (TBARS) method was applied to determine the

lipid oxidation of liposomes. Briefly, 1 mL of undiluted Cur-LP was mixed with 5 mL of

thiobarbituric acid (TBA) solvent (15% TBA + 0.6% trichloroacetic acid + 2% hydrochloric

acid, w/v) and heated in a boiling water bath for 30 min. Whereafter, the mixture was cooled

immediately in an ice bath to terminate the reaction, followed by centrifugation at 825 × g for

15 min. The absorbance of the supernatant was measured at 535 nm against a blank containing

all solvents except the liposomes. The concentration of malondialdehyde (MDA) formed from

oxidative degradation of lipids was calculated using the extinction coefficient (1.56×105 M-1
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cm-1) as ‘TBARS value’.

The retention degree of curcumin in liposomal suspensions was also monitored. 500 μL

of suspension was taken at a pre-set interval and the residual curcumin was measured by

absorbance. The percentage of curcumin retained was calculated, using Eq. 6.

2.8 Fourier transform infrared (FTIR) spectroscopy

FTIR was applied to investigate the possible molecular interactions of curcumin with the

membrane matrix. The analysis was performed using a SpectrumTM 100 FTIR spectrometer

(PerkinElmer, Waltham, MA, USA) in the range of 400-4000 cm-1 with a resolution of 4 cm-1.

All Cur-LP formulations were freeze-dried before analysis, which were mixed with anhydrous

potassium bromide (KBr) and pressed into a tablet. A pure KBr tablet was measured as

background.

2.9 In vitro release study

The in vitro release of curcumin from liposomes with different phospholipid compositions

was carried out during simulated digestion. This method was preferred over the dialysis

method, since it more closely reflects the human digestive environment. In vitro simulated

gastrointestinal tract (GIT) model established in this study could reveal the release performance

of  Cur-LP  during  simulated  digestion,  which  might  be  affected  by  saturated  level  of

phospholipids in liposomes. The basic GIT model includes three digestion steps: (i) mouth

phase (simulated saliva fluid, SSF, pH=6.8), (ii) gastric phase (simulated gastric fluid, SGF,

pH=1.5), and (iii) small intestine phase (simulated intestinal fluid, SIF, pH=7.0).

In detail, (i) 1 L of SSF contained 1.594 g of NaCl, 0.202 g of KCl and 0.6 g of mucin, (ii)

1 L of SGF contained 2 g of NaCl, 3.2 g of pepsin and 7 mL of 12 M HCl, and (iii) 1 L of SIF

contained 6.8 g of K2HPO4, 8.775 g of NaCl, 5 g of bile salts and 3.2 g of pancreatin. All

simulated digestive juices and liposomes were preheated at 37 °C. Firstly, liposomes and SSF

were mixed 1:1 by volume for simulating mouth digestion. When the simulated mouth phase
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ended, the digestive mixture was mixed with SGF in the same volume ratio (1:1) for simulated

gastric digestion. At the end of the gastric phase, the gastric effluent was continuously mixed

with  an  equal  volume  of  SIF.  These  three  digestive  phases  took  10  min,  2  h  and  2  h,

respectively. The pH of the gastric effluent was adjusted to 6.8-7.0 before simulated intestine

digestion. The whole simulated digestion process was carried out in a water bath shaker at

37 °C, to simulate gastrointestinal peristalsis.

The release of curcumin from liposomes constructed with mixed phospholipids was

investigated by monitoring its cumulative release during simulated digestion. 500 μL of

digestive mixture was collected at defined time intervals and cooled in an ice bath. Each control

sample was centrifuged at 4 °C for 30 min (15000 × g). The supernatant was collected and the

absorbance measured for quantification the amount of curcumin released from the liposomes

into the digestive mixture. For calculation of the released amount of curcumin, the unembedded

fraction of curcumin in primary sample needs to be subtracted. The cumulative release rate (%)

of curcumin was calculated and plotted as a function of time:

Cumulative release(%)= ൬Mt

M0

൰×100
t

0

(7)

where M0 and  Mt are the initial amount of curcumin encapsulated in liposomes and the

cumulative amount of released curcumin in digestive medium at different sampling times.

2.10 Statistical analysis

All experiments were carried out in triplicate and data are expressed as mean ± standard

deviation.  One-way  ANOVA  and  Duncan’s  significant  difference  test  at  5%  level  of

significance by IBM SPSS software version 25 (IBM Corp., NY) were performed. Origin 9.0

(OriginLab Inc., Northampton, MA, USA) was used to draw graphs.
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3. Results and discussion

3.1 Liposomal vesicle characteristics

In our previous studies, sonication and high-pressure homogenization were commonly

applied to decrease liposomal vesicle size and prevent vesicles sedimentation (K. Tai, et al.,

2019; K. D. Tai, et al., 2018). Although the stability was improved in these liposome

suspensions, we note that by applying greater homogeneous pressures (˃100 MPa) with the

microfluidizer technique, vesicle sizes below 100 nm can be achieved. Microfluidisation at 117

MPa was applied as a preparation method of stable liposomes formed with sunflower lecithin

(W. Liu, Ye, & Singh, 2015; Peng, Zou, Liu, Liu, & McClements, 2018).  Hence,  using  a

microfluidizer, Cur-LPs with different SPC/HSPC mass ratios were prepared (each containing

33 mol% cholesterol).

Vesicle sizes of Cur-LPs from 84 nm (SPC:HSPC=0:10) to 220 nm (SPC:HSPC=3:7) were

obtained (Table 1), by increasing the ratio of HSPC in the total phospholipids gradually, but

the vesicle size decreased to 146 nm for Cur-LP with 100% HSPC. The same trend is observed

for  the  PDI  (Table  1)  and  SEM  results  (Fig.  1,  air-dried  samples).  From  the  vesicle  size

distribution results (Fig. 1), unimodal distributions for 10:0 and 7:3 SPC/HSPC ratios and a

bimodal  distribution  above  50%  HSPC  are  evident.  Similarly,  Sebaaly  et  al.  showed  that

eugenol-loaded liposomes using only hydrogenated phospholipids were larger than those

formed by non-hydrogenated ones (Sebaaly, Greige-Gerges, Agusti, Fessi, & Charcosset,

2016). The same phenomenon was also found for quercetin-loaded liposomes (Azzi, Jraij,

Auezova, Fourmentin, & Greige-Gerges, 2018). The larger vesicle sizes were attributed to the

diverse saturation of the hydrocarbon chains in phospholipids molecules. Increasing the degree

of chain saturation increases van der Waals interactions, leading to reduced membrane fluidity

(increased membrane rigidity) (Zhang, Han, Ye, Liu, Tian, Lu, et al., 2019), and hence to larger

vesicle diameters with lower membrane curvature. Generally, increasing membrane rigidities
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enhances the “curvature frustration”, when membranes are bent. That is, following the widely

applied concept of the molecular “packing parameter” (Israelachvili, 2011), the ideal molecular

shape in planar structures such bilayers is the cylinder. However, when forming liposomes, the

curvature of the membranes is slightly deviating from zero, i.e. the embedded molecules adopt

slightly truncated cone shapes, deviating from their spontaneous intrinsic curvature. That is,

the greater the fluidity of a membrane (e.g., displayed in the liquid disordered phase (Ld)), the

easier it can be bent (low curvature frustration). On the other hand, stiffer membranes such as

in the liquid ordered (Lo) and lamellar gel (Lβ) phase cannot be bent as easily, i.e. the curvature

frustration is higher and consequently liposomes with bigger diameters are expected to form.

Thus, the observation of increasing vesicle size with increasing HSPC content makes good

sense, since based on the thermotropic phase behaviour of hydrogenated soybean PC in the

presence of cholesterol (Kitayama, Takechi, Tamai, Matsuki, Yomota, & Saito, 2014), the

following phase transition from the Lo phase (100% SPC) to Lo/Ld phase coexistence (7:3

SPC/HSPC) to the Lo/Lβ phase coexistence (HSPC ˃ 50%) is expected. Note, the bimodal

vesicle distribution might be related to Lo-rich and Lβ-rich vesicles, respectively.

The reason for the shrinking of the liposomes when using HSPC alone remains speculative.

The most rigid membranes should actually lead to the largest vesicle sizes. A possible

explanation could be that the overall membrane undulations reduce drastically, once there is no

SPC present in the liposomes, and hence, the Helfrich undulation repulsion force (Helfrich,

1973) reduces. Consequently, the internal water layer within the liposomes is expected to

reduce as well. In contrast, the liposomes are well hydrated when the SPC/HSPC mass ratio

varied from 10:0 to 3:7, while at ratio of 0:10 the liposomes might expel interlamellar water

and therefore might overall shrink in size. Alternatively, it might be that the curvature

frustration at 100% HSPC becomes so large, that stacking disorder effects lead to the formation

of liposomes with significantly less lamellae, and hence leading to smaller vesicle sizes.
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3.2 Thermal behavior

The thermal property of the liposomal membrane was investigated, using DSC (Fig. 2A

and 2B). As previously described, the phase transition temperature (Tm) of Lipoid S100 is

below 0 °C (Li, Wang, Zhang, Wang, Huang, Luo, et al., 2015), which explains why no

endothermic peak is apparent in thermogram of Cur-LP with SPC alone. The same result was

also obtained in another study (Li,  Liu,  Zhang, Fang, Xu, Zhang, et  al.,  2016).  Further,  it  is

important to note, that the SPC was mixed with 33 mol% cholesterol, which decreases the

membrane fluidity of the SPC membranes in the liquid crystalline phase. We note, that DPH

polarization of curcumin-loaded liposomes prepared by SPC alone (~0.44) is clearly lower than

SPC liposomal membranes containing 33 mol% cholesterol (~0.55; cp. also Figure 2C).

However, cholesterol in this case, does not induce the formation of a purely liquid ordered state

(Lo) (Hodzic, Rappolt, Amenitsch, Laggner, & Pabst, 2008; Rappolt, Vidal, Kriechbaum,

Steinhart, Amenitsch, Bernstorff, et al., 2003; Singer & Finegold, 1990). Thus, SPC/cholesterol

(33 mol%) is clearly a liquid phase (free lateral movement of the lipids take place), but it can

neither be described satisfactorily as a liquid disordered phase (Ld) nor as a fully liquid ordered

(Lo) phase, it is somewhat in between. For the sake of simplicity though, we call this the “Lo

phase” all the same. When HSPC is added to the system, the phase behavior changes entirely.

Indeed, for 7:3, 5:5, 3:7 and 0:10 SPC/HSPC, two endothermic peaks are observed (Fig. 2B).

In accordance to Kitayama et al. on the phase behavior of hydrogenated soybean PC (Kitayama,

Takechi, Tamai, Matsuki, Yomota, & Saito, 2014), we observe two transitions: (i) Lo+Lβ to

Lo+Ld phase transition (melting point) at 46 to 50 °C and (ii) the Lo+Ld to Ld phase transition

at 54 to 64 °C (Fig. 2A and 2B). For increasing amounts of HSPC in liposomes, increased

transition temperatures and total enthalpies were synchronously observed.

Phospholipid membranes are highly fluid above melting point when the amount of

unsaturated lipid is high, and 80% of the fatty acids in SPC used in this study are unsaturated.
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Incorporating cholesterol in the membrane reduces the membrane fluidity above Tm due to the

effective limitation of mobility of acyl chains and the induction of the liquid ordered phase,

while it increases the membrane fluidity below Tm (Sułkowski, Pentak, Nowak, & Sułkowska,

2005). Fig. 2C shows the fluorescence micropolarity of DPH in different Cur-LPs as a function

of temperature. The micropolarity of all Cur-LP gradually reduced with increasing temperature.

This is attributed to the higher mobility of phospholipids molecules at elevated temperatures,

resulting from an increased lipid chain disorder (increased number of trans-gauche

conformations per chain) (Balanc, Ota, Djordjevic, Sentjurc, Nedovic, Bugarski, et al., 2015;

Seelig & Seelig, 1974). Cur-LP containing HSPC had better resistance on the heat-induced

fluidity increase of membranes, especially evident for Cur-LP composed of HSPC alone. This

is understood, since the saturated fatty acid chains of HSPC decrease the steric repulsion

between phospholipids in membranes, which in turn, restricts the rotational mobility of

phospholipids owing to an increased lateral lipid packing density (Neves, Nunes, Amenitsch,

& Reis, 2016; Takechi-Haraya, Sakai-Kato, Abe, Kawanishi, Okuda, & Goda, 2016).

3.3 Stability assessment under environmental stress

3.3.1 Centrifugal stability

Given the thermodynamic instability of liposomes, the LUMiSizer® was used to monitor

dispersion properties of liposome suspensions by the evolution of the space- and time-related

transmission profile.  As shown in Fig.  1 (A1-E1 at  25 °C and A2-E2 at  60 °C),  the red and

green profiles represent transmissions detected in earlier and later time, respectively. 130 mm

and 108 mm shown in abscissa represent the physical bottom and top position of sample,

respectively. Under the action of centrifugal force, migration of the vesicles gradually caused

density variations at different positions in the sample cells, which is reflected by transmission

variations. The density of transmission profiles reflects the time required for sample phase

separation. More dense profile mean that more time is needed for the phase separation. Results
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in Fig. 1 demonstrates that increasing the ratio of HSPC decreased the centrifugal stability of

Cur-LP. This change is best reflected in transmission changes in the middle of sample cells.

Compared with the low transmission changes observed for Cur-LPs with no or low content of

HSPC (Fig. A1 and B1), obvious transmission changes were observed in Cur-LP at SPC/HSPC

of 3:7 (Fig. D1) and 0:10 (Fig. E1) at 25 °C. The trends are similar at 60 °C (Fig. A2-E2), but

display faster changes in transmissions due to more intense Brownian motions of liposomal

vesicles at higher temperature. In accordance with vesicle size results, only the 10:0 and 7:3

SPC/HSPC ratio liposomes deliver satisfyingly low sedimentation results, whereas bigger

vesicles and in particular bimodal vesicle size distributions lead to faster migration rates under

the influence of centrifugation.

3.3.2 Salt stability

Salt is commonly used in food products like energy drinks for electrolyte supplementation.

Thus, it is necessary to test salt tolerance of Cur-LP in the case of HSPC addition. In this study,

all Cur-LPs were incubated in NaCl solutions of different ion strength at room temperature.

The change in vesicle size (ΔDz, %) as a function of NaCl concentration is shown in Fig. 3A.

Cur-LP exhibited a good salt stability for vesicles with SPC/HSPC mass ratios ranging from

10:0 to 5:5. However, vesicle size increased significantly at high HSPC concentrations

(SPC/HSPC=3:7 and 0:10). This observation is somewhat counterintuitive, since at high salt

concentrations osmosis is induced. Thus, it is expected that liposomes increasingly dehydrate

with an increase in the sodium concentration and therefore, the vesicle size should reduce. On

the other hand, dehydration of the membranes leads to denser lipid packings within the

membranes, and hence to more rigid membranes within the liposomes. In turn, this induced

curvature frustration might lead to stacking defects and subsequent annealing of the HSPC-rich

liposomes to form actually vesicle of bigger size with lower curvature frustration (Mouritsen,

2011).
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3.3.3 pH stability

Curcumin is very sensitive to the pH of the environment. It was confirmed that more than

90% of curcumin decomposes rapidly in buffer systems at neutral-basic pH condition (Wang,

Pan,  Cheng,  Lin,  Ho,  Hsieh,  et  al.,  1997).  Nevertheless,  a  previous  study  reported  that

stabilizing the SPC membranes with cholesterol and Tween 80 would improve the pH stability

of encapsulated curcumin in liposomes under alkaline condition (X. Chen, Zou, Niu, Liu, Peng,

& Liu, 2015). As for our study, results shown in Fig. 3B illustrates that Cur-LPs containing

HSPC display a better pH-stability than the SPC-liposomes (10:0). The curcumin retention

rates of the former were significantly higher than that of the latter, when exceeding pH 9.0. For

instance, at moderate alkaline conditions (pH=10.0), the pH stability ranking for Cur-LP is

5:5 > 0:10 > 3:7 > 7:3 > 10:0 (SPC/HSPC mass ratio), and almost the same curcumin retention

rates (about 87%) were determined at pH=12.0 for Cur-LP at SPC/HSPC mass ratios of 5:5,

7:3 and 10:0. It manifests that the increasing HSPC concentration, leading to lower membrane

fluidity, also helps to resist the leakage of curcumin from membranes, when the pH increased.

Similar observations were made for large unilamellar vesicles composed of

PC/cholesterol/phosphatidylglycerol. Here, the employment of HSPC offered both, stronger

membrane rigidity and lesser propensity for peroxidation, leading to an optimized liposomal

L-cysteine-stability (El Kateb, Cynober, Chaumeil, & Dumortier, 2008). It is worth noting that

all HSPC concentrations lead to a significant pH-stabilization of the liposomes lying usually in

a retention interval of 5%, with the ratios 0:10, 3:7 and 5:5 being slightly more promising than

the 7:3 ratio of SPC to HSPC.

3.4 Storage stability

The thermodynamic instability of liposomes may lead to vesicle fusion and leakage of

embedded curcumin, which is reflected in the shelf-life stability of Cur-LP in terms of size,

lipid oxidation and curcumin retention.



19

3.4.1 Vesicle size

As presented in Fig. 4A and 4B, all Cur-LPs guarantee good vesicle size stability for 30

day storage period, whether at 4 °C or 25 °C, apart from Cur-LP with SPC/HSPC at mass ratio

of 3:7. Here a significant increase in vesicle size (from 220 nm to 382 nm (25 °C) and 447 nm

(4 °C)) was observed during the 30 day storage period. We note that the formulation with a

SPC/HSPC ratio of 3:7 displays also the strongest bimodal size distribution (Fig. 1). This either

reflects an exceptional tendency of vesicle aggregation in this formulation, or it might be

explained by Lo-rich and Lβ-rich vesicle formulation, in which the latter vesicle contribution

grows in size over time, especially in the first week. Nonetheless, the high-pressure

microfluidics technique applied in this study produced Cur-LP with smaller vesicle sizes (less

than 150 nm) with a greater size stability, when compared to results of high-pressure

homogenization in our previous study (K. Tai, et al., 2019). The same preparation method used

in another Cur-LP study achieved stable vesicle sizes at 4 °C and a 90 day storage period, but

displayed poor stability at 25 °C (X. Chen, Zou, Niu, Liu, Peng, & Liu, 2015). In contrast, in

the present investigation a higher amount of cholesterol and greater homogenization pressure

helped to obtain a better stability also at 25 °C. Importantly, liposomes at 25 °C do remain in

the Lo+Lβ phase (Fig. 2B), and hence guarantee more rigid membranes with enhanced curcumin

retention, but at the same time lead to liposomes with a very good size stability over a longer

storage time.

3.4.2 Lipid peroxidation

In many previous studies on liposomes for food applications, unsaturated phospholipids

were widely used to improve the absorption or bio-distribution of bioactive compounds.

However, with respect to long-term storage in a commercial environment, these studies

commonly paid no attention to the lipid oxidation of liposomes, which plays an important role

in their stability (Niki, Yamamoto, Komuro, & Sato, 1991). Although some groups did achieve
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antioxidant properties for liposomes by embedding antioxidants like zein hydrolysates (Y. Y.

Li, Liu, Han, Kong, & Liu, 2017), the simple strategy of replacing a certain amount of SPC

with HSPC, performed well in restraining the oxidation process in liposomes during storage,

as shown in Fig. 4C (4 °C) and 4D (25 °C). Cur-LP composed of HSPC alone (0:10) showed

little change in TBARS values during storage at the two different temperatures owing to the

lack of unsaturated double bonds in the fatty acid chains. On the contrary, liposomal

membranes formed with SPC alone (10:0) showed the most lipid oxidation. For mixed

phospholipids samples, adding more HSPC significantly slowed down the lipid oxidation of

Cur-LP during storage. Of these, Cur-LP at a SPC/HSPC ratio of 5:5 exhibited the least lipid

oxidation. One reason is that greater concentrations of saturated fatty acid chains in the

membranes reduces obviously the possibility of phospholipid oxidation. However, another

reason is that reduced vesicle fusion and aggregation under storage decreased also the

likelihood of unsaturated phospholipids being exposed to oxygen (Gast, Zirwer, Ladhoff,

Schreiber, Koelsch, Kretschmer, et al., 1982). An interesting phenomenon is that the TBARS

values of Cur-LPs containing SPC at 4 °C were just a little bit lower than that at 25 °C. Actually,

we expected a greater difference owing to the acceleration of the oxidation rate at higher

temperature. One possible explanation is that antioxidant of curcumin itself was also involved

during storage (Ak, & Gülçin, 2008; Huang, Chen, Liu, Wang, Shen, Chen, et al., 2017), which

deserves to be further studied in the future.

3.4.3 Curcumin retention

Leaked curcumin can be gradually degrade during storage. Hence, the retention of

curcumin in Cur-LP suspensions were monitored, as shown in Fig. 4E (4 °C) and 4F (25 °C).

The slowest curcumin degradation curve was obtained for Cur-LP at a SPC/HSPC ratio of 5:5,

while  curcumin  degradation  was  fasted  in  Cur-LP  at  a  SPC/HSPC  ratio  of  10:0  (lowest

oxidation stability) and 3:7 (lowest vesicle size stability), regardless of temperature. Thus, in
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our opinion, the stable vesicle size and lower phospholipids oxidation during storage

synergistically guaranteed the stability of mixed phospholipids membranes on embedded

curcumin.  As  to  the  relatively  lower  curcumin  retention  of  Cur-LP  with  HSPC  alone,  it  is

speculated that the stiffness of this liposomal vesicles failed to make uniform distribution of

curcumin molecules in the membranes owning to the lower temperature used in preparation

and storage than phase transition of HSPC. Thus, curcumin leaked and degraded after two days

storage. That is consistent with a slightly lower encapsulation efficiency of curcumin in

liposomes with HSPC alone. As for the temperature effect, the degradation of curcumin was

expectedly faster at 25 °C than at 4 °C. The main reason for this finding, is the higher

permeability of liposomal membranes at higher temperature, which led to a stronger leakage

of curcumin from the internal hydrophobic area of bilayers (Jin, Lu, & Jiang, 2016).

Furthermore, the rapid degradation period in the first week indicates that a process of gradual

stabilization and annealing takes place in Cur-LP after preparation. This is also consistent with

the rapid growth stages in vesicle size and TBARS values in the same period.
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3.5 Intermolecular interaction

There has been little research being reported on molecular interactions between SPC and

HSPC in liposomal membranes, while these interactions indeed contribute to the stability of

membranes. In accordance to our previous FTIR study on liposomes (K. D. Tai, et al., 2018),

the pair of peaks located at 2800-3000 cm-1 relate to symmetric (~2850 cm-1) and asymmetric

(~2920 cm-1) stretching vibration of C-H bonds in CH2, with the peak near 1160 cm-1 displaying

the asymmetric stretching vibration of the C-O-C aliphatic ester. Concerning the polar head

group of phospholipids, representative peaks are the symmetric (~1070 cm-1) and asymmetric

stretching vibrations (~1240 cm-1)  of  PO2
-
 groups and the asymmetric stretching vibration

(~950 cm-1) of the N+-CH3 group. All wavenumbers of different stretching vibration peaks are

labelled in Fig. 5A. As the HSPC content of the membranes increased, the two stretching

vibration peaks of C-H simultaneously shifted to the lower wavenumber (shift of 2926 to 2917

and 2854 to 2850, respectively), which is mainly attributed to the diverse saturation of fatty

acid chains in phospholipids. Denser phospholipid chain packings due to increased van der

Waals attractions greatly limit the bond vibrations deep in the hydrophobic region of

membranes. A similar observation was made for the stretching vibration in the C-O-C group

(shift from 1162 to 1160), that is located between the polar head groups and hydrophobic fatty

acid tail chains. Likely, the C-O-C group is involved in the formation of hydrogen (H) bonds

with other molecules, such as cholesterol and curcumin containing hydroxyl groups. The PO2
-

groups are also involved in the formation of H-bonds, which led its symmetric and asymmetric

stretching vibrations peaks shifting to lower wavenumbers (shift of 1240 to 1236 and 1073.3

to 1072.7, respectively) as more HSPC was added. The miniscule wavenumber shift of the N+-

CH3 stretching vibration illustrates that the hydrophilic choline in the head group did not

participate in intermolecular interactions. In general, the formation of more H-bonds and denser

lipid chain packing in the hydrophobic core synergistically made liposomal vesicles more
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stable, to allow increase in the HSPC content.

3.6 In vitro release performance in simulated digestion

In order to clarify the possible application potential of this binary liposomes, in vitro

simulated digestion experiments were carried out that includes three stages: mouth, stomach

and small intestinal digestions. The digestion fate of curcumin can be expressed by its

cumulative release from the liposomal matrix as shown in Fig. 5B. In the simulated mouth

stage, only about 5% of curcumin was released from all Cur-LPs. The absence of specific

enzymes for disrupting phospholipids bilayers and short processing time are responsible for

the low curcumin release during this stage (Wickham, Faulks, & Mills, 2009). The cumulative

release of curcumin was still less than 20% at the end of simulated gastric digestion. We

attribute this mainly to the retained integrity of liposomal structures after simulated gastric

digestion, which has been ascertained in our previous study (K. D. Tai, He, Yuan, Meng, Gao,

& Yuan, 2017) and by others (W. L. Liu, Ye, Liu, Liu, & Singh, 2012). Notably, Cur-LPs with

SPC/HSPC ratios of 10:0 and 7:3 displayed evidently higher curcumin release during this stage.

Their relatively higher membrane fluidity (the fluid Ld phase is dominant, cp. Fig. 2B) causes

more curcumin to be released. Additionally, the simulated stomach peristalsis (shaking) might

also have a stronger influence on the integrity of the high-SPC liposomes. In simulated small

intestinal digestion, a sharp increase in curcumin release was observed for all Cur-LP

formulations, which we mainly attribute to the hydrolysis of phospholipids by lipolytic

enzymes in pancreatin and the emulsifying effects of bile salts on liposomal membranes (W. L.

Liu, Ye, Liu, Liu, & Singh, 2012; Sadeghpour, Rappolt, Misra, & Kulkarni, 2018). The former

disrupts the phospholipids assembly by chemical hydrolysis, while the latter leads to

solubilizing liposomal vesicles into micelles (Maherani, Arab-Tehrany, Kheirolomoom, Geny,

& Linder, 2013). The fastest release was obtained for Cur-LP composed of SPC alone (10:0).

Here more than 80% of curcumin was released after digestion. On the contrary, Cur-LP
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composed of HSPC alone (0:10) successfully sustained the curcumin release when compared

with  the  SPC-formed  one.  Noteworthy,  the  Cur-LP  at  SPC/HSPC  ratio  of  5:5  achieved  the

slowest curcumin release during simulated digestion, even slightly better than pure HSPC

vesicles.  The  Cur-LP  with  SPC/HSPC  ratio  of  3:7  displays  a  slightly  worse  release  rate  in

agreement  with  its  poor  vesicle  size  stability  (Fig.  4A and  4B).  In  view of  the  complicated

digestive environment, including warm temperature (37 °C), longstanding mechanical shaking

and salt ions (NaCl), the best physicochemical stability obtained above guaranteed a digestive

stability for the high-content HSPC liposomes, especially for Cur-LP at SPC/HSPC ratio of

5:5.

4. Conclusions

In this study, we have systematically analyzed the effect of increasing addition of HSPC

with concomitant lowing of the SPC content on the stability and in vitro release of Cur-LP. It

turned out that liposomes prepared by HSPC alone is not the best choice for curcumin

encapsulation, although better encapsulation efficiency and loading capacity, stability and

sustained release were achieved when compared to pure SPC liposomes. Combining

advantages of SPC liposomes displaying better physical stability (during centrifugation and at

high NaCl concentrations) with the more rigid membranes structures of HSPC liposomes, the

mixed phospholipids liposomes with a SPC/HSPC ratio of 5:5 exhibited overall improved

performances in encapsulating curcumin. Its good physicochemical stability is mainly

attributed to () the denser lipid chain packing of the membranes (Lo+Lβ phase coexistence)

and () the good thermal stability of its liposomes up to 50 °C as probed by fluorescence and

DSC. The intermolecular interaction results from FTIR measurements also confirm the denser

lipid packing and increased H-bond formation, when HSPC-rich vesicles are employed.

Finally, the enhanced liposomal stability (pH, centrifugal and shelf-life stability) of particularly

the Cur-LP with a SPC/HSPC ratio of 5:5 is  reflected also in the slowest in vitro simulated
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digestion release of encapsulated curcumin. This formulation has the greatest potential for

developing liposomes with enhanced health benefits for future functional food development.

Future work will concentrate on improving annealing procedures for high HSPC-content

liposomes formulations in order to enhance their stability even further.
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Figure captions & Figures

Figure 1. A, B, C, D and E represent Cur-LP with SPC/HSPC mass ratios of 10:0, 3:7,

5:5, 3:7 and 0:10, respectively. LUMiSizer transmission profiles at 25 °C (A1-E1) and

at 60 °C (A2-E2). SEM  images  of  air-dried  samples  are  shown  in  (A3-E3).  Here

superimposed corresponding vesicle size distributions measured by DLS are also

presented. SEM images of freeze-dried samples are shown in A4-E4. Appearance

photographs of curcumin-loaded liposomes are shown in the last column.

Figure 2. DSC heating thermograms (A), SPC/HSPC ratio-temperature phase diagram

(B), and temperature-dependent fluorescence polarization of DPH (C) embedded in the

Cur-LP membrane at different SPC/HSPC mass ratios of 10:0, 3:7, 5:5, 3:7 and 0:10.

Note, the DSC data (black dots) have been fitted by a sum of two turnovers, i.e., one

referring to the (Lβ + Lo) to (Ld + Lo) (blue) and the other to the (Ld + Lo) to Ld (red)

phase transition. The fitted DSC curves are plotted in green.

Figure 3. Environmental stress stability assessment: (A) vesicle size changes of Cur-

LP with SPC/HSPC mass ratios of 10:0, 3:7, 5:5, 3:7 and 0:10, incubated in sodium

chloride solution with a gradient of concentrations (100-1000 mM); (B) curcumin

retention of Cur-LP after 1 h incubation in PBS at pH ranging from 7 to 12.

Figure 4. Variations of vesicle sizes (A, B), thiobarbituric acid reactive substances

(TBARS) (C, D) and curcumin retention (E, F) of Cur-LP with SPC/HSPC mass ratios

of 10:0, 3:7, 5:5, 3:7 and 0:10 during 30 days storage at 4 °C (dashed lines) and 25 °C

(solid lines), respectively. Each data point represents the mean value ± standard

deviation (n = 3).

Figure 5. (A) FTIR  spectrogram  of  Cur-LP  at  different  SPC/HSPC  mass  ratios  and

curcumin, respectively. Vs and  Vas represent symmetric and asymmetric stretching

vibrations of molecular bonds in functional groups, respectively. The hydrophobic core

region (CH2 vibrational modes) and molecular vibrations in the head group region are

highlighted in grey and yellow, respectively, as well as zoomed out for clarity on the

right; (B) Cumulative release curves of curcumin from liposomes at different

SPC/HSPC mass ratios during in vitro simulated digestion at 37 °C.
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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