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Abstract 1 

The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate 2 

change. While short-term drying and warming are known to impact forests it is unknown if such effects 3 

translate into long-term responses. Here we analyse 590 permanent plots measured across the tropics to 4 

derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important 5 

predictor of aboveground biomass (-9.1 Mg C ha-1 °C-1), primarily by reducing woody productivity, and 6 

with a greater rate of decline in the hottest forests (>32.2 °C). Our results nevertheless reveal greater 7 

thermal resilience than observations of short-term variation imply. To realise the long-term climate 8 

adaptation potential of tropical forests requires both protecting them and stabilising the Earth’s climate. 9 

 10 

One sentence summary. Biome-wide variation in tropical forest carbon stocks and dynamics shows 11 

long-term thermal resilience.  12 
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Main text  13 

The response of tropical terrestrial carbon to environmental change is a critical component of global 14 

climate models (1). Land-atmosphere feedbacks depend on the balance of positive biomass growth 15 

stimulation by CO2 fertilisation (i.e. ȕ) and negative responses to warmer temperatures and any 16 

change in precipitation (i.e. Ȗ). Yet the climate response is so poorly constrained that it remains one of 17 

the largest uncertainties in Earth system models (2, 3), with the temperature sensitivity of tropical land 18 

carbon stocks alone differing by > 100 Pg C °C-1 among models (2). Such uncertainty impedes our 19 

understanding of the global carbon cycle, limiting our ability to simulate the future of the Earth 20 

system under different long-term climate mitigation strategies. A critical long-term control on tropical 21 

land-atmosphere feedbacks is the sensitivity to climate (Ȗ) of tropical forests, where c. 40 % of the 22 

world’s vegetation carbon resides (4).  23 

The sensitivity to environmental change of tropical biomass carbon stocks, their rate of production 24 

and their persistence, can all be estimated by relating their short-term and inter-annual responses to 25 

variation in climate (5-7). These sensitivities are then used to constrain longer-term projections of 26 

climate responses (2). Such approaches typically find that higher minimum temperatures are strongly 27 

associated with slower tree growth and reduced forest carbon stocks, likely due to increased 28 

respiration at higher temperatures (7-9). Tropical forest carbon is also sensitive to precipitation (10), 29 

with, for example, elevated tree mortality occurring during drought events (11).  30 

Yet the sensitivity of ecosystems to inter-annual fluctuations may be an unreliable guide to their 31 

longer-term responses to climate change. Such responses will also be influenced by physiological 32 

acclimation (12), changes in demographic rates (13), and shifts in species composition (14). For 33 

example, both respiration and photosynthesis can acclimate under sustained temperature increases 34 

(15-17), and tropical trees exhibit physiological plasticity (18) and shifts in species composition (14) 35 

under sustained drought. These processes could mean that tropical forests are less sensitive to climate 36 

than estimates derived from inter-annual variability imply. An alternative, complimentary approach to 37 

assessing sensitivity to climate is to measure and analyse spatial variation in tropical ecosystems 38 

across climate gradients as a space-for-time substitution. Such biome-wide spatial variation in forest 39 



Sullivan et al. Thermal sensitivity of tropical forests 

 

9 

 

carbon stocks, fluxes and persistence offers a unique and largely unexplored window into the potential 40 

equilibrium sensitivity of tropical forest vegetation to warming, as it captures real-world vegetation 41 

responses that allow for physiological and ecological adaptation (12). 42 

To assess the long-term climate controls on tropical forest growth and carbon stocks, here we have 43 

assembled, measured, and analysed a pan-tropical network of 590 permanent, long-term inventory 44 

plots (Fig. 1, see Figs. S1-2 for ability to capture biome climate space). Our analysis combines 45 

standardised measurements from across South American, African, Asian and Australian tropical 46 

lowland forests (273, 239, 61 and 17 plots respectively). For every plot we calculated aboveground 47 

carbon stocks (19). Then, to better assess the dynamic controls on aboveground carbon stocks, we 48 

also computed the rate of carbon gained by the system (aboveground woody carbon production, 49 

calculated as tree growth plus newly recruited trees, in Mg C ha-1 yr-1), and the carbon residence time 50 

in living biomass (calculated as the ratio of living C stocks to C gains, in years).  51 

We find considerable variation in biomass carbon among continents, with lower stocks per unit area 52 

in South America compared with the Paleotropics even after accounting for environmental variables 53 

(Fig. 1). Continents with high carbon stocks had either large carbon gains (Asia), or long carbon 54 

residence times (Africa, Fig. 1). Because of these differences among continents, which are potentially 55 

due to differences in evolutionary history (20), we analyse the environmental drivers of spatial 56 

variation in carbon stocks while accounting for biogeographical differences. We fitted linear models 57 

with explanatory variables representing hypothesised mechanistic controls of climate on tropical 58 

forest carbon (Table S1). We also included soil covariates, continent intercepts and eigenvectors 59 

describing spatial relationships amongst plots to account for other sources of variation (21). 60 

Forest carbon stocks were most strongly related to maximum temperature (-5.9 % per 1°C increase in 61 

maximum temperature, 95 % CI = -8.6 to -3.1 %, Fig. 2, equivalent to -9.1 Mg C ha-1 °C-1 for a stand 62 

with the mean carbon stocks in our dataset, 154.6 Mg C ha-1), followed by rainfall (+2.4 % per 100 63 

mm increase in precipitation in the driest quarter, 95 % CI = 0.6 – 4.3 %, Fig. 2, equivalent to 0.04 64 

Mg C ha-1  mm-1  for a stand with the mean carbon stocks in our dataset), with no statistically 65 

significant relationship with minimum temperature, wind speed or cloud cover (Fig 2). The effects of 66 
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maximum temperature and precipitation are also evident in an analysis considering a wider suite of 67 

climate variables than those tied to hypothesised mechanisms (Fig. S3), and in an additional 68 

independent pantropical dataset of 223 single-census plots (for which carbon gains and residence time 69 

cannot be assessed, Fig. S4). 70 

The negative effect of maximum temperature on aboveground carbon stocks mainly reflects reduced 71 

carbon gains with increasing temperature (-4.0 % per 1°C, 95% CI = -6.2 to -1.8 %, Fig. 2) while the 72 

positive effect of precipitation emerges through longer carbon residence times with increasing 73 

precipitation in the driest quarter (3.3 % per 100 mm, 95 % CI = 0.9 – 5.7 %, Fig. 2). Carbon 74 

residence time also increased with the proportion of clay in the soil (Fig. 2). The additive effects of 75 

precipitation and temperature on carbon stocks were modified by an interaction between them (ǻ AIC 76 

= 15.4 comparing full linear model with or without interaction), with temperature effects more 77 

negative when precipitation is low (Fig. S6). The interaction was through shortening carbon residence 78 

time (ǻ AIC = 11.9) rather than reducing carbon gains (model without interaction better, ǻ AIC = 79 

1.4).  80 

An alternative analysis using decision tree algorithms (22) also showed maximum temperature and 81 

precipitation to be important (Fig. S7). This decision tree approach, which can capture complex non-82 

linear relationships (22), indicated potential non-linearity in the relationships between carbon stocks 83 

and both temperature and precipitation, with the positive effect of increasing dry season precipitation 84 

on residence times strengthening when precipitation was low, and the negative effect of maximum 85 

temperature intensifying at high temperatures (Fig. S7).  86 

We further investigated non-linearity in the temperature relationship using breakpoint regression 87 

(supported over linear regression based on lower AIC, ǻ AIC = 15.0), which revealed that above γβ.β 88 

°C (95 % CI = 31.7 – 32.6 °C) the relationship between carbon stocks and maximum temperature 89 

became more negative (cooler than breakpoint: -3.8 % °C-1, warmer than breakpoint: -14.7 % °C-1, 90 

Fig. 3). By partitioning carbon stocks into their production and persistence we find that this non-91 

linearity reflects changes to carbon residence time (ǻ AIC = 10.6) rather than gains (ǻ AIC = 1.7). 92 

Overall, our results thus indicate two separate climate controls on carbon stocks: a negative linear 93 
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effect of maximum temperature through reduced carbon gains, and a non-linear negative effect of 94 

maximum temperature, ameliorated by high dry-season precipitation, through reduced carbon 95 

residence time.  96 

The effect of temperature on carbon residence time only emerges when dry season precipitation is low 97 

so is consistent with theoretical expectations that negative effects of temperature on tree longevity are 98 

exacerbated by moisture limitation, rather than being independent of it and due to increased 99 

respiration costs alone (23). This could occur through high vapour pressure deficits in hot and dry 100 

forests increasing mortality risk by causing hydraulic stress (23, 24), or carbon starvation due to 101 

limited photosynthesis as a result of stomatal closure (23). Notably, the temperature-precipitation 102 

interaction we find for aboveground stocks is in the opposite direction to temperature-precipitation 103 

interactions reported for soil carbon. In soils, moisture limitation suppresses the temperature response 104 

of heterotrophic respiration (25), while in trees moisture limitation enhances the mortality risks of 105 

high temperatures. 106 

The temperature effects on biomass carbon stocks and gains are primarily due to maximum rather 107 

than minimum temperature. This is consistent with high daytime temperatures reducing CO2 108 

assimilation rates, for example due to increased photorespiration or longer duration of stomatal 109 

closure (26, 27), whereas if negative temperature effects were to have increased respiration rates there 110 

should be a stronger relationship with minimum (i.e. night-time) temperature. Critically, minimum 111 

temperature is unrelated to aboveground carbon stocks both pan-tropically and in the one continent, 112 

South America, where maximum and minimum temperature are largely decoupled (r = 0.33; Fig. S8). 113 

While carbon gains are negatively related to minimum temperature (Fig S9) this bivariate relationship 114 

is weaker than with maximum temperature, and disappears once the effects of other variables are 115 

accounted for (Fig. 2). Finally, in Asia, the tropical region which experiences the warmest minimum 116 

temperatures of all, both carbon stocks and carbon gains are highest (Fig. 1, Fig. S11).  117 

Overall our results suggest that tropical forests have considerable potential to acclimate and adapt to 118 

the effects of night-time minimum temperatures, but are clearly sensitive to the effects of daytime 119 

maximum temperature. This is consistent with ecophysiological observations suggesting that the 120 
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acclimation potential of respiration (15) is greater than that of photosynthesis (17). The temperature 121 

sensitivity revealed by our analysis is also considerably weaker than short-term sensitivities 122 

associated with inter-annual climate variation (8). For example, by relating short-term annual climate 123 

anomalies to responses in plots, the effect of a 1°C increase in temperature on carbon gains has been 124 

estimated as more than three-fold our long-term, pantropical result (28). This stronger long-term 125 

thermal resilience is likely due to a combination of individual acclimation and plasticity (15-17), 126 

differences in species’ climate responses (29) leading to shifts in community composition due to 127 

changing demographic rates (12) and the immigration of species with higher performance at high 128 

temperatures (12). 129 

Our pantropical analysis of the sensitivity to climate of aboveground forest carbon stocks, gains and 130 

persistence shows that warming reduces carbon stocks and gains from woody productivity. Using a 131 

reference carbon stock map (30) and applying our estimated temperature sensitivity (including non-132 

linearity) while holding other variables constant leads to an eventual biome-wide reduction of 14.1 Pg 133 

C in live biomass (including scaling to estimate carbon in roots) for a 1°C increase in maximum 134 

temperature (95 % CI = 6.9 – 20.7 Pg). This compares with a large range of projected sensitivities in 135 

the subset of coupled climate carbon cycle models that report vegetation carbon (1 – 58 Pg C °C-1), 136 

although we note that these models have not been run to equilibrium (see SI Methods).  137 

Our results suggest that stabilising global surface temperatures at 2°C above pre-industrial levels will 138 

cause a potential long-term biome-wide loss of 35.3 Pg C (95 % CI = 20.9 – 49.0 Pg, estimates with 139 

alternative baseline biomass maps 24.0 – 28.4 Pg, Fig. S12). The greatest long-term reductions in 140 

carbon stocks are projected in South America, where baseline temperatures and future warming are 141 

both highest (Fig. 4, Fig. S13). This warming would push 71 % of the biome beyond the thermal 142 

threshold – maximum temperature of 32.2°C – where larger long-term reductions in biomass are 143 

expected (Fig. S14). Of course, growth stimulation by carbon dioxide (31) will partially or wholly 144 

offset the effect of this temperature increase, depending on both the level of atmospheric carbon 145 

dioxide that limits warming to 2°C above pre-industrial levels and the fertilization effect of this 146 

carbon dioxide on tropical trees. Although CO2 fertilisation is expected to reduce temperature induced 147 
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carbon losses from biomass across the tropics (Table S3), our analysis indicates that CO2 fertilisation 148 

is not enough to offset long-term temperature induced carbon losses within Amazonia (Fig. S15).  149 

The long-term climate sensitivities derived from our pan-tropical field measurements incorporate 150 

ecophysiological and ecological adaptation, and so provide an estimate of the long-term, quasi-151 

equilibrium, response of tropical vegetation to climate. We note that this thermal adaptation potential 152 

may not be fully realised in future responses because (i) the speed of temperature rises may exceed 153 

species’ adaptive capabilities, (ii) habitat fragmentation may limit species’ ability to track changes in 154 

the environment, and (iii) other human impacts such as logging and fire can increase the vulnerability 155 

of forest carbon stocks to high temperatures. While many tropical forests are under severe threat of 156 

conversion, our results show that, in the long-run, tropical forests that remain intact can continue to 157 

store high levels of carbon under high temperatures. Achieving the biome-wide climate resilience 158 

potential we document depends on limiting heating and on large-scale conservation and restoration to 159 

protect biodiversity and allow species to move. 160 

 161 

  162 
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 418 

Figure 1. Spatial variation in tropical forest carbon. (A) Our plot network. Filled symbols show multi-census plots used in the main analysis, open symbols 419 

show single-census plots used as an independent dataset. (B) Variation in carbon among continents. Boxplots show raw variation while blue points show 420 

estimated mean values (± SE) after accounting for environmental variation. Letters denote statistically significant differences between continents (P < 0.05) 421 

based on raw data (black) or accounting for environmental effects (blue, square brackets). 422 
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 426 

 427 

Figure 2. Correlates of spatial variation in tropical forest carbon. Points show coefficients from model-averaged general linear models. Variables that did not 428 

occur in well-supported models are shrinkage adjusted towards zero. Coefficients are standardised so that they represent change in the response variable for 429 

one standard deviation change in the explanatory variable. Error bars show standard errors (thick lines) and 95% confidence intervals (thin lines). Soil texture 430 

is represented by the percentage clay, and soil fertility by cation exchange capacity. The full models explained 44.1 %, 31.4 % and 30.9 % of spatial variation 431 

in carbon stocks, gains and residence time respectively. Coefficients are shown in Table S2. Results are robust to using an alternative allometry to estimate 432 

tree biomass (Fig. S5). 433 
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 436 

Figure 3. Temperature effects on tropical forest carbon stocks, carbon gains from woody productivity and carbon residence time. Black lines show the best 437 

pan-tropical relationships accounting for environmental covariates. The grey line shows the additional linear pan-tropical relationship for carbon stocks. 438 

Coloured lines show bivariate relationships within each continent. Statistically significant relationships are shown with solid lines, non-significant with 439 

dashed lines. Note that the y-axis is on a log-scale. Symbol point size is proportional to weights used in model fitting based on plot size and monitoring 440 

length, see SI Materials and Methods. For stocks and gains linear and break-point pan-tropical relationships are all statistically significant (P < 0.001), as are 441 

better sampled continents. For carbon residence time, relationships with temperature are non-significant but there is a statistically significant interaction 442 

between maximum temperature and precipitation in the driest quarter (Figure S6). Relationships with other variables are shown in Fig. S8-S10. *** P < 443 

0.001, ** P < 0.01, * P < 0.05, ns P ≥ 0.05444 
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 446 

Figure 4. Long-term change in carbon stocks due to global surface temperature warming of 447 

approximately 2°C. Maps show the predicted absolute and relative change in tropical forest carbon 448 

stocks. Note that parts of the biome become warmer than currently observed in our dataset (Fig. S14). 449 

See Fig. S12 for predictions using alternative carbon reference maps. Predictions are based on 450 

temperature alone and do not include precipitation changes (for which future patterns of change are 451 

uncertain) or potential moderation via elevated CO2 (see Fig. S15 for analysis incorporating this). 452 

 453 
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Materials and Methods 510 

Forest census data 511 

Our plots come from the RAINFOR, AfriTRON, and T-FORCES networks. Forest inventory plots 512 

were located in lowland (<1200 m), old-growth, closed-canopy forests that were not known to have 513 

been subject to anthropogenic disturbance through fire or selective logging. Plots characterised 514 

floristically as dry forest were not included, as were plots that received less than 1200 mm 515 

precipitation each year. We also did not include plots in white sand, swamp and seasonally flooded 516 

forests, as we expect these to experience marked edaphic constraints (extreme nutrient limitation for 517 

white sand forests (32), stress caused by hypoxic conditions for swamp and seasonally flooded forests 518 

(33)).  All plots were ≥ 0.β ha (median size = 1 ha) and were monitored for at least two years (median 519 

monitoring period = 9.7 years). All censuses were prior to the 2015-16 very strong El Niño event, as 520 

we expected that event to supress carbon gains relative to the long-term mean.  521 

Forest inventory plots were sampled using standardised protocols (34), where all live stems with 522 

diameter ≥ 100 mm were measured at 1.3 m or 50 cm above buttresses and deformities. Trees were 523 

tagged so that the same tree could be identified in subsequent censuses. In some cases the point of 524 

diameter measurement (POM) had to be moved due to upward growth of buttresses and deformities. 525 

For these trees we use the Dmean approach from Talbot et al. (35).  526 

In a few cases (6 plots) the minimum diameter measured changed over time, or palms and 527 

Phenakospermum were excluded in some censuses. For these, we estimated aboveground biomass 528 

(AGB, subsequently converted to carbon stocks) and aboveground woody production (AGWP, 529 

subsequently converted to carbon gains) using a minimum diameter or taxonomic protocol that could 530 

be consistently applied across censuses, and scaled these values by the aboveground biomass ratio 531 

between that protocol and all stems ≥ 100 mm protocol for censuses when all stems were measured. 532 

Some plots had nested designs where the plot was split into subplots with different minimum diameter 533 

protocols (69 plots). For these, we only analysed the area conforming to our minimum diameter 534 

protocol. For analysis, we grouped small (≤ 0.5 ha) plots within 1 km of each other, and also grouped 535 

contiguous larger plots (18 plots), as these will experience equivalent climate and larger plots are less 536 

sensitive to stochastic tree fall events (36). 537 

Data were curated in ForestPlots.net (37, 38), or were subject to equivalent offline handling, and 538 

experienced the same quality control procedures. Details of quality control procedures are described 539 

in Brienen et al. (39).  Our final dataset consists of 590 sampling units (hereafter plots) covering 637.2 540 

ha, with 2.2 million measurements of 670,499 unique stems. For validating models of carbon stocks 541 

an additional dataset of 223 single-census plots using the same measurement protocols was assembled 542 

from the same networks (see section “Validation with independent single-census plot dataset” below). 543 
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 544 

Estimating above-ground biomass 545 

Diameter measurements were converted to estimates of aboveground biomass (AGB). For dicot trees 546 

we used the allometric equation  547 

AGB = 0.673 × (ȡD2H)0.976,       [1] 548 

from Chave et al. (40), where ȡ is wood density (from (41, 42)) and H is tree height estimated using 549 

allometric equations described below. For monocots and tree ferns, we used a palm-specific 550 

allometric equation  551 

ln(AGB) = -3.3488 + 2.7483.ln(D),      [2] 552 

from Goodman et al. (43), where D is the measured diameter.  553 

The heights of a subset of trees in our dataset were measured in the field, either with a laser 554 

rangefinder, hypsometer, or clinometer, or directly by climbing the tree. We filtered this dataset to 555 

stems with measured diameters, height ≤ 90 m, diameters ≥ 90 mm DBH, as height-diameter 556 

allometries of saplings differ from those of more mature trees, and to stems that were not broken, 557 

leaning or fallen. This gave a total of 78,899 height measurements. We used this dataset to fit local 558 

height-diameter allometric models, as these refine AGB estimates by capturing spatial variation in 559 

height-diameter allometries missed by large-scale allometric models (44). Height data were not 560 

available from every plot, so to ensure consistent treatment of plots height-diameter models were 561 

constructed for each biogeographic region. We fitted three parameter asymptotic models (45) of the 562 

form 563 

H = a(1-exp(-bDC)),         [3] 564 

where a, b and c are estimated parameters ('Weibull' models, 46). We fitted these models either 565 

treating each observation equally or with case weights proportional to each trees’ basal area. These 566 

weights give more importance to large trees during model fitting. We selected the best fitting of these 567 

models, determining this as the model that minimised prediction error of stand biomass when 568 

calculated with estimated heights or observed heights (44). Weibull models were implemented using 569 

the nls function in R with default settings. Starting values of a = 25, b = 0.05 and c = 0.7 were chosen 570 

following trial and error as they led to regular model convergence. Where models did not converge 571 

this was usually because the height-diameter relationship did not reach an asymptote, so in these cases 572 

we used the log-log model ln(H) = a + b(ln(D)) to estimate height, where b gives the scaling exponent 573 

of a power law relationship between height and diameter. We checked if models gave unrealistic 574 

predictions by applying models to predict the height of all trees in the biogeographic region, and 575 
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excluded models that predicted any tree height 10 % higher than the tallest tree we recorded in that 576 

continent.  577 

   578 

Estimating above-ground woody production 579 

We estimated AGWP following Talbot et al. (35). AGWP is comprised of four components, (1) the 580 

sum of growth of surviving trees, (2) the sum of AGB of new recruits, (3) the sum of unobserved 581 

growth of trees that died during a census interval and (4) the sum of growth of unobserved recruits 582 

that entered then died during a census interval. Accounting for the latter two components is necessary 583 

to avoid census-interval length effects, as more AGWP in these components will be missed due to the 584 

greater mortality of trees that accumulates over longer census intervals.  585 

Components 3 and 4 can be estimated using two quantities that can be calculated from observed stem-586 

dynamics in each plot; per-area annual recruitment (Ra) and per-capita annual mortality (ma). Per-587 

capita mortality is calculated from the ratio of surviving stems to initial stems, using equation 5 in 588 

Kohyama et al. (47). Per-area annual recruitment is calculated using estimated mortality rates and the 589 

observed change in the number of stems over a census interval, using equation 11 of Kohyama et al. 590 

(47).  591 

To estimate the unobserved growth of stems that died during a census interval, we first use plot-level 592 

per-capita mortality rates (ma) to estimate how many trees are expected to have died in each year of 593 

the census interval, and from that calculate the mean number of years that trees that died during the 594 

census interval would have lived before death. The diameter of tree at death (Ddeath) can then be 595 

estimated as 596 

Ddeath = Dstart × G × Ymean        [4] 597 

where Dstart is the diameter at the start of the census interval, G is the plot-level median growth rate of 598 

the size class the tree was in at the start of the census interval (size classes are defined as D < 200 mm, 599 

400 mm > D ≥ β00 mm, and D  ≥  400 mm) and Ymean is the mean number of years trees survived in 600 

the census interval before dying. The diameter at death is then converted to AGB at death using 601 

allometric equations (equation 1, except for ferns and monocots where equation 2 is used), and the 602 

unobserved growth is calculated as the difference between AGB at death and AGB at the start of the 603 

census.  604 

To estimate the growth of recruits that were not observed because they died during the census 605 

interval, we first need to estimate the number of unobserved recruits. This can be estimated from per-606 

area annual recruitment (Ra) and per-capita annual mortality (ma): Ra gives the number of stems per ha 607 

that recruit in a given year, and the probability of each recruit surviving until the next census (Psurv) is 608 
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Psurv = (1-ma)T, where T is the number of years remaining in the census interval. The number of 609 

recruits in a given year that survive to the next census is Ra – PsurvRa. Summing this for each year in a 610 

census interval gives the total number of unobserved recruits in that census interval. We then need to 611 

estimate how long each recruit was alive for. From ma we can calculate the number of recruits in a 612 

given year that died in each subsequent year, and from this calculate the mean life-span of recruits in a 613 

given year that died before the next census. The average life-span of unobserved recruits (Ymean-rec) is 614 

the weighted mean of each cohort’s lifespan, weighted by the number of unobserved recruits in each 615 

year. Diameter at death is given in mm by 616 

Ddeath = 100 + (G × Ymean-rec)        [5] 617 

where G is the plot-level median growth rate of the smallest size class (i.e. D < 200 mm). 618 

Aboveground biomass of recruits at the time of death is estimated using equation 1. These corrections 619 

for unobserved growth have a marginal impact on AGWP calculations, collectively accounting on 620 

average for just 2.3 % of estimated plot-level AGWP. 621 

AGB was calculated for each census, and AGWP was calculated for each census interval, and the 622 

time-weighted mean of each was taken to give one value per plot. We used a time-weighted mean to 623 

give greater importance to AGB estimates separated by longer census-intervals, as these will be more 624 

independent. Estimates of AGB and AGWP were converted to carbon stocks and carbon gains by 625 

multiplying by 0.456 (48). Carbon residence time was then estimated as carbon stocks /carbon gains, 626 

and represents the length of time carbon resides in living biomass before being passed to the litter and 627 

necromass pools (49). Calculations to estimate AGB and AGWP were performed using the R package 628 

BiomasaFP (50). 629 

 630 

Obtaining environmental data 631 

Most climate data were obtained from climate data from Worldclim2 (51) as it provides the highest 632 

resolution (~ 1 km) pantropical climate data, although we note that some regions, such as central 633 

Africa, have limited station data. We extracted monthly data for the following variables: mean daily 634 

minimum temperature, mean daily maximum temperature, precipitation, solar radiation and wind 635 

speed, In addition to calculating the standard series of 19 bioclimatic variables, using the dismo R 636 

package (52), we calculated 1) mean daily maximum temperature, BIO1 + BIO2/2, 2) mean daily 637 

minimum temperature, BIO1 – BIO2/2, 3) maximum cumulative water deficit as the minimum across 638 

the year of monthly cumulative water deficit W, 639 

Wi = Wi-1 - min(0, Pi – 100) ,       [6] 640 



Supporting information for Sullivan et al. 

8 

 

where P is monthly precipitation in mm, and 100 represents measured evapotranspiration. This 641 

calculation was run for a year from the wettest month in the year, starting at a water deficit of zero, 4) 642 

the number of months where monthly cumulative water deficit was negative, 5) the number of months 643 

where monthly precipitation was below 100 mm (i.e. less than evapotranspiration), 6) mean annual 644 

solar radiation, 7) mean annual wind speed, and 8) vapour pressure deficit (VPD = SVP – vapour 645 

pressure, where saturated vapour pressure, SVP, = 0.611 × e(17.502 temperature) / (temperature + 240.97)). We also 646 

obtained data on cloud frequency at ~1 km resolution from Wilson & Jetz (53), who processed twice-647 

daily MODIS satellite images. Temperature values were adjusted for differences in altitude between 648 

the plot and the 1 km grid cell used for Worldclim interpolation, as these can differ in topographically 649 

diverse regions, using lapse rates, so that Tplot = Tworldclim + 0.005 × (Aworldclim - Aplot), where T is 650 

temperature (°C) and A is altitude (m). Temperature values were also corrected for systematic 651 

warming trends. To do this, the mean annual temperature in each grid-cell in each year was extracted 652 

from the CRU TS 3.24 dataset (54), and robust linear regression used to estimate grid-cell specific 653 

warming rates. These were used to adjust Worldclim2 temperature values for the difference between 654 

the midpoint of plot monitoring and the midpoint of the Worldclim2 climatology.   655 

Data on soil texture and chemistry was obtained at 1 km resolution from the SoilGrids dataset (55), 656 

with this resolution selected to match the resolution of the climate data. From this we extracted CEC, 657 

representing soil fertility, and percentage clay, representing soil texture. For each soil variable we 658 

calculated the depth-weighted average for 0 – 30 cm. 659 

Statistical analysis  660 

We used linear models to relate carbon, carbon gains and carbon residence time to environmental 661 

explanatory variables. The role of different explanatory variables was assessed using multi-model 662 

inference.  663 

Response variables were positively skewed and had positive mean-variance relationships, so were 664 

log-transformed to meet the assumption of normality and reduce heterogeneity in variances. The log-665 

normal nature of forest carbon stocks and dynamics means that there is greater potential for variation 666 

when forests are large, which could be due to the non-linear scaling of tree biomass and tree basal 667 

area. 668 

We selected explanatory variables to represent hypothesised ways in which climate could affect 669 

carbon stocks (Table S1). We assessed colinearity within this set of explanatory variables using 670 

variance inflation factors (VIF) and pairwise correlations. Because of colinearity, we had to exclude 671 

VPD, total precipitation, use only one of MCWD and precipitation in the driest quarter, and could 672 

include both minimum and maximum temperature but not mean annual temperature. We used 673 

precipitation in the driest quarter rather than MCWD as the latter is zero truncated and so is less 674 

amenable to regression analysis. After removing these variables all pairwise correlations (including 675 
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with soil explanatory variables) were weak enough not to cause problems through collinearity (r < 0.6 676 

and VIF < 3).  677 

To account for variation other than in climate we also included soil variables relating to texture (% 678 

clay) and fertility (CEC), and included continent specific intercepts to account for biogeographic 679 

variation in carbon. To account for unmeasured environmental gradients (e.g. soil variation not 680 

captured by the SoilGrids variables), we used Moran’s eigenvector maps as explanatory variables, 681 

selecting eigenvectors the corresponded to positive spatial autocorrelation in the distance matrix (56). 682 

These variables act as a proxy for unmeasured spatial gradients by capturing positive spatial 683 

associations between plots.  684 

Plots differed in their area and the length of time they were monitored for. This is likely to affect the 685 

variance of carbon stocks, carbon gains and carbon residence time, as smaller plots or plots only 686 

monitored for short periods are more likely to be sensitive to the mortality of a few large trees. To 687 

account for this, we used case weights relating to plot area and monitoring period. Following Lewis et 688 

al. (57), we selected weights by relating residuals from our linear models to plot area and to plot 689 

monitoring period, and subsequently assessing which root transformation of plot area/ monitoring 690 

period removed the pattern in the residuals when used as a weight. Selected weights were: carbon 691 

stocks, Area 1/3; carbon gains, Monitoring length 1/7; carbon residence time, Area 1/9 + Monitoring 692 

length 1/12 -1.   693 

We fitted all subsets of the general linear model with explanatory variables described above, forcing 694 

spatial eigenvectors into all models. We then averaged the subset of models where ǻ AIC < 4, using 695 

full averaging so variables that do not appear in the model get the value of zero for their coefficients. 696 

This means that model averaged coefficients of terms with limited support exhibit shrinkage towards 697 

zero. Multi-model inference was performed using the MuMIn R package (58). 698 

We assessed whether the two climate variables found to have important additive effects on carbon 699 

stocks in this analysis (mean daily maximum temperature in the warmest month and precipitation in 700 

the driest quarter) interacted with each other by adding an interaction term between these variables to 701 

the full generalised linear model of carbon stocks as a function of other climate and soil variables, 702 

continent and spatial eigenvectors. We compared these two models using AIC. We repeated this with 703 

carbon gains and carbon residence time as response variables. 704 

To assess whether the temperature carbon relationship was non-linear we used breakpoint regression 705 

implemented in the segmented R package (59). This estimates a breakpoint in the explanatory variable 706 

at which the slope of the relationship with the response variable changes. We estimated the breakpoint 707 

for the mean daily maximum temperature in the warmest month variable in the full model with a 708 

temperature-precipitation interaction described above. We assessed the support for the breakpoint by 709 
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comparing the AIC of the model with a breakpoint with the AIC of a model with a linear relationship. 710 

We repeated this with carbon gains and carbon residence time as response variables. 711 

We also analysed spatial variation in carbon stocks as a function of the above climate and soil 712 

variables and spatial eigenvectors using Random Forest decision tree algorithms (22) implemented 713 

using the randomForest R package (60). We assessed variable importance by calculating the average 714 

increase in node purity across all decision trees (measured by residual sum of squares) when using the 715 

variable to split the data. We assessed modelled relationships between response and explanatory 716 

variables using partial plots, which show predicted change in the response variable, averaged across 717 

trees, when changing the explanatory variable and holding all other variables constant. 718 

To compliment this analysis based on relationships expected a priori, we also performed an 719 

exploratory analysis to assess whether other climate variables excluded from the full general linear 720 

models had an effect on carbon. To do this, we fitted linear models to assess the bivariate relationship 721 

of carbon with each climate variable, with continent also included as an explanatory variable to 722 

account for biogeographic variation in forest characteristics.  723 

 724 

Validation with independent single-census plot dataset 725 

We assessed whether the relationships with environmental variables identified in the analyses of 726 

multi-census plot data described above held when applied to an additional dataset of 223 single-727 

census plots. As the single-census data were not used in any of the analyses above they did not 728 

influence modelling decisions, so provide an independent test of the relationships identified with the 729 

multi-census plot analysis. 730 

Single-census plots were extracted from the ForestPlots.net database (37, 38) using the same plot-731 

selection criteria as for the multi-census plots, except that censuses during or following the 2015-16 732 

strong El Niño were included in the single-census plot dataset as we expected that carbon stocks, 733 

unlike gains, would still remain close to their long-term mean. 734 

We fitted a general linear model with the five climate explanatory variables, soil fertility and texture, 735 

continent and spatial eigenvector, and model averaging of all subsets of this model as described for 736 

the multi-census plots. We performed this analysis using just the single-census plots and a combined 737 

dataset of single and multi-census plots. 738 

 739 

 740 

 741 
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Scaling results to the biome 742 

We applied the non-linear relationship between carbon stocks and mean daily maximum temperature 743 

in the warmest month identified by the breakpoint regression to estimate the total change in carbon 744 

stock due to temperature effects alone for different scenarios of temperature increase. We delimited 745 

the biome extent using the WWF tropical and subtropical moist broadleaved forest biome (61), 746 

restricted to tropical latitudes, and further refined it by excluding grid-cells with < 50 Mg C ha-1 using 747 

data from (30), as these are unlikely to be forest. Calculations were conducted at 10-minute 748 

resolution. The non-linear relationship between temperature and carbon means that the change in 749 

biomass for a given increase in temperature will depend on the baseline temperature. For each grid-750 

cell we predicted the percentage change in carbon for a given temperature increase from the baseline 751 

temperature in that grid-cell based on the non-linear relationship identified in our statistical model, 752 

holding all other variables constant. We then used a reference carbon stock map (30) to convert 753 

percentage change to change in carbon stocks per hectare (in Mg ha-1). To calculate change in carbon 754 

stocks for the whole grid-cell, we multiplied change per hectare by the area of the grid-cell in 755 

hectares, and then adjusted this by the proportion of the grid-cell that was forested by multiplying by 756 

2014 forest cover (62). Total change for the biome (in Pg) was calculated by summing these grid-cell 757 

level values. Uncertainty due to our statistical model was assessed by generating multiple predictions 758 

by resampling model parameters (breakpoint threshold, slope below breakpoint, slope above 759 

breakpoint), and extracting quantiles from the resultant distribution of predicted change values. 760 

Aboveground biomass carbon values were scaled to include root biomass based on a root to shoot 761 

ratio of 0.19 in tropical evergreen forests (63). 762 

The Avitabile et al (30) aboveground biomass map was chosen to provide reference carbon stocks. 763 

While other maps have previously been produced by Saatchi et al. (64) and Baccini et al. (65) we 764 

selected the Avitabile map because it synthesises the earlier maps (see Mitchard et al. (66) for 765 

discussion of substantial differences between these maps) and is anchored by more field data. 766 

Importantly, the Avitabile map reproduces spatial patterns in aboveground biomass that have been 767 

described from field data but are absent in the Saatchi or Baccini maps, including the much higher 768 

biomass density of north-east Amazonian forests due to tall trees and very high wood density (67). 769 

Nevertheless, we also investigated the consequences of using the Saatchi or Baccini maps for our 770 

estimates of biomewide thermal sensitivity and spatial patterns of change in carbon stocks (Fig S15).  771 

We investigated three temperature change scenarios. Firstly, we applied a 1°C increase to all 772 

locations. Secondly, we assessed the consequence of global temperatures stabilizing 1.5°C above pre-773 

industrial levels for the equilibrium temperature response of tropical forest carbon. Finally, we 774 

assessed the consequence of global temperatures stabilizing 2°C above pre-industrial levels. For the 775 

latter two we obtained data from CMIP5 climate models, using downscaled future climate projections 776 
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based on the Worldclim climatology (68). As downscaling was performed using Worldclim version 777 

1.4 (69) and our statistical models use Worldclim version 2, we calculated the warming anomaly in 778 

each grid-cell from the current Worldclim version 1.4 conditions, and applied this to the Worldclim 2 779 

data to obtain future temperature. RCP scenarios and time-points were chosen to give global 780 

temperature increases that best match 1.5°C and 2°C above pre-industrial. Importantly, these future 781 

climate projections were used to capture the spatially varying nature of warming, and our predictions 782 

relate to the long-term response of vegetation if the climate stabilised at these new warming levels, 783 

rather than being predictions of transient responses at these specific time-points. For 1.5°C we used 784 

RCP 2.6 averaged for 2040-2060 (median temperature increase across models = 1.5°C, (70)). For 785 

2°C, we used RCP 2.6 averaged for 2040-2060 (median temperature increase models = 1.9°C (70)). 786 

Note that predicted increases in maximum temperatures were often considerably greater than the 787 

global increase, especially in South America. For both scenarios we used the median predicted 788 

temperature change for each grid-cell from an ensemble of 15 models (BCC-CSM1-1, CCSM4, 789 

CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GISS-E2-R, HadGEM2-AO, HadGEM-ES, IPSL-790 

CM5A-LR, MIROC-ESM-CHEM, MIROC-ESM, MIROC5, MPI-ESM-LR, MRI-CGCM3, 791 

NorESM1-M). 792 

We assessed the potential for long-term carbon dioxide growth stimulation to offset these long-term 793 

temperature effects. We used CO2 concentrations from the RCP scenarios and time-points described 794 

above, which approximate the long-term concentrations if the climate stabilised at the new 795 

temperatures (71). Thus the 1.5°C and 2°C scenarios were associated with CO2 concentrations of 443 796 

ppm and 487 ppm respectively (72). We cannot assess the effect of CO2 on biomass from our spatial 797 

dataset, so instead used independent estimates of CO2 effects from other sources. Firstly, we obtained 798 

CO2 only effects on net primary production (NPP) extracted from an ensemble of CMIP5 earth system 799 

models by (73). This gives the proportional change in NPP for evergreen forests (note that this also 800 

includes boreal forests) over 1980-2010, standardised to a 100 ppm increase in CO2 concentration. To 801 

propagate this through to changes in AGB under future CO2 conditions we first estimated the 802 

logarithmic dependency of NPP on CO2 (74) by substituting values of NPP and CO2 at time zero and t 803 

(from (73)) into the equation, 804 ܰܲ ௧ܲ ൌ ܰܲ ܲ ቒͳ  ln ߚ  ቀہைమۂڿைమۀబቁቓ       Equation 7 805 

This equation can be used to compute NPP annually given an initial NPP estimate and a time series of 806 

atmospheric CO2 concentrations (from a combination of the observed record from pre-industrial and 807 

the RCP 4.5 scenario, modified so that it stabilises at 487 or 443 ppm depending on warming 808 

scenario). Initial pre-industrial NPP was back-calculated from present-day values using Equation 7, 809 

with 13.3 Mg C ha-1 yr-1 (mean of nine Amazon plots where NPP has been measured, from (75)) used 810 
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for present-day NPP. To propagate NPP into change in woody biomass (following (49)) we used the 811 

equation 812 ௗெ౭ౚௗ௧ ൌ ୵୭୭ୢߙ  ܰ െ ெ౭ౚఛ౭ౚ         Equation 8 813 

where Mwood is woody biomass, Np is NPP, Įwood is the allocation of NPP to wood (taken as 0.33, the 814 

mean value across nine plots from (75)) and Ĳwood is the residence time of woody biomass, taken as 815 

59.1 years (the median value across plots used in this study). This model (equations 7 and 8) was run 816 

from pre-industrial to 2500, enabling us to see the equilibrium effect of increased CO2 concentrations 817 

on biomass, assuming temporally invariant allocation and residence time. We calculated the 818 

proportional change in biomass from 2000 to 2500, and applied this to the reference carbon stock map 819 

to obtain predicted equilibrium change in aboveground biomass due to CO2 effects. 820 

The effects of CO2 in earth system models have been reported to be larger than those deduced from 821 

satellite data or CO2 enrichment experiments (73), so we also ran the above model using changes in 822 

NPP reported from a synthesis of free-air CO2 enrichment experiments conducted in forests (73). 823 

Finally, we looked at the impact of using CO2 effects derived from a recent large meta-analysis of 824 

CO2 enrichment experiments (76), which reported a 12.5 % increase in biomass of tropical trees for a 825 

250 ppm increase in CO2 concentration. As this relationship was reported to be linear (76) we used 826 

linear interpolation to estimate the change in biomass under CO2 concentrations associated with each 827 

warming scenario (i.e. 443 and 487 ppm). To estimate long-term changes in biomass accounting for 828 

both temperature and carbon dioxide, we first applied the CO2 relationship to estimate the change in 829 

biomass due to carbon dioxide growth stimulation, and then assessed the effects of warmer 830 

temperatures from this revised baseline. Our approach allows a simple assessment of CO2 effects 831 

exploring a range of different effect strengths. Real-world responses will likely be more complex, 832 

with, for example, nutrient limitation potentially affecting the extent to which growth is stimulated by 833 

CO2 (76).  834 

Temperature sensitivity of CMIP5 models 835 

The temperature sensitivity (ȖLT) of coupled climate carbon cycle models can be identified by 836 

comparing responses of carbon stocks in coupled and uncoupled simulations forced with a 1% 837 

increase in CO2 concentrations per year (respectively, these are the 1pctCO2 and esmFixClim 838 

simulations), following Wenzel et al. (77). Both coupled and uncoupled simulations are exposed to 839 

the same increase in CO2 concentration, but in the uncoupled simulation temperature is not directly 840 

affected by this increase in CO2.  841 

Vegetation carbon outputs are reported from six CMIP5 models, each with coupled and uncoupled 842 

simulations (78, 79). For all simulations, we calculated the change in vegetation carbon (the cVeg 843 
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variable) in the tropics between year 110 and year 30 of the experiment, and also calculated the 844 

difference in land temperature (the tas variable). The change in vegetation carbon due to temperature 845 

alone was calculated by taking the difference in change in vegetation carbon in the coupled (ǻCvegC) 846 

and uncoupled (ǻCvegU)  simulation, and this was then divided by the change in tropical land 847 

temperature (ǻT) to obtain the temperature sensitivity of the model, 848 

ȖLT = (ǻCvegC - ǻCvegU) / ǻT       Equation 9. 849 

We calculated the temperature sensitivity of the six CMIP5 models that report vegetation carbon: 850 

CESM-1-BGC (ȖLT = -0.7 Pg C °C-1), GFDL-ESMβM (ȖLT = -58.4 Pg C °C-1), HadGEM2-ES (ȖLT = -851 

9.2 Pg C °C-1), IPSL-CM5A-LR (ȖLT = -11.3 Pg C °C-1), MPI-ESM-LR (ȖLT = -22.8 Pg C °C-1) and 852 

NorESM1-ME (ȖLT = -1.0 Pg C °C-1). Note that the simulations do not run to equilibrium (77), so 853 

changes in carbon stocks due to increased temperature may not be fully realised.   854 

855 
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 856 

Figure S1. Climate space represented by our plot network. Red lines show the probability density 857 

function of each variable in our multi-census plot network. Black lines show the probability density 858 

across 10 minute grid-cells in the biome, restricted to areas with forest cover in GLC 2000 (80). 859 

  860 
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 861 

 862 

Figure S2. Ability of our plot network to represent the climate conditions found in the moist tropical 863 

forest biome. (a) Minimum climate dissimilarity (measured as Euclidean distance on variables scaled 864 

by their standard deviation). Climate variables used are the same as in Fig. 2) between 10 minute grid 865 

cells and the multi-census plot network. Green lines indicate the extent of the biome. (b) Geographic 866 

distance (km) between grid cells and the multi-census plot network. (c) Relationship between climatic 867 

and geographic distance of 10 minute grid cells across the tropical forest biome to our plot network. 868 

The lack of relationship between climate dissimilarity and geographical distance, alongside the mostly 869 

low climatic dissimilarities, shows that our sampling is sufficient to capture the environmental space 870 

of the biome and that we can reasonably extrapolate to geographically distant areas from our plots, 871 

which are in any case largely deforested already and hence contribute very little to our projected 872 

biome-wide carbon response to climate change. (These tropical moist forest areas that are poorly 873 

sampled and largely lost include the Atlantic Forests in Brazil, Andean Forests in western South 874 

America, eastern Caribbean, Madagascar, and much of tropical South Asia, south China, continental 875 

Southeast Asia, Philippines, Sumatra and Java).876 
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 877 

 878 

Figure S3. Relationships between individual climate variables and tropical forest aboveground carbon 879 

stocks. Standardised coefficients are from models with the climate variable and continent as 880 

explanatory variables and show change in ln(carbon) for a standard deviation change in the 881 

explanatory variable. Error bars show standard errors. Variables used in the main analysis have black 882 

outlines. Full variable names are: T_maximum – mean daily maximum temperature, Bio5 – mean 883 

daily maximum temperature in the warmest month, Bio7 – annual temperature range, Bio2 – mean 884 

diurnal temperature range, Bio8 – mean temperature in the wettest quarter, VPD – vapour pressure 885 

deficit, Bio1 – mean annual temperature, Bio10 – mean temperature in the warmest quarter, Bio11 – 886 

mean temperature in the coldest quarter, N_dry_months_1 – number of months with negative 887 

cumulative water deficit, N_dry_months_2 – number of months where precipitation is less than 888 

evapotranspiration, Bio4 – temperature seasonality, Bio18 – precipitation in the warmest quarter, Bio9 889 

– mean temperature in the driest quarter, T_minimum warmest month – mean daily minimum 890 

temperature in the warmest month, Bio15 – precipitation seasonality, T_minimum – mean daily 891 

minimum temperature, Bio16 – precipitation in the wettest quarter, Bio13 – precipitation in the 892 

wettest month, Bio3 – isothermality, Bio12 – annual precipitation, Bio19 – precipitation in the coldest 893 

quarter, Bio6 – mean daily minimum temperature in the coldest month, Wind speed – mean daily 894 

wind speed, Bio17 – precipitation in the driest quarter, Bio14 – precipitation in the driest month, 895 

Cloud cover – proportion of MODIS passes with cloud present, MCWD – maximum cumulative 896 

water deficit (note this is negative when water deficit is high, so a positive relationship with MCWD 897 

indicates higher carbon when water deficits are less).    898 

 899 

 900 

 901 
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 902 

Figure S4.  Validation of tropical forest carbon stock sensitivity model against an independent dataset 903 

of 223 single-census plots from our networks measured with the same protocols. Model-averaged 904 

shrinkage adjusted coefficients from multiple regression models of biomass carbon stocks as a 905 

function of climate, soil, biogeography and spatial eigenvectors. Models were either fitted to the 906 

multi-census plot dataset (as in Fig. 2), to the single-census plot dataset, or to the combined dataset. 907 

This analysis shows that the relationships identified to be most important in the main multi-census 908 

plot analysis (i.e. the negative relationship between carbon stocks and maximum temperature and 909 

positive relationship with precipitation in the driest quarter) are also found in an independent dataset, 910 

which was not used for preliminary analysis so did not influence the choice of explanatory variables.  911 

  912 
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 913 

Figure S5. As Figure 2, but with aboveground biomass estimated using the Chave et al. 2005 (81) 914 

moist forest allometric equation, which does not include a height term and is instead based on a third-915 

order polynomial relationship between diameter and aboveground biomass. This indicates that our 916 

results are robust to using an alternative allometry to estimate aboveground biomass. 917 

  918 
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 919 

 920 

 921 

Figure S6. Interaction between mean daily maximum temperature in the warmest month and 922 

precipitation in the driest quarter in determining aboveground tropical forest carbon stocks, gains and 923 

residence time. Modelled relationships with temperature are shown holding precipitation either one 924 

standard deviation above or below the mean. Models with breakpoints are shown for carbon stocks 925 

and residence time as they were found to be better supported based on lower AIC (ǻAIC >β). Note 926 

that the temperature-carbon relationship is steeper when precipitation is low for carbon stocks and 927 

(above the breakpoint threshold) carbon residence time, but does not change with precipitation for 928 

carbon gains. Response curves are predicted with continent set as Africa. 929 

930 
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 931 

Figure S7. Partial relationships between tropical forest carbon stocks and the two climate variables 932 

identified to be most important by the random forest decision tree algorithm. Partial plots show 933 

predicted values of carbon stocks averaged across an ensemble of decision tree models when 934 

changing the explanatory variable of interest and holding other variables constant. The importance of 935 

variables in random forest analysis is assessed by calculating the average increase in node purity 936 

across all decision trees (measured by residual sum of squares) when using the variable to split the 937 

data. Higher values indicate greater importance. Maximum temperature increased node purity by 4.8 938 

and precipitation by 4.7. For all other climate variables increases in node purity were < 3.5. 939 

 940 
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 941 

Figure S8. Relationships between aboveground tropical forest carbon stocks and environmental 942 

predictors. Symbols and colours as in Fig. 3. Coloured lines show bivariate relationships in each 943 

continent, and black lines show pan-tropical relationships also accounting for the effect of continent. 944 

Lines are only plotted where statistically significant. 945 
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 946 

 947 

Figure S9. As Fig. S8, but showing relationships with carbon gains. 948 
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 949 

Figure S10. As Fig. S8, but showing relationships with carbon residence time. 950 

951 



Supporting information for Sullivan et al. 

9 

 

 952 

Figure S11. Variation in tropical forest aboveground carbon stocks, gains and residence time within 953 

and amongst continents. Data are presented as empirical probability density functions (top row) and 954 

dot-plots showing raw data points for all our multi-census plots (bottom row). SA = South America, 955 

AF = Africa, AS = Asia, AU = Australia. 956 

  957 
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 958 

Figure S12. Effect of using earlier biomass reference maps for estimates of change in long-term 959 

carbon stocks for global temperature increases of ~2°C. Using aboveground biomass stock maps from 960 

Saatchi et al. (64) and Baccini et al. (65) predicted biome-wide reductions in biomass carbon stocks 961 

are  24.0 Pg (95 % CI = 5.8 – 39.6) and 28.4 Pg (95 % CI = 16.1 – 37.5) respectively. Under the ~ 962 

1.5°C warming scenario these are 18.4 Pg (5.8 – 30.5) and 21.1 Pg (10.2 – 29.4) respectively. Results 963 

in the main text use the 2016 Avitabile et al. baseline map (30) – see methods for justification.  964 

  965 
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 966 

 967 

 968 

Figure S13. Biome-wide change in mean daily maximum temperature in the warmest month from 969 

present conditions (based on the Worldclim climatology, 1970-2000), given global increases in 970 

temperature of approximately 1.5°C and 2°C above pre-industrial levels. These levels of global 971 

temperature increase are obtained from, respectively, RCP 2.6, 2040-2060 and RCP 4.5, 2040-2060 to 972 

represent the potential spatial pattern of warming associated with global temperatures stabilising at 973 

these levels. Global temperature increases of 1.5 and 2°C above pre-industrial levels (so ~0.8 °C  and 974 

~1.3 °C above our current baseline climate) would lead to mean increases in maximum temperature in 975 

the warmest month across the tropical forest biome of 1.9°C and 2.4°C the current baseline climate 976 

respectively.  977 

  978 

  979 
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 980 

 981 

Figure S14 Areas of the biome above or below the 32.2°C threshold, above which carbon stocks 982 

decline more rapidly with temperature, under current conditions and two warming scenarios (see Fig. 983 

4). Areas warmer than any currently observed in our dataset (35.2°C) are also shown (non-analogous 984 

conditions). Note that even the 1.5°C warming scenario pushes most South American forests above 985 

the 32.2°C threshold. 986 

 987 

 988 

 989 

 990 

  991 
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 992 

 993 

Figure S15. Predicted long-term change in aboveground carbon stocks under ~ 2°C global warming, 994 

based on either temperature effects alone or when also accounting for carbon dioxide growth 995 

stimulation. CO2 fertilisation effects on equilibrium biomass levels were obtained from a recent 996 

synthesis of results of elevated CO2 experiments (Terrer et al. (76)), free-air CO2 enrichment (FACE) 997 

experiments (Kolby Smith et al. (73)) and CMIP5 earth system models (Kolby Smith et al. (73)). 998 

Depending on their strength, CO2 effects either partially or fully ameliorate the biome-wide negative 999 

effects of increasing temperatures on biomass carbon stocks (Table S3), but these carbon stocks are 1000 

predicted to decline over much of Amazonia even under the strongest CO2 effect considered. 1001 

 1002 

 1003 
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 Table S1. Climate variables selected for analysis and mechanisms by which they can affect carbon stocks. 1004 

1 Mean daily temperature in the warmest month (bio5) was selected instead of mean daily maximum temperature as it was more strongly decoupled from 1005 

other climate variables. VPD could also represent some of these effects, but was too strongly correlation with maximum temperature to include as an 1006 

independent variable. 1007 

2 Moisture availability could also be represented by MCWD (maximum cumulative water deficit) or total precipitation, but only one of the three variables 1008 

could be included in the model due to collinearity. MCWD was excluded as it is zero truncated, so less amenable to regression fitting. 1009 

  1010 

Climate 
property 

Variable selected for analysis Mechanism to affect carbon stocks 

Daytime 
temperature 

Maximum temperature in the 
warmest month1 

High daytime temperatures exceed photosynthesis optima (82), increase evaporative stress, causing 
stomatal closure and reducing time for photosynthesis (26) and increase risk of mortality through 
hydraulic failure and/or carbon starvation (23). 

Night-time 
temperature 

Mean daily minimum 
temperature 

Respiration rate increases with temperature so proportion of carbon taken through photosynthesis that is 
allocated to wood should decline with temperature (83). Increased respiration cost could also reduce tree 
longevity (23). As respiration occurs day and night, and photosynthesis only in the day, nighttime 
temperature should better reflect respiration effects and daytime temperature better reflect photosynthesis 
effects. 

Moisture 
availability 

Precipitation in the driest 
quarter2 

Moisture availability could limit photosynthesis and hence carbon gains, with stomata closing when 
moisture availability is limiting. The risk of mortality through hydraulic failure or carbon starvation is 
higher when moisture is limiting (23), and this could also set a limit on potential tree size and hence tree 
longevity.  

Light 
availability 

Cloud frequency Increased photosynthesis and hence AGWP when light availability is greatest (i.e. cloud cover is low) 
(84). Alternatively, light availability could have a negative effect due to high evapotranspiration stress 
when cloud cover is low. 

Wind speed Mean wind speed Carbon stocks are expected to be lower where physical damage through wind throw or breakage is 
higher, as carbon is removed more quickly from the system through mortality (85). But there is potential 
for greater carbon gains if  forests are more dynamic. 
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Table S2. Coefficients of model-averaged general linear models of carbon stocks, gains and residence time as a function of climate, soil, continent and spatial 1011 

autocorrelation. Coefficients are AIC weighted averages across models with ǻAIC < 4 from the best performing model; variables are given a score of zero if 1012 

they did not appear in a model. NA indicates that a term did not occur in any model in this set. MEM1-8 are spatial eigenvectors. 1013 

 
Carbon stocks 

  
Carbon gains 

 
Carbon residence time 

Variable Estimate SE Z P Estimate SE Z P Estimate SE Z P 

Intercept - Africa 4.986 0.010 476.9 <0.001 0.571 0.525 1.09 0.278 3.909 0.688 5.67 <0.001 

Minimum temperature 0.031 0.019 1.67 0.096 -0.001 0.007 0.18 0.861 0.019 0.022 0.88 0.381 

Maximum temperature, warmest 
month 

-0.089 0.022 4.11 <0.001 -0.060 0.017 3.47 <0.001 -0.001 0.015 0.10 0.924 

Precipitation, driest quarter 0.045 0.018 2.54 0.011 -0.001 0.008 0.14 0.887 0.061 0.023 2.70 0.007 

Cloud frequency 0.002 0.008 0.24 0.814 -0.006 0.011 0.54 0.592 0.025 0.021 1.17 0.241 

Wind speed 0.004 0.012 0.38 0.705 0.016 0.020 0.78 0.437 -0.004 0.015 0.24 0.807 

Soil texture (% clay) 0.021 0.017 1.26 0.208 -0.005 0.011 0.49 0.628 0.040 0.018 2.17 0.030 

Soil fertility (CEC) -0.003 0.009 0.34 0.732 0.005 0.011 0.51 0.613 -0.012 0.017 0.70 0.486 

MEM1 0.115 0.014 7.96 <0.001 0.319 0.559 0.57 0.569 0.375 0.734 0.51 0.610 

MEM2 0.098 0.017 5.67 <0.001 0.083 0.273 0.30 0.762 0.286 0.359 0.80 0.427 

MEM3 -0.025 0.014 1.84 0.065 0.014 0.041 0.34 0.735 0.007 0.054 0.12 0.904 

MEM4 -0.021 0.011 1.84 0.066 -0.038 0.020 1.84 0.066 -0.002 0.027 0.07 0.945 

MEM5 0.027 0.011 2.46 0.014 0.020 0.015 1.33 0.182 0.020 0.020 0.98 0.327 

MEM6 0.017 0.011 1.56 0.118 0.025 0.011 2.34 0.019 -0.014 0.014 1.05 0.293 

MEM7 0.010 0.011 0.93 0.353 -0.017 0.010 1.61 0.107 0.036 0.014 2.57 0.010 

MEM8 -0.072 0.013 5.64 <0.001 0.057 0.012 4.91 <0.001 -0.127 0.016 7.80 0.000 

Asia NA 
   

0.380 0.542 0.70 0.485 -0.753 0.683 1.10 0.271 

Australia NA 
   

-0.173 0.390 0.44 0.658 0.006 0.516 0.01 0.990 

South America NA 
   

0.643 1.164 0.55 0.582 0.542 1.530 0.35 0.724 

1014 
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Table S3. Predicted biome-wide changes in long-term biomass carbon stocks (scaled to include root 1015 

biomass) under global temperature increases of ~ 1.5°C and ~ 2°C. Changes are based on temperature 1016 

effects alone, and when also accounting for the effect of increased CO2 concentrations on tree growth. 1017 

CO2 effects were obtained from a synthesis of results of elevated CO2 experiments (Terrer et al. (76)), 1018 

free-air CO2 enrichment (FACE) experiments (Kolby Smith et al. (73)) and CMIP5 earth system 1019 

models (Kolby Smith et al. (73)). 95% confidence intervals around changes (based on uncertainties in 1020 

temperature effects alone) are shown in parentheses.  1021 

 1022 

CO2 effect Change in biomass carbon stocks (Pg) 
 ~ 1.5°C warming  

(443 ppm CO2) 

~ 2°C warming 
(487 ppm CO2) 

None -26.9 (-38.4 - -15.8) -35.3 (-49.0 - -20.9) 
Terrer et al. elevated CO2 
experiments 

-22.0 (-33.0 - -9.9) -26.3 (-37.6 - -11.5) 

Kolby Smith et al. FACE 
experiments 

-6.2 (-16.8 – 7.7) -9.9 (-24.3 – 3.9) 

Kolby Smith et al. CMIP5 
models 

3.9 (-8.3 – 12.6) 2.0 (-11.9 – 19.8) 


